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Abstract. Existing methods for oral English proficiency assessment such as subjec-
tive instructor evaluations are inconsistent, time-consuming, and susceptible to bias.
This study aims to address these limitations by developing an automated scoring system
called BERTOphone to enhance the accuracy and efficiency of spoken English evaluation.
BERTOphone integrates two deep learning architectures - BERT (Bidirectional Encoder
Representations from Transformers) and BiLSTM (Bidirectional Long Short-Term Mem-
ory). BERT excels at contextual representation learning while BiLSTM captures sequen-
tial dependencies in speech. Despite recent advancements, prior studies have not fully
exploited the synergies of these models for accurate English speech analysis. This paper
makes novel contributions by proposing the first BERT-BiLSTM fusion model tailored to
English speech scoring. When evaluated on the TIMIT dataset, BERTOphone achieved
12.6% Word Error Rate and 87.4% accuracy, outperforming state-of-the-art models like
LAS and CSS. For assessment, BERTOphone was tested on 100 English speech samples
from an oral test. Compared to manual scores, BERTOphone obtained a high Pearson
correlation of 0.9345, demonstrating reliable automated scoring.
Keywords: Deep learning-based assessment model; English speech recognition; Speech
recognition techniques; Automatic scoring algorithm; BERTOphone.

1. Introduction. In recent years, the field of language assessment has experienced sig-
nificant growth due to the rapid development of deep learning techniques and the in-
creasing demand for online education. As a result, the accurate assessment of English
speaking proficiency has become crucial in evaluating students’ language skills. However,
traditional methods that rely on subjective instructor assessment are inconsistent and
time-consuming [1]. Combining deep learning models, such as BERT and BiLSTM, has
been proposed to overcome these challenges as a promising solution to automate and
enhance the accuracy of spoken English assessment in online education. Deep learning,
a subfield of machine learning, has made notable advancements in various domains, in-
cluding natural language processing (NLP) and speech recognition. Deep learning models
have demonstrated exceptional performance in understanding and processing complex
languages, mainly when dealing with large volumes of data [2]. In NLP, based on the
Transformer architecture, the BERT model has achieved remarkable results and has been
applied in tasks such as text classification and question answering [3]. Leveraging BERT
in the assessment of spoken English offers several advantages, including capturing contex-
tual information, semantic relations, and the flexibility to fine-tune the model for specific
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tasks [4]. Another deep learning model, BiLSTM, has been widely utilized for modeling
sequential data and capturing long-term dependencies. By processing input sequences in
both forward and backward directions, BiLSTM effectively captures spoken language’s
contextual and temporal dynamics [5]. Integrating BERT and BiLSTM in the assessment
of spoken English provides significant benefits. The resulting BERTOphone model enables
comprehensive speech analysis and delivers accurate and reliable assessments of spoken
English proficiency. This research addresses the challenges associated with assessing spo-
ken English in online education. Traditional assessment methods relying on subjective
instructor evaluations have objectivity, consistency, and effectiveness limitations.

Previous research has demonstrated the effectiveness of deep learning models in lan-
guage assessment. For instance, Smith et al. showcased BERT’s capability to capture
contextual information and semantic relations in text classification tasks [6]. Similarly,
Zhang et al. employed BiLSTM for sequential data modeling and time-dependent analysis
in speech recognition, highlighting its efficacy [7]. These studies provide a theoretical foun-
dation and guiding framework for developing the BERTOphone model. Furthermore, the
BERTOphone model builds upon automatic speech recognition and evaluation advance-
ments. Prior studies have developed deep learning-based speech recognition systems that
exhibit high accuracy in recognizing speech [8]. Liu et al. proposed an automatic scoring
algorithm for spoken language, demonstrating the feasibility of utilizing deep learning
in assessing speech proficiency [9]. The significance of this research lies in its potential
to revolutionize the assessment of spoken English in online education. This enables stu-
dents to receive timely feedback and creates an environment conducive to developing their
language skills .

Advancements also inspire this research in automatic speech recognition and speech
assessment. Previous studies have demonstrated the effectiveness of the BERT model
in text classification tasks and the capability of BiLSTM in modeling sequential data
and capturing temporal dependencies . These studies provide the theoretical foundation
and guidance for developing the BERTOphone model. The BERTOphone model aims
to reduce instructors’ workload, provide instantaneous and fair feedback to students,
and mitigate biases and inconsistencies by automating the assessment process, ensuring
student consistency and fairness. This creates a favorable environment for students to
accurately gauge their speaking abilities and effectively develop their language skills. The
development of the BERTOphone model builds upon previous research in deep learn-
ing, automatic speech recognition, and speech assessment, thereby contributing to the
advancement of automated assessment systems in language learning .

This research aims to develop an automated scoring system to enhance the assessment
of spoken English proficiency. The scope includes designing a novel deep learning architec-
ture for speech analysis and evaluating its performance on speech recognition and scoring
tasks. The key problem is the subjective nature and inconsistency of human-based scor-
ing. The solution is an objective algorithm that leverages state-of-the-art deep learning
techniques. This work is significant because it could revolutionize assessment in online
English education. By eliminating human errors and biases, the proposed model ensures
standardized evaluation to support students’ language development. Potential outcomes
include improved feedback for learners, reduced workload for instructors, and advance-
ment of speech processing capabilities . This research will demonstrate the feasibility
of accurate and reliable automated oral proficiency evaluation using deep learning. The
proposed model, BERTOphone, integrates BERT and BiLSTM to set a new benchmark
for English speech scoring performance

This paper is structured as follows. Section 2 reviews related work on online English
education and oral learning assessment, deep learning in language assessment, and BERT



898 Y. Ji

models for language applications. Section 3 then describes the proposed methodology,
including the architecture of the BERTOphone model integrating BERT and BiLSTM.
Next, Section 4 presents experiments and analysis evaluating BERTOphone on the TIMIT
speech recognition dataset as well as on an oral English test. Results demonstrate the
model’s effectiveness for automated speech recognition and scoring. Finally, Section 5
concludes with a summary of key findings and implications.

2. Related Work.

2.1. Online English Education and Oral Learning Assessment. The proliferation
of online education has facilitated learners’ access to diverse educational resources and
opportunities, including online English education [10]. Online platforms have become
increasingly prevalent as productive means of acquiring language proficiency from a dis-
tance [11]. The evaluation of spoken language proficiency in virtual English instruction
poses distinctive obstacles in contrast to conventional face-to-face learning environments.
The conventional approaches to oral assessment, such as the subjective appraisal by ed-
ucators, frequently suffer from a lack of uniformity and impartiality. To tackle these
obstacles, scholars have investigated novel methodologies for evaluating spoken language
proficiency within the framework of virtual English instruction . Technological advance-
ments and a rising need for adaptable learning alternatives have propelled the growth of
online education. Digital platforms allow students to avail themselves of superior Eng-
lish language educational materials, establish connections with educators and classmates
across the globe, and acquire knowledge at a self-determined rate. The platforms pro-
vide diverse courses and programs to improve language proficiency in listening, speaking,
reading, and writing . Students can participate in immersive learning experiences that
replicate genuine language interactions through interactive exercises, video tutorials, and
virtual communication tools. The accessibility and flexibility offered by online English
education have rendered it a favored option among learners who aspire to enhance their
language proficiency [12].

The evaluation of spoken proficiency is of utmost importance in language acquisition
as it indicates learners’ capacity to communicate effectively within authentic contexts.
Nonetheless, conducting precise and consistent evaluations within a virtual setting poses
distinctive obstacles. Conventional approaches to evaluating oral proficiency, such as in-
person interviews or oral examinations, may possess subjectivity, require a significant time
investment, and be susceptible to personal prejudices [13]. In addition, scaling individual
assessments for many online students can pose logistical challenges and require signifi-
cant resources. Researchers have investigated diverse, innovative methods to tackle the
difficulties of evaluating oral proficiency in online English education [14]. The method-
ologies above utilize technological progressions and educational tactics to augment verbal
evaluations’ precision, impartiality, and effectiveness. Several significant methodologies
comprise Automated Speech Recognition (ASR) [15], Peer assessment [16], Structured
performance tasks [17], Video-based assessments [18], Self-assessment [19], Task-based
assessments [20], Rubrics and scoring [21], feedback and feedforward [22], and adaptive
assessment systems [23]. Integrating various assessment methods and tools can yield a
more comprehensive and precise evaluation of learners’ oral proficiency. Incorporating
self-assessment, peer assessment, and instructor assessment facilitates data triangulation,
enabling a comprehensive comprehension of learners’ competencies.

2.2. Deep Learning in Language Assessment. The subfield of machine learning,
known as deep learning, has garnered considerable interest in language assessment owing
to its impressive capacity for discerning complex patterns and features from extensive



Deep Learning Assessment Model for Online English Oral Learning 899

datasets. This section delves into implementing deep learning (DL) in language as-
sessment, specifically emphasizing its ability to augment the precision, dependability,
and expediency of appraising language aptitude. Researchers and educators can use
deep learning algorithms to transform language assessment practices, as Brunfaut [24]
and Sarker [25] demonstrated, resulting in more extensive evaluations of learners’ lin-
guistic competencies. The domain of language assessment has seen significant research
in Automated Essay Scoring (AES), with deep learning techniques exhibiting consider-
able promise in this field. Neural network models, namely convolutional neural networks
(CNN) and recurrent neural networks (RNN) have been utilized to scrutinize and assess
the caliber of essays, considering diverse linguistic attributes such as grammar, coherence,
and vocabulary [26, 27]. Scholars such as Ge and Chen [28] and Uto et al. [29] have in-
vestigated the utilization of deep learning in automated essay scoring (AES), exhibiting
encouraging outcomes concerning precision and uniformity.

The advent of deep learning has brought about a significant transformation in speech
recognition and pronunciation assessment, as it has facilitated the creation of highly re-
silient and precise models. The application of deep neural networks (DNN) and recurrent
neural networks with attention mechanisms (RNN-AM) in the transcription and evalua-
tion of spoken language has been explored by researchers such as Takai et al. [30], Xu [31],
and Wang et al. [32]. The models above can accurately detect pronunciation errors by cap-
turing even the most delicate nuances of pronunciation. The integration of deep learning
methodologies in pronunciation evaluation instruments has demonstrated the potential to
furnish learners with comprehensive evaluations of their pronunciation abilities, thereby
facilitating their enhancement in spoken language aptitude. The integration of DL with
NLP methodologies has enabled the examination of language competency across diverse
linguistic domains. The utilization of LSTM for sentiment analysis, semantic analysis,
and syntactic parsing has been investigated by Brunfaut [24], Zhang et al. [33], and
Gao [34]. These methods have been applied to evaluate learners’ linguistic complexity,
comprehension, and fluency. LSTM networks and transformer models have effectively
captured semantic and syntactic structures.

Scholars such as Muñoz et al.[35], Lou et al.[36], and Talaghzi et al.[37] have employed
DL algorithms to scrutinize students’ academic achievements, pinpoint their strengths
and weaknesses, and customize educational materials to cater to their individual require-
ments. Adaptive learning systems can offer learners personalized feedback and recommend
appropriate learning resources and approaches to improve their language proficiency by
utilizing deep learning methodologies. DL techniques have also facilitated the amalga-
mation of diverse forms of data, including textual, auditory, and visual cues, to enable a
comprehensive evaluation of language proficiency. Scholars such as Suendermann Oeft et
al.[38] and Dukic et al. [39] have investigated integrating textual analysis with facial ex-
pression recognition and gesture analysis. These studies have yielded significant findings
regarding learners’ levels of engagement, emotional states, and non-verbal communication
abilities. Utilizing a multimodal approach in language assessment amplifies the depth and
genuineness of the evaluation, thereby enabling a holistic appraisal of the learners’ overall
language competency.

Deep learning has shown promising results in advancing language assessment tasks.
Relevant studies utilizing deep learning are summarized in Table 1.

2.3. BERT in Language Applications. BERT is a pre-trained deep learning model
that has gained significant attention in various NLP tasks. BERT utilizes transformer
architecture to learn contextual representations of words, enabling it to capture complex
linguistic patterns and nuances. BERT has been successfully applied in several NLP
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Table 1. Relevant studies utilizing deep learning in language assessment tasks
are summarized

Author Method Contributions Limitations

Uto et al. [29]

Hybridizes handcrafted
essay-level

features with a DNN
for improved AES.

The method combines
essay-level features

with a DNN,
enhancing automated

essay scoring.

It lacks an in-depth
exploration of feature types

and comprehensive
analysis of f

eature importance.

Xu et al. [31]

Applies deep learning
for English

speech recognition
using MFCC

Introduces deep learning
to English

speech recognition,
proposing novel
pronunciation

quality indicators.

Offers limited model
architecture details, uses

a single small dataset,and lacks
comprehensive analysis

of indicators and
benchmark comparisons.

Gao [34]

Develops AGAN-DSVM
for fluency

prediction through a
trace-oriented approach.

Achieves high accuracy
in fluency prediction,

outperforming
other methods.

Sparse model details,
small dataset evaluation,

no comparisons,
or feature analysis.
Solely focuses on

Chinese EFL learners,
potentially limiting

generalization.

Muñoz et al. [35]

Conducted a systematic
literature review
per PRISMA

guidelines focusing
on adaptive learning

technology in
higher education.

Synthesized 112 studies
to unveil trends

and key aspects related
to adaptive learning

in design, implementation,
and assessment.

Hindered synthesis due
to result heterogeneity,
incomplete data in
included studies,

restricted database scope
to English-only studies.

Dukic and Sovic Krzic [39]

Employed Inception-v3
and ResNet-34 for
real-time facial

expression recognition
during a classroom
robotics workshop.

Developed a real-time
facial expression

recognition system
using deep learning
to analyze emotions,

gender, and tasks statistically.

Depended on limited
emotion datasets

, potential participant biases,
limited participant diversity,

and suboptimal
camera positions

affecting face recognition.

applications, such as text classification, question-answering, and language modeling. In
recent years, researchers have explored the potential of BERT in language assessment and
proposed various models that leverage BERT’s strengths to enhance the accuracy and ef-
ficiency of language proficiency evaluation. Several studies have explored the applications
of BERT in language assessment, including writing assessment and vocabulary evaluation.
For instance, Yang et al. [40] proposed a BERT-based model for automated essay scoring,
which achieved high performance in scoring essays based on various linguistic features.
Similarly, Hu et al. [41] utilized BERT to evaluate the vocabulary proficiency of Chinese
learners of English, demonstrating its efficacy in accurately classifying learners’ vocabu-
lary levels. BERT has also been employed to evaluate learners’ comprehension, fluency,
and linguistic complexity. Dai et al. [42] proposed a BERT-based model for assessing
reading comprehension, achieving high accuracy in predicting learners’ performance on
comprehension questions. Moreover, Mageed et al. [43] utilized BERT to evaluate the
linguistic complexity of learners’ writing, demonstrating its potential to provide a de-
tailed analysis of the syntactic and semantic structures of the text. In addition to these
applications, BERT has also been utilized in adaptive language learning systems, which
provide personalized feedback and instruction to learners based on their performance.
Mohsen [44] and Xu [45] have employed BERT-based models to analyze learners’ perfor-
mance and provide targeted feedback and instructional content to enhance their language
skills.

In this study, the author proposed a model that utilizes BERT in language assessment
named BERTOphone, designed to evaluate spoken language proficiency. BERTOphone is
a novel deep learning model for spoken language proficiency assessment combining BiL-
STM and BERT. The BiLSTM component of the model is designed to capture temporal
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dependencies in speech sequences, while BERT is used to extract contextualized repre-
sentations of speech segments. The model can analyze and evaluate the quality of spoken
language based on various linguistic features, such as pronunciation, intonation, and flu-
ency. The BERTOphone model can be trained using a large speech data corpus to learn
spoken language’s intricate patterns and features. During training, the model learns to
predict the proficiency levels of learners based on their spoken responses to various tasks.
The model can be fine-tuned to specific tasks and adapted to different languages, making
it a versatile tool for language assessment.

Moreover, the model’s ability to generate fine-grained scores for spoken language pro-
ficiency, such as pronunciation and fluency, provides valuable feedback to learners and
educators, aiding in improving spoken language skills. Deep learning techniques such
as BiLSTM and BERT represent a significant field advancement in spoken language
assessment. These models can capture spoken language’s complex patterns and struc-
tures, providing a more comprehensive evaluation of learners’ language proficiency. The
BERTOphone model is an example of the potential of deep learning methods in language
assessment, demonstrating how combining different deep learning architectures can lead
to improved performance in language proficiency evaluation.

The major BERT-based models for language applications are summarized in Table 2:

Table 2. Studies Utilizing BERTs for Language Assessment Tasks

Author Method Contributions Limitations

Dai et al. [42]

BERT-IDM enhances
Chinese idiom comprehension
using idiom masking,
interpretation expansion,
and multi-headed attention.

Improves ChID dataset
accuracy by 4.1% over
BERT baseline by creatively
representing idioms
and expanding their semantics.

Limited assessment
on ChID dataset,
lacks model comparisons,
minimal analysis of biases,
and unverified
generalization to
other NLP tasks.

Xu et al. [45]

Created adaptive English
vocabulary learning
with AdaBoost
and BERT based personalized
content recommendations

Defined system architecture
and modules,
measured learner
adaptation, adjusted fitness
for tailored recommendations,
and boosted learning efficiency.

Incomplete model training
details, small learner sample,
basic method comparison,
and limited scope
on vocabulary learning.

Hu, et al. [41]

Created 17 new
challenge datasets across
4 categories to assess
Chinese natural language
inference systems
base on BERT, focusing on
linguistic phenomena
and model robustness.

Provided new resources
for Chinese NLI system
evaluation and analyzed
cross-lingual transfer
learning strengths
and limitations.

Primarily relied on
behavioral testing; additional
analysis required to understand
cross-lingual performance
in various linguistic phenomena.
Intervention techniques
suggested for future work.

Abdul-Mageed, et al. [43]

Curated a vast Twitter
dataset annotated for Arabic
dialects across 21 Arab countries
,employing GRUs and BERT
for supervised models.

Introduced an extensive
Arabic dialect dataset
and a hierarchical
multi-task learning method
for dialect identification.

Depends on location tags
as a proxy for dialect,
requiring further investigation
on the correlation between
location and dialect
in social media data.

Moshen [44]

Evaluated MY Access
automated writing evaluation
for 6 intermediate EFL
students base on BERT,
comparing software-only
to combined feedback.

Showed improved
essay scores with combined
feedback, emphasizing
the value of automated
feedback on
language accuracy

Small sample; more research
needed with larger groups
Focused on one
specific software.

3. Methodology. Oral English proficiency is essential to language learning, and the
ability to accurately assess it is critical. The development of speech recognition and
natural language processing technologies has enabled the creation of automated scoring
systems for oral English proficiency. The study proposes BERTOphone, a speech recogni-
tion model based on the BERT architecture. BERTOphone has three main components:
speech signal processing and feature extraction, acoustic model training, and scoring.
The author describes each part, including mathematical formulas, and discusses their
implementation in the BERTOphone system.
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3.1. Speech signal processing and feature extraction. Speech signal processing
and feature extraction are crucial in developing an accurate oral scoring system. These
processes involve transforming the raw speech signal into a sequence of feature vectors
that can be used as input to the acoustic model. The following are the steps involved in
speech signal processing and feature extraction:

Digitization: The speech signal is first digitized using the sound card of a personal
computer. The signal is sampled at 8 kHz to capture the frequency range of human
speech.

Pre-emphasis : The pre-emphasis process involves flattening the spectrum of the speech
signal. This is achieved using a 6 dB/oct high-frequency boosting pre-emphasis digital
filter. The following equation represents the pre-emphasized signal:

y(n) = x(n)− αx(n− 1) (1)

where x(n) represents the input speech data, and α is the pre-emphasis coefficient.
Framing : The speech signal is divided into frames of a quasi-steady-state process of

10-40 ms. The following equation represents the framed signal:

f(n) = w(n) ∗ y(n) (2)

where f(n) is the framed signal, y(n) is the pre-emphasized signal, and w(n) is the window
function.

Windowing : The windowing process involves strengthening the speech waveform near
the sampling point. This is achieved by multiplying each frame by a window function.
The following equation represents the windowed signal:

s(n) = f(n) ∗ w(n) (3)

where s(n) is the windowed signal, f(n) is the framed signal, and w(n) is the window
function.

Feature extraction: The feature extraction process involves transforming the windowed
signal into a sequence of feature vectors that can be used as input to the acoustic model.
The most commonly used feature extraction method is Mel-frequency cepstral coefficients
(MFCCs). The MFCCs are obtained by applying a sequence of transformations to the
windowed signal, including the Fourier transform, Mel filterbank, logarithmic compres-
sion, discrete cosine transform, and liftering. The resulting feature vectors are then used
as input to the acoustic model. The following equation represents the MFCCs:

MFCCs = IDCT (log(E ∗H)) (4)

where E is the Mel filterbank matrix, H is the Fourier transform matrix, and IDCT is
the inverse discrete cosine transform.

3.2. Acoustic Model Training. The acoustic model maps the input feature vectors to
a sequence of phonemes or subword units. In the BERTOphone system, I uses a neu-
ral network-based acoustic model trained on a large corpus of labeled speech data. The
training data consists of pairs of input feature vectors and their corresponding phoneme
or subword labels. The network is trained using back-propagation and stochastic gradient
descent to minimize the cross-entropy loss between the predicted and actual labels. The
architecture of the acoustic model is based on the BERT model, which is a transformer-
based neural network architecture that has achieved state-of-the-art performance in vari-
ous natural language processing tasks. In the BERTOphone system, I adapted the BERT
architecture to the speech recognition task by adding a linear layer to the output of the
transformer encoder to predict the probability distribution over the phonemes or subword
units. The model is trained using a masked language modeling objective, where a certain
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percentage of the input frames are masked during training, and the network is tasked
with predicting the masked frames. Table 1 shows the Phoneme or Subword Label used
in the BERTOphone system, which employs a neural network-based acoustic model to
map input feature vectors to a sequence of these labels.

Table 3. Phoneme or Subword Label used in the BERTOphone system

Phoneme/Subword Label Description
AA vowel (open front unrounded)
AE vowel (open front unrounded)
AH vowel (central unrounded)
AO vowel (open back rounded)
AW diphthong (open back rounded)
AY diphthong (front open unrounded)
B stop consonant (voiced bilabial)
CH affricate consonant (unvoiced palato-alveolar)
D stop consonant (voiced alveolar)
DH fricative consonant (voiced dental)
EH vowel (mid front unrounded)
ER vowel (r-colored)
EY diphthong (mid front unrounded)
F fricative consonant (voiceless labiodental)
G stop consonant (voiced velar)
HH aspirated consonant (voiceless glottal)
IH vowel (mid central unrounded)
IY vowel (close front unrounded)
JH affricate consonant (voiced palato-alveolar)
K stop consonant (voiceless velar)
L liquid consonant (voiced alveolar lateral)
M nasal consonant (voiced bilabial)
N nasal consonant (voiced alveolar)
NG nasal consonant (voiced velar)
OW diphthong (mid back rounded)
OY diphthong (front open rounded)
P stop consonant (voiceless bilabial)
R liquid consonant (voiced alveolar)
S fricative consonant (voiceless alveolar)
SH fricative consonant (voiceless palato-alveolar)
T stop consonant (voiceless alveolar)
TH fricative consonant (voiceless dental)
UH vowel (mid back rounded)
UW vowel (close back rounded)
V fricative consonant (voiced labiodental)
W semi-vowel (voiced labial-velar)
Y semi-vowel (voiced palatal)
Z fricative consonant (voiced alveolar)
ZH fricative consonant (voiced retroflex)

3.3. Scoring. The final step in the oral scoring system is to use the output of the acoustic
model to generate a score for the input speech signal. There are two main approaches
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to scoring in speech recognition systems: a lattice-based approach and a sequence-based
approach. The lattice-based process involves decoding the output of the acoustic model
into a lattice, which represents a set of possible word sequences. The lattice is then pruned
to select the most likely sequence, and the score is computed based on the likelihood of
the selected sequence. However, this approach has some limitations as it may not capture
the full context of the speech signal and may result in suboptimal performance.

In contrast, the sequence-based approach directly decodes the output of the acoustic
model into a sequence of phoneme or subword labels. This approach is effective in speech
recognition systems and is used in the BERTOphone system. The input to the network
is a sequence of feature vectors extracted from the preprocessed speech signal. The BiL-
STM processes the sequence of feature vectors in both forward and backward directions,
allowing the network to capture context information from past and future frames. The
output of the BiLSTM is then fed into a transformer network, which further processes
the sequence of feature vectors and generates a sequence of phoneme or subword labels.
Once the sequence of phoneme or subword labels has been developed, it is compared to
the ground truth labels for the input speech signal to compute a score. One common
approach is to use the Word Error Rate (WER), which measures the percentage of in-
correctly recognized phonemes or subwords relative to the total number of phonemes or
subwords in the ground truth transcription.

3.4. Architecture of BERTOphone. The architecture of BERTOphone consists of
several interconnected layers that process the input speech data to generate accurate
scores. Figure 1 illustrates the flow of information through the different stages of BERTO-
phone’s architecture. Firstly, the speech data is provided as input to the system. This
data contains the spoken language that needs to be transcribed and evaluated. Next,
the input data undergoes a preprocessing step. This step involves various techniques and
algorithms to clean and transform the raw speech data into a suitable format for further
analysis.

3.4.1. BERT Layer. Following preprocessing, the data flows into the BERT layer. This
layer learns speech data representations that encode local and global dependencies. BERT
stands for Bidirectional Encoder Representation from Transformer, which signifies a model
for bidirectional word representation based on the Transformer architecture. It constitutes
a sequence-to-sequence model comprising two phases: an encoder and a decoder. Notably,
the architecture does not rely on RNN structures, but rather employs attention layers to
embed words within sentences. The specific architecture of the model is depicted in Figure
2. The Transformer model consists of two main phases:

� Encoder: This phase consists of six consecutive layers. Each layer encompasses a
sub-layer, Multi-Head Attention, combined with a fully-connected layer, as illustrated in
the left branch of the diagram. An embedding vector output is obtained for each word
after the encoding process.

� Decoder: The decoder architecture also comprises sequential layers. Each layer of
the decoder incorporates sub-layers that closely resemble those of the encoder, with the
addition of a first sub-layer known as Masked Multi-Head Attention, designed to exclude
future words from the attention process. BERT is designed for pre-training word em-
beddings. A unique aspect of BERT is its ability to balance context in both left-to-right
and right-to-left directions. The attention mechanism of the Transformer simultaneously
processes all words in a sentence without regard to sentence direction. Thus, the Trans-
former is considered bidirectional in training, though it is more accurately described as
non-directional. This characteristic enables the model to learn word context based on all
surrounding words, including those to the left and right.
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Figure 1. Architecture of BERTOphone

A distinctive feature of BERT, not present in previous embedding models, is the capac-
ity for fine-tuning the training results. The output layer can be customized for the training
task. Figure 3 illustrates a similar architecture employed for both the pre-trained and
fine-tuned models. The same pre-training parameters initialize models for various down-
stream tasks. Throughout the fine-tuning process, all transfer learning layer parameters
are fine-tuned.

For tasks involving input as a pair of sequences, such as question and answering, tokens
[CLS] and [SEP] are added at the beginning and between sentences, respectively. The
fine-tuning process unfolds as follows:

Step 1: Embedding of all tokens in the sentence pair using pre-trained word embedding
vectors. Token embeddings include both [CLS] and [SEP] tokens to mark the question’s
start and the sentence separation point. These tokens are predicted in the output to
determine the output sentence’s Start/End Span portions.

Step 2: The resultant embedding vectors are then input into a multi-head attention
architecture comprising multiple code blocks (typically 6, 12, or 24 blocks, depending on
the BERT architecture). An output vector is obtained at the encoder.

Step 3: To predict the probability distribution for each word position in the decoder, the
encoder’s output vector and the decoder’s input embedding vector are used to calculate
encoder-decoder attention at each time step. This is followed by projection through
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Figure 2. Transformer Architecture

a linear layer and softmax to derive the probability distribution for the corresponding
output at the time step.

Step 4: The output of the Transformer contains the fixed result of the question, aligned
with the input Question. The remaining positions constitute the expanded Start/End
Span components, corresponding to the answer found in the input sentence.

3.4.2. BiLSTM Layer. The output from the BERT layer then moves to the BiLSTM
layer. The BiLSTM model is a composite model consisting of a forward LSTM and a
backward LSTM. The LSTM utilized in this model is a variant of the recurrent neural
network (RNN). To address the issue of gradient vanishing in conventional RNN models,
researchers have proposed integrating a gating unit into the LSTM architecture. This
addition enhances the LSTM’s capacity to capture long-term dependencies and empow-
ers the RNN to identify and exploit dependencies present in distant data points more
effectively. The process of the BiLSTM layer is elaborated in Figure 4, along with the
mathematical expressions (5) - (10).

it = σ(Wxixt +Whiht−1 + bi) (5)

ft = σ(Wxfxt + Whfht−1 + bf ) (6)
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Figure 3. The pre-training and fine-tuning process of BERT

Figure 4. LSTM internal neural

ot = σ(Wxoxt + Whoht−1 + bo) (7)

c̃t = tanh(Wxcxt + Whcht−1 + bc) (8)

ct = ft ⊙ ct−1 + it ⊙ c̃t (9)

ht = ot ⊙ tanh(ct) (10)

where, ht is the hidden state of the BiLSTM layer at time t, xj is the feature vector at
positions j, and v, Wh, Wx, and b are learnable parameters. The attention scores etj
measure the relevance of each feature vector xj to the currently hidden state ht.

3.4.3. Attention layer and Scoring layer. After the BiLSTM layer, the data passes through
the Attention layer. This layer applies attention mechanisms to focus on essential features
and relationships within the input data. Attention allows BERTOphone to give more
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weight to relevant information during the scoring process. The Attention layer computed
a context vector for each frame using the Equations (11) to (13):

ct =
∑
j

αtj.xj (11)

etj = vT tanh(Whht + Wxxj + b) (12)

αtj = softmax(etj) (13)

where attention weights αtj determine how much weight to give each feature vector in
computing the context vector ct.

Finally, the data reaches the Scoring layer, where the transformed representations are
used to generate scores for the input speech data. This layer applies specific scoring
algorithms and techniques tailored to the evaluation task, such as assessing pronunciation,
fluency, and other linguistic aspects.

4. Experiment and Analysis.

4.1. Dataset. For evaluating the performance of BERTOphone, I use the TIMIT dataset,
which is a widely used benchmark dataset for speech recognition [46]. The dataset consists
of 6300 phonetically balanced sentences spoken by 630 speakers from eight major dialect
regions of the United States. The recordings were sampled at 16 kHz and saved as 16-bit
linear PCM files. Each sentence is transcribed and labeled with a phonetic transcription,
which includes 61 phonetic symbols. I used the standard train/test split provided with
the dataset, where 462 speakers were used for training, and 168 speakers were used for
testing. The training set consists of 3696 sentences, while the test set consists of 1344.
The task is to transcribe each sentence into its corresponding phonetic sequence.

Furthermore, to conduct a comprehensive assessment of BERTOphone’s efficacy, the
model will be employed to assess the speech recordings of 100 students. Subsequently,
the results will be compared with the manual scoring conducted by English teachers. The
recordings were collected using a smartphone application that prompted the students to
read a set of standardized text passages. The passages were selected to cover a range of
phonetic and linguistic features, including vowel and consonant sounds, stress patterns,
and sentence intonation. Each student was asked to read three different passages, with
each passage presented twice. The first presentation was used as a warm-up, and the
second presentation was used for analysis. The students were instructed to speak naturally
and at a comfortable pace. The recordings were saved in WAV format and then processed
to extract relevant features using MFCCs. The extracted features were then used as input
to the BERT-based acoustic model, which was trained to predict phoneme or subword
labels.

4.2. Evaluation Metric. I uses Word Error Rate (WER) and Accuracy to evaluate the
model’s speech recognition performance.

WER is a commonly used metric for evaluating the accuracy of speech recognition
models. WER is defined as the percentage of word recognition errors in the predicted
transcription. It is calculated as follows:

WER =
S +D + I

N
(14)

where S is the number of substitution errors, D is the number of deletion errors, I is
the number of insertion errors, and N is the total number of words in the reference
transcription.
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Accuracy: In addition to the above error-based metrics, I reports the overall accuracy
of the BERTOphone model, defined as the percentage of correctly predicted phones in
the test set.

Accuracy =
P

T
(15)

where P is number of correctly predicted phones, and T is the total number of phones.
To assess and contrast and manual scoring, I employed the Pearson correlation coeffi-

cient and Average difference metrics, as denoted by Formulas (16) and (17), respectively.

ρ(X, Y ) =
cov(X, Y )

σ(X).σ(Y )
(16)

d = |S(BERTOphone)− S(Manual)| (17)

4.3. Experiment Setup. All experiments were conducted using Python 3.6 on a ma-
chine with an Intel Core i7-9700K CPU and 32GB of DDR4 RAM. The BERTOphone
model was implemented in PyTorch 1.7.1 leveraging its optimized deep learning mod-
ules and computational graph capabilities. Training and inference were performed on an
NVIDIA GeForce RTX 2080 Ti GPU with 11GB GDDR6 memory, which provided suffi-
cient resources for batch processing of the speech data. The key BERTOphone training
parameters were empirically tuned and are presented in Table 4. The Adam optimizer was
used for its adaptive learning rate capabilities, accelerating convergence. A small weight
decay of 0.0001 regularized the model to prevent overfitting. The learning rate began at
0.01, enabling fine-tuning of the pretrained BERT weights. Speech segments were trun-
cated/padded to 256 tokens to balance sequence coverage and memory requirements. A
dropout of 0.2 was applied on the BiLSTM module during training for regularization. The
parameterized setup allowed efficiently training BERTOphone to leverage both BERT’s
representation learning and BiLSTM’s sequence modeling strengths.

Table 4. Training parameters.

Parameter Value
Optimizer Adam

Weight decay 0.0001
Learning rate 0.01

Maximum sequence length 256
Dropout 0.2

For the purpose of evaluation, only vehicles in the test set with more than 100 track
points recorded were selected for the split.

4.4. Experimental Results and Analysis.

4.4.1. Speech Recognition Results and Analysis. The TIMIT dataset, a well-established
benchmark for speech recognition systems, was utilized to conduct an assessment of the
BERTOphone . This dataset consists of speech recordings from various speakers across
different dialects and phonetic environments. Standard metrics, including WER, and
Accuracy (Acc), were utilized to evaluate the performance of BERTOphone. Table 5
and Figure 5 below illustrate the assessment outcomes conducted on sentences of varying
lengths, ranging from one to five.

As we can see from Table 5 and Figure 5, as the number of sentences increases, there
is a gradual increase in all four evaluation metrics, with WER increasing while accuracy
decreases. This indicates that BERTOphone struggles with longer inputs and that its
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Table 5. Performance of BERTOphone on Different Sentence Lengths.

Number of Sentences WER Accuracy
1 9.6 90.4
2 11.7 88.3
3 12.9 87.1
4 13.8 86.2
5 14.8 85.2

Figure 5. BERTOphone Performance by Sentence Length

performance may be limited for complex, multi-sentence inputs. However, even with
longer inputs, the performance of the BERTOphone is impressive, with WER below 15%
and accuracy above 85%. These results suggest that BERTOphone is an effective method
for speech recognition, particularly for shorter inputs, and can be applied to a wide range
of applications, such as language learning, voice-enabled assistants, and automated speech
transcription.

Figure 6 presents a thorough evaluation of the classification capabilities of BERTO-
phone. The Confusion Matrix provided represents the classification performance of the
BERTOphone model when applied to the TIMIT dataset. The provided visual represen-
tation provides a detailed depiction of the correspondence between the phoneme labels
obtained from actual data and the phoneme predictions generated by the BERTOphone
model. This comprehensive evaluation offers insights into the performance of the model.
The diagonal elements representing accurate predictions are more prominently distin-
guished by their higher intensity. The identification of deviations from the diagonal re-
veals the underlying pattern of misclassifications. For example, the rows corresponding to
phonemes such as ”AE,” ”IH,” and ”IY” demonstrate comparatively higher frequencies of
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misclassification. This observation suggests the presence of inherent phonetic similarities
or difficulties in accurately distinguishing these phonemes.

Figure 6. Confusion Matrix of BERTOphone performance on TIMIT

To perform a thorough empirical evaluation and analysis, the results obtained from
BERTOphone will be averaged and contrasted with those of two other cutting-edge speech
recognition models, specifically Listen, Attend and Spell (LAS) [47] and Convolutional
Sequence-to-Sequence (CSS) [48]. The evaluation is based on the metrics of WER, and
accuracy, all of which are crucial in assessing the effectiveness of a speech recognition
model. The comparative findings are presented in Table 6. The results indicate that

Table 6. Performance Comparison of BERTOphone with LAS and CSS Models

Model WER Accuracy
BERTOphone 12.6 87.4

LAS [47] 14.8 84.8
CSS [48] 13.3 86.7

BERTOphone outperforms the other two models in all four metrics, achieving WER
of 12.6% and accuracy of 87.4%. In comparison, LAS achieved a WER of 15.2% and an
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Accuracy of 84.8%, while CSS achieved a WER of 13.3% and an accuracy of 86.7%. These
results demonstrate the high accuracy and effectiveness of BERTOphone in recognizing
speech and highlighting its superiority over the other two models. Such improvements
in speech recognition models can have significant implications in various fields, such as
online education, speech-to-text translation, and automatic transcription, where accurate
and efficient speech recognition is paramount.

4.4.2. Data Augmentation Techniques for Model Robustness. This experiment aims to as-
sess the influence of data augmentation techniques on the robustness and performance of
the proposed framework. By employing various data augmentation techniques, I aims to
enhance the model’s ability to handle diverse input variations and improve its accuracy
and reliability in evaluating oral English proficiency. Through rigorous evaluation and
comparison, the research seeks to identify the augmentation techniques that significantly
impact the BERTOphone’s performance, thereby providing valuable insights for devel-
oping more effective and robust deep learning assessment models in the context of oral
English education.

Data augmentation techniques employed in this study include Speed Perturbation,
which involves randomly varying the speed of the original recordings by +/- 10% to
generate augmented samples. Pitch Shifting techniques are applied to create variations
in the pitch of the speech in the original recordings. These techniques aim to enhance
the diversity and robustness of the training data, providing the deep learning assess-
ment model with a more comprehensive understanding of different speech patterns and
environments in oral English learning. BERTOphone is trained separately using each
augmented dataset. This allows the model to adapt and optimize its performance based
on the augmented data, capturing the nuances and characteristics introduced by the spe-
cific augmentation technique. By training the model on different augmented datasets, the
experiment aims to evaluate the impact of each technique on the model’s performance
and robustness in oral English learning assessment. In this experiment, we consider three
models for analysis:

1) BERTOphone: The baseline model, trained on the original data without any aug-
mentation.

2) TempoBoost (BERTOphone -TempoBoost): This model is trained on data with
speed perturbation augmentation, where the speed of the original recordings is randomly
varied by +/- 10%, creating augmented datasets.

3) PitchFlex (BERTOphone – PitchFlex): This model is trained on data with pitch
shifting augmentation, introducing variations in the pitch of the speech in the original
recordings.

Based on the conducted experiment, the performance of the BERTOphone and the
two augmented models, TempoBoost and PitchFlex, were evaluated and shown in Table
7. In comparison, the TempoBoost model, trained on data with speed perturbation

Table 7. Performance Comparison of BERTOphone with augmented models

Model WER Accuracy
BERTOphone 12.6 87.4

BERTOphone -TempoBoost 12.1 88.7
BERTOphone - PitchFlex 11.2 89.5

augmentation, demonstrated a lower WER of 12.1% and a higher accuracy of 88.7%.
This indicates that the speed perturbation technique enhanced the model’s ability to
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handle variations in speech speed, resulting in improved performance in oral English
learning assessment. Similarly, the PitchFlex model, trained on data with pitch shifting
augmentation, achieved the lowest WER of 11.2% and the highest accuracy of 89.5%. The
pitch-shifting technique proved effective in capturing variations in pitch and contributed to
enhanced performance in evaluating oral English proficiency. These results highlight the
positive impact of data augmentation techniques on the BERTOphone model, providing
evidence of improved robustness and effectiveness in oral learning assessment tasks. The
augmented models, TempoBoost and PitchFlex, offer valuable insights for developing
more accurate and reliable DL assessment models in the context of oral English education.

4.4.3. BERTOphone Scoring System Results and Analysis. The scope of the experiments
has been extended to assess the automated scoring proficiency of BERTOphone. A sample
of 100 English language tests administered to university students was utilized to evaluate
the efficacy of BERTOphone scoring. The results were then compared to the manual
scores assigned by the English language teacher. The results of the oral English test
scoring prediction from BERTOphone and manual scores are depicted in Figure 7. Ta-

Figure 7. Results of the oral English test scoring prediction from BERTOphone
and manual scores

ble 8 reveals the Pearson correlation coefficient, Average different index, Mean absolute
error (MAE), Root Mean Squared Error (RMSE) and Concordance Correlation Coeffi-
cient (CCC) between BERTOphone and manual scoring. Figure 7 and the Table 8 depict

Table 8. Coefficient Metrics for BERTOphone and Manual Scoring.

Metric Value
Pearson correlation 0.9345
Average difference 0.558

MAE 0.531
RMSE 0.6097
CCC 0.9326
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the outcomes derived from evaluating 100 students using both BERTOphone and manual
scoring methods. These metrics elucidate the divergence and convergence between the two
assessment systems. The data showcases a pronounced and positive linear relationship,
indicated by the Pearson correlation coefficient of 0.9345, accompanied by an average
score difference of 0.558.Additionally, this comparison highlights other metrics essential
in understanding the differences between the BERTOphone and manual scoring methods.
The Mean Absolute Error (MAE), measuring the average magnitude of errors between the
two scoring methods, indicates a value of 0.531. Similarly, the Root Mean Squared Error
(RMSE) stands at 0.6097, providing insight into the square root of the average of squared
differences between BERTOphone and manual scores. The Concordance Correlation Co-
efficient (CCC), a crucial measure for evaluating the agreement between two methods,
was computed as 0.9326. It indicates not only the correlation between BERTOphone and
manual scores but also the precision of their agreement.

The comparative analysis between BERTOphone and manual scoring reveals a note-
worthy pattern in how human graders tend to assess student work. Manual assessment
often reflects teachers’ inclinations to assign higher scores to assessments they consider of
superior quality and lower scores to those deemed less impressive. In the manual grad-
ing process, English teachers engage subjective judgment, leveraging their experience and
interpretative skills to evaluate various aspects such as grammar, vocabulary, sentence
structure, and overall coherence.In stark contrast, BERTOphone introduces an objective
and automated scoring system that meticulously scrutinizes speech patterns and linguis-
tic attributes. This approach substantially eliminates the subjective elements inherent in
manual grading, ensuring a standardized evaluation process. However, BERTOphone’s
effectiveness is heavily contingent upon the quality of its training data. In this regard,
human graders retain their proficiency in offering nuanced understanding, interpreting
context, and delivering personalized feedback.

5. Conclusion. In this study, I has examined the performance of BERTOphone, an auto-
mated scoring system based on machine learning algorithms. BERTOphone demonstrates
strong performance in speech recognition tasks using the TIMIT dataset. It achieves a
low WER, indicating its accuracy in transcribing spoken language. When com-paring
BERTOphone’s evaluation of student scores to manual scoring methods, a high Pear-
son correlation coefficient of 0.9345 demonstrates a strong positive linear relationship
between the two approaches. This affirms BERTOphone’s reliability and alignment with
manual scoring, making it a promising tool for assessing student performance. However,
it’s important to acknowledge that BERTOphone’s performance relies on the quality and
diversity of its training data and specific dataset characteristics. Ongoing research and
improvements are necessary to address challenges such as accents, speech variations, and
noise environments. Overall, BERTOphone offers reliable speech recognition and effective
evaluation of student scores, making it a valuable tool in language assessment and speech
processing. Continued development will contribute to its integration into educational and
speech recognition applications.
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