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Abstract. Non-invasive load monitoring (NILM) can help residents monitor the opera-
tion of household appliances and achieve the purpose of energy conservation and emission
reduction. Load event identification is a key task of non-intrusive load monitoring. In
order to enrich the characteristics of load events and improve the identification accu-
racy of load events, a load event identification algorithm based on color coding (CCA) is
proposed. On the basis of retaining the basic waveform of active power, the three char-
acteristics of active power (R), reactive power (G) and reactive power change trend (B)
are fused to construct the color image of load events, and the image is trained and rec-
ognized based on the AlexNet convolutional neural network with parameter adjustment.
The experimental results show that this load event identification algorithm can stably and
effectively distinguish the load events of different devices. Compared with three commonly
used classifiers, the results show that this algorithm is superior to the traditional event
classification algorithm based on power sequence.
Keywords: Non-invasive load monitoring, load event identification, feature extraction,
color code

1. Introduction. Energy crisis and climate change are two major challenges facing the
world today [1]. Improving energy consumption structure to reduce fossil energy demand
is the key measure to deal with these two challenges. With the improvement of living
standards of Chinese residents, the proportion of household electricity consumption in
the total electricity consumption of the national economy is increasing. Non-intrusive
load monitoring (NILM) [2] analyzes the overall power consumption data of a household
to enable operation monitoring and energy consumption analysis of various electrical
appliances within the home. This is beneficial for users to timely and comprehensively
understand the usage patterns of different electrical appliances, optimize the structure of
electricity consumption, and achieve the goal of energy saving and emission reduction.
With the development of deep learning algorithms [3], optimization algorithms [4, 5, 6],
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and cloud computing [7] , and the popularization of smart grids [8, 9], NILM has begun
to receive widespread attention from engineering and academia. In NILM, an event is a
switch in the operating status of an electrical appliance [10]. NILM can be divided into
event-based and event-free schemes depending on whether load events need to be detected
or not [11]. Event detection and load event identification are two important tasks of event-
based NILM. The research in this paper focuses on load event identification.

The active power curve, also called the waveform of active power, reflects the energy
consumption information and operating state of the system. Afzalan et al. [12] designed a
self-configured event detection algorithm using active power waveform clustering. Xiao et
al. [13] achieved load event identification by fitting active power curves with an improved
KM algorithm. Image processing techniques and feature construction techniques are
widely used in practical engineering [14]. Constructing load characteristic models through
color coding has been a current research hot topic in NILM. Cui et al. [15] propose a true-
color feature image where the red-green-blue (RGB) values are converted by the voltage,
current, and V -If trajectory information of the loads. In Ding et al. [16], the active
current of the loads, the slope of the straight line segment between the adjacent sampling
points of the V -If trajectory, and the average instantaneous power of adjacent sampling
points are extracted as the RGB values.

Based on the above research, a non-intrusive load event identification algorithm based
on RGB color coding (CCA) is proposed. The overall process is shown in Figure 1. The
active power load curve is mapped to a 5 × 5 RGB image, using active power as the
R-channel, reactive power as the G-channel, and the waveform change of reactive power
as the B-channel. This algorithm fuses the numerical features of load events with image
features to contain richer electrical information. The uniqueness of load characteristics
is enhanced and power consumption and energy exchange during equipment operation
are better reflected by the color image. More accurate differentiation between different
operating states of various equipment can be achieved by using color images in load event
identification. Based on color image feature data, AlexNet convolutional neural network
[17] is used for model training and event recognition.

2. Load event feature extraction based on color coding.

2.1. Mapping rules for color images. Resistive, inductive and capacitive loads are
the main types of loads in an electrical circuit [18]. There are some differences in their
transient processes. For purely resistive loads, the current response in the circuit is
instantaneous when the device is turned on or off, and the current magnitude is controlled
by Ohm’s law without any transient process. The duration of load events for purely
resistive loads is extremely short, usually lasting only a few milliseconds. For inductive
loads, the current in the circuit changes slowly as the inductance blocks the current when
the device is turned on or off. When an inductive load is turned on and off, there is a rise
or fall of current in the circuit until steady state is reached. The duration of load events
for inductive loads depends on the inductance and load resistance values in the circuit
and can range from a few hundred milliseconds to a few seconds or even longer [19]. For
capacitive loads, the transient response is usually very short, usually lasting only a few
milliseconds or less [20], because the capacitor can charge and discharge very quickly.

To capture more event characteristics of inductive loads, the algorithm selects 100 active
and reactive power data points with a sampling frequency of 60Hz at and after the point
of event occurrence, which are then divided into five equal parts to build a 5×5 RGB
matrix:
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Figure 1. The overall flow chart of this algorithm

(1) Assume that the active power set and the reactive power set containing 100 sampled
data:

P = {pi | i = 1, 2, ..., 100} =
5⋃

t=1

Pt =
5⋃

t=1

{pi | i ∈ [20(t− 1) + 1, 20t]} (1)

Q = {qi | i = 1, 2, ..., 100} =
5⋃

t=1

Qt =
5⋃

t=1

{qi | i ∈ [20(t− 1) + 1, 20t]} (2)

where, P , Q is the total data set, pi, qi is the i− th sampled data, andPt, Qt is the data
set of the t− th time span.
(2) The resolution of the image is 5 × 5. Using time t as the horizontal axis and

active power P as the vertical axis, all sample points are mapped onto the grid with the
dimensions of each pixel:  ∆t =

100

5
= 20

∆p =
pmax − pmin

5

(3)

where, pmax, pmin is the maximum and minimum values of the 100 active power sampling
data, ∆t is the cell horizontal coordinate size, ∆p is the cell vertical coordinate size.
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(3)The mapping coordinates of the sample points are determined via:

(x, y) =


x =

⌈
i

∆t

⌉
y =

⌈
pi − pmin

∆P

⌉ (4)

where, ⌈⌉ represents rounding up.

2.2. Color coding algorithm. (1) R-channel
In a power system, when an event occurs, the power change is relative to the base load,

but the active power recorded by the measuring device is an absolute value. Therefore,
before calculating the active power statistics of the event, it is necessary to obtain the
relative value of the active power of the event. In this paper, the difference between the
sampling point and its minimum value is the relative value of the power, that is pi−pmin.
Firstly, the cumulative sum of the relative values of the active power of 100 sampling

points is obtained as the denominator, and then the cumulative sum of the relative values
of the active power in each time span is obtained as the molecule. The logarithm of the
numerator and denominator is taken, and the ratio is taken as the value of the R-channel
at the position, see Equation (5). The logarithm operation is to normalize the data, and
the independent variable of the logarithmic function is added by 1 to ensure that the final
value is positive. Because the value range of RGB coding is [ 0,255], the final result needs
to be multiplied by 255.

R(x, y) = 255
lg
[
1 +

∑
i=Pt

(pi − pmin)
]

lg [1 +
∑

i=P (pi − pmin)]
(5)

(2) G-channel
The G-channel uses reactive power as the original data, and its construction process is

the same as the R-channel:

G(x, y) = 255
lg
[
1 +

∑
i=Qt

(qi − qmin)
]

lg
[
1 +

∑
i=Q (qi − qmin)

] (6)

(3) B-channel
There will be a problem in using the above scheme to construct R-channel and G-

channel, pi− pmin and qi− qmin only consider the amplitude of active and reactive power,
ignoring the trend of active and reactive power. For two load events with similar magni-
tude of power change before and after the event, but with different trends, the values of
their R and G channels may not differ much, affecting the final classification effect.

Figure 2 shows the comparison of two similar events. The change in active power for
event 1 is 2000W with a step-up trend (top left), and the change in reactive power is
100Var with a step-down trend (bottom left). The change in active power for event 2 is
1800W with a step-up trend (top right) and the change in reactive power is 90Var with a
step-up trend (bottom right). Figure 3 shows the color images constructed by using only
the R and G channels for the two events. It can be seen that the two images have same
shape and similar tones.

Because the shape of the color image represents the trend of active power, only the
trend of reactive power is considered in constructing the B-channel. To obtain the trend
of the reactive power, the rising statistic Tup and the falling statistic Tdown are defined
and their values are calculated in Equation (7). The ratio of the rise statistic Tup to the
total change (Tup + Tsown) is used to quantify the extent of the rising trend in reactive
power. The value of the B-channel is determined by Equation (8).
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Figure 2. Comparison of two similar events

Figure 3. Color images constructed by two channels

{
Tup =

∑
|qi − qi−1| , qi − qi−1 ≥ 0

Tdown =
∑

|qi − qi−1| , qi − qi−1 < 0
(7)

B(x, y) = 255
Tup

Tup + Tdown

(8)

Encoding of event 1 and event 2 using RGB triple channel, their feature image is shown
in Figure 4. It can be seen that the tonal difference between the two images is obvious
and can satisfy the requirement of distinguishing the two events. When event 2 occurs,
the rising trend of reactive power is obvious, corresponding to a value of 225-255 for the
B-channel, indicating that the ratio of the rising statistics to the total change is large,
so this part of the pixel shows a blue tone. After the end of the rise, the reactive power
waveform is flat and fluctuates up and down only by the influence of electrical noise,
which corresponds to a value of 120-135 for the B-channel, indicating that the rising and
falling statistics have basically the same proportion, each accounting for half of the total
variation. When event 1 occurs, the downward trend of the reactive power is obvious and
it takes a small value for the B-channel, so that this part of the pixel point does not show
a blue tone.

2.3. Event color images of EMBED. EMBED was collected by Jazizadeh et al. [21],
contains 14-27 day total load data and marker event data for three U.S. residences. To
further verify the feasibility of color image features for distinguishing different events,
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Figure 4. Color images encoded by RGB

color images of 24 types of load events selected from the EMBED dataset are plotted.
Figure 5 shows the active power waveforms of the events and Figure 6 shows the color
image features of the events.

Figure 5. Active power waveforms of events

Figure 6. Color images of events

It can be seen that the color image with RGB encoding preserves the basic shape of the
active power waveform and the color scheme of different events is recognizable. For images
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with similar shapes, such as 11102, 16201 and 18001, different events can be identified by
color. For images with similar color schemes, such as 16201, 16202 and events 11102 and
11103, which are generally switching events of the same device, it is possible to identify
the different events by their shapes. For some events with pulse durations shorter than 20
sampling points, such as 12902 and 18002, their spike waveforms will be drowned out, but
the spike waveform characteristics can still be reflected by color, so it has little impact on
the classification of events. Due to the limited number of pixel points, for the very few
events with complex transient processes, such as 30000, the retained basic waveforms are
not complete enough, which may affect the classification effect.

Overall, the constructed color images meet the design expectations and reflect a large
variation in waveform retention and color matching, which can be used as features to
distinguish different events.

3. AlexNet-based load event identification algorithm. Deep learning algorithms
have been used quite extensively in the field of image classification [22]. In this paper, we
use AlexNet convolutional neural network to recognize color images of load events.

3.1. Structure of AlexNet. AlexNet is a large, multi-layer convolutional neural net-
work algorithm [17], and its basic structure is shown in Table 1. The algorithm consists
of approximately 60 million parameters and 650,000 neurons, which are divided into 8
layers, with the first 5 layers being convolutional layers.

Table 1. Structure of AlexNet

No. Layer Type Output Size Filter Size Activation Function
0 Input 224 × 224 × 3 — —

1
Convolution 55 × 55 × 96 11 × 11 × 3 × 96 ReLU
Pooling 27 × 27 × 96 3 × 3 —

2
Convolution 27 × 27 × 256 5 × 5 × 96 × 256 ReLU
Pooling 13 × 13 × 256 3 × 3 —

3 Convolution 13 × 13 × 384 3 × 3 × 256 × 384 ReLU
4 Convolution 13 × 13 × 384 3 × 3 × 384 × 384 ReLU

5
Convolution 13 × 13 × 256 3 × 3 × 384 × 256 ReLU
Pooling 6 × 6 × 256 3 × 3 —

6 Fully Connected 4096 — ReLU
7 Fully Connected 4096 — ReLU
8 Fully Connected 1000 — Softmax

AlexNet introduces several techniques to improve the accuracy of image classification.
For example, using ReLU as the activation function of CNN solves the problem of gradi-
ent disappearance of traditional activation function; using overlapping maximum pooling
enhances the feature richness; introducing Dropout to randomly discard some neurons
during training to avoid model overfitting. In addition, it employs GPU parallel comput-
ing to accelerate the training and inference of the model, allowing a good balance between
training time and accuracy.

3.2. AlexNet parameter setting. The color image feature of the load event is a 5 ×
5 image, which is incompatible with the default input size of AlexNet. In order to enable
AlexNet to recognize feature images, several approaches are taken to modify AlexNet to
improve classification. Figure 7 (right) shows the sketch of the improved structure.

(1) Convolution kernel size and number: The size and number of convolution kernels
affect the generalization ability of the model [23]. Since the feature data of small images
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is more concentrated, the convolution kernel is required to capture more detailed features,
so a smaller size convolution kernel can be selected. Fewer convolution kernels may cause
information loss and underfitting, and more convolution kernels may cause overfitting.
The size of the input image in this example is small and the sample size is not sufficient,
so the number of convolution kernels can be reduced to avoid over-fitting of the model.
The size of the convolution kernel of the first convolution layer is adjusted from 11×11×3
to 3×3×3, and the number of filters is reduced from 96 to 32. The convolution kernels
of the subsequent four convolution layers are also adjusted to 3×3×3, and the number of
filters are adjusted to 64, 128, 256, 256, respectively.

(2) Size of pooling kernel: A smaller pooling kernel can avoid losing too much infor-
mation during the pooling process [24], but it will increase the processing time and affect
the operating efficiency of the model. Because the size of the constructed feature image
is only 5×5, the efficiency drop caused by appropriately reducing the size of the pooling
kernel is within an acceptable range. So in this model, the pooling kernel size of each
max pooling layer is adjusted from 3×3 to 2×2.
(3) Size of the fully connected layer: The smaller size of fully connected layers can

prevent overfitting [25], improve the training speed, and optimize the performance and
efficiency of the model. So in this model, the output dimension of the first two fully
connected layers is adjusted from 4096 to 1024, and the output dimension of the last
connected layer is adjusted to the number of event labels 42.

Figure 7. Sketch of AlexNet structure

3.3. Training process. The cross-entropy function is chosen as the minimum loss func-
tion, the optimization algorithm is adaptive moment estimation, the learning rate is
1.0×10−3, the discard rate is 0.2, and the number of batches is 100. The specific training
steps are as follows.

(1) Load the pre-trained AlexNet model and reconfigure its output neurons according
to the number of load event categories.

(2) Use the proposed algorithm to construct the color image data set of load events and
divide the data set into test set and training set.

(3) Input the labeled training set into the AlexNet model for supervised learning until
the termination conditions are met.

(4) Use the test set to verify the identification ability of the algorithm.

4. Experiment and performance analysis.
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Table 2. Sample size of training and test

Label Composition Label Composition Label Composition
11101 304/77 14001 362/91 16201 36/9
11102 88/23 14002 355/89 16202 38/10
11103 211/53 14401 74/20 18001 98/25
11104 88/23 14402 76/20 18002 139/35
12901 33/9 14501 338/85 18004 144/36
12902 72/18 14502 331/83 30000 249/63

4.1. Experimental data. Use the A-phase data of apartment 1 in EMBED, which has
42 types of event tags and 1699 tagged events, to test the proposed load event identification
algorithm.

The number of samples of various load events in the EMBED data set varies greatly.
Some events have only single-digit labeled samples, which easily leads to low identification
effect of some events. Therefore, only 18 event types with more labeled data are selected
for model training and testing. Since the time point detected by the event detector does
not always fall on the power change point, in order to increase the generalization ability
of the model and expand the training data size, each marker event is moved five sampling
points to the left and five sampling points to the right to construct new marker data and
expand the number of marker events.

Use the proposed algorithm to construct the color image data set of load events. Divide
the data set into test set and training set at a ratio of 8:2 by stratified sampling. The
divided training set contains 18 event labels for a total of 3036 labeled event images, and
the test set contains 18 event labels for a total of 769 labeled event images. The number
of samples for each event label is shown in Table 2.

4.2. Parametric optimization. In order to quantitatively analyze the influence of train-
ing times on the algorithm performance, the curve of identification accuracy and loss value
with the number of training times in the training process is drawn, as shown in Figure 8.
The whole test takes about 2.5h and the number of epochs is 120. It can be seen that in
the early stage of calculation, with the increase of training times, the loss function value
decreases continuously, and the identification accuracy of the test set increases rapidly.
When the number of training times reaches about 20 times, the identification accuracy
has exceeded 90%, and it begins to increase slowly in subsequent training. When the
number of training reaches 100 times, the accuracy of both the loss function and the
test set tends to be stable, and the classification performance of the algorithm will not
change much. Based on the above analysis, the training times are set to 100 times, and
a satisfactory identification effect can be obtained in a relatively short time.

4.3. Analysis of identification results. The 769 labeled event images containing 18
event types were input to the model for testing, and Table 3 shows the Precision, Recall
and F1-Score for each event label. Because the number of test samples for each event
is different, in order to better evaluate the identification effect of the model on different
events, the final result is standardized as a confusion matrix with 50 samples per event.
and Figure 7 shows the normalized confusion matrix of the test results.

In terms of Precision [26], all events except event 14402 exceeded 81%, and seven events
reached 100% Precision. From Table 3, it can be seen that 14402 is a load event triggered
by the bedroom lamp, and its power is small and similar to that of other lamps, so it is
presumed that the main factor affecting Precision of event 14402 is the misidentification
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Figure 8. Influence of training times on algorithm performance

Table 3. Event identification test results

Label Precision Recall F1-Score Label Precision Recall F1-Score
11101 100% 98.70% 99.35% 14402 52.94% 90% 66.67%
11102 100% 100% 100.00% 14501 97.70% 100% 98.84%
11103 98.04% 94.34% 96.15% 14502 84.95% 95.18% 89.77%
11104 81.48% 95.65% 88% 16201 100% 100% 100.00%
12901 100% 100% 100% 16202 100% 90% 94.74%
12902 94.44% 94.44% 94.44% 18001 100% 100% 100%
14001 98.85% 94.51% 96.63% 18002 97.14% 97.14% 97.14%
14002 86.81% 90% 88.38% 18004 100% 100% 100.00%
14401 86.36% 95% 90.47% 30000 94.87% 58.73% 72.55%

of other lamp events. From the confusion matrix, the events misidentified as 14402 are
mainly 14002, 14502 and 30000, where 140 and 145 are the labels of luminaire devices,
and 300 is the label of multiple unknown devices, which may contain some untagged
luminaires, thus confirming the validity of the previous speculation.

In terms of Recall, all events except event 30000 have a Recall of over 90%, and six
events have a Recall of 100%. Since event 30000 contains multiple unknown devices,
the main factor affecting its Recall is that its feature image contains multiple different
waveforms and multiple different color schemes, which leads to the lack of obvious features
of the trained model. From the confusion matrix, event 30000 is mainly misidentified by
the loading events of the lamps, indicating that event 30000 contains untagged lamps with
high probability.

In terms of F1-Scores, all events scored over 88%, except for event 14402 and event
30000, which scored lower. This is due to the lower precision of event 14402 and the lower
recall of event 30000, pulling down the corresponding F1-Scores.
Comprehensive three dimensions. For devices with high power, color image features

can well distinguish load events between them. For individual low load events, there is
still room for improvement in the identification accuracy of color image features. The
load event color image constructed based on RGB coding achieves stable and effective
identification effect in most test cases, which proves that this algorithm can be used to
distinguish load events of different devices.



Non-Intrusive Load Event Identification Algorithm Based on Color Coding 1029

Figure 9. Standardized confusion matrix of test results

Table 4. Comparison of identification results of different algorithms

Algorithm Precision Recall F1-Score
CCA 93.66% 92.72% 93.19%
KNN 89.58% 91.68% 90.62%
NBC 85.71% 76.46% 80.82%
SVM 52.68% 69.57% 59.96%

4.4. Comparison of different algorithms. In order to further verify the effectiveness
of the algorithm based on color coding, based on the experimental data in Table 2, 50
sets of active power and reactive power sample points before and after each labeled event
are taken as input. K-Nearest Neighbor (KNN) [27], Naive Bayes Classifier (NBC) [28]
and Support Vector Machine (SVM) [29, 30], which are three classifiers commonly used
in the field of non-intrusive load monitoring, are used to train and classify the marked
events. The specific results of the experiment are shown in Table 4.

It can be seen from the comparison data that the load identification algorithm pro-
posed in this paper has the best performance, followed by KNN and NBC, and SVM has
the worst performance. Compared with the traditional classification algorithm that di-
rectly learns the combination sequence of active power and reactive power, the algorithm
proposed in this paper is improved from two aspects : feature construction and model
training. The RGB color coding principle is used to realize the extraction and fusion
of four-dimensional features of active power, reactive power, active power waveform and
reactive power change trend, which significantly improves the feature difference between
different events and enhances the identification ability of the algorithm.
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5. Conclusions. The goal of load event identification is to identify the type of load events
by extracting various types of characteristics of device events through various algorithms
and then matching them with the event model in the database. The accurately identified
load events can be used to achieve energy consumption monitoring of devices. They can
also be used for intelligent control of homes and fault detection of hardware. In order
to improve the identification accuracy of load events, we propose a feature construction
algorithm of load events based on RGB coding: the active power load curve is mapped
onto a 5×5 RGB image, the active power is selected as the R-channel, the reactive power
as the G-channel, and the change trend of reactive power as the B-channel, and the color
image features of load events are constructed, so as to improve the informativeness of load
events.

Color images are constructed using EMBED’s labeled events, and the images are trained
and recognized based on the improved AlexNet. The experimental results show that
the load event feature is able to distinguish load events of different devices stably and
effectively. KNN, NBC and SVM classifiers are used to compare with this algorithm. The
results show that the algorithm is superior to the traditional event classification algorithm
based on power sequence.
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