
Journal of Network Intelligence ©2024 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 9, Number 2, May 2024

Application of Proxy Signature Scheme Based on
Blockchain in Multi Cloud Storage

Jian-Neng Chen∗

Minnan Normal University
Zhangzhou, 363000, China

cjn610@163.com

Jia-Dong Wang

Minnan Normal University
Zhangzhou, 363000, China

1443645334@qq.com

Ke-Hao Tao

Minnan Normal University
Zhangzhou, 363000, China

760253221@qq.com

Yu-Ping Zhou

Key Laboratory of Data Science and Intelligence Application
Zhangzhou, 363000, China
yp zhou@mnnu.edu.cn

Hong-Yi Li

Yeaosound Network Tech Ltd
Zhangzhou, 363000, China
lihongyi@yeaosound.cn

∗Corresponding author: Jian-Neng Chen

Received May 10, 2023, revised September 17, 2023, accepted December 7, 2023.

Abstract. As one of the most suitable online storage methods, cloud storage service
is widely used by users with its convenient and efficient features. However, the existing
cloud storage has some serious problems, mainly because it is difficult to manage the se-
curity and privacy of its database, and data storage cannot meet the security requirements
of users. To increase security, blockchain technology is applied to data storage and data
connectivity, which is reflected in the blockchain-based data storage model among multi-
ple cloud providers. However, due to the limited storage space of blockchain transactions
and the current speed of processing blockchain storage transactions, this model still has
shortcomings. To resolve these issues, this paper proposes a proxy aggregation signature
scheme to improve signature verification efficiency while compressing disk space and re-
ducing communication bandwidth. The experimental results show that safe and efficient
data storage can be achieved with this scheme.
Keywords: Blockchain; Cloud storage; Proxy signature

1072



Application of Proxy Signature Scheme Based on Blockchain in Multi Cloud Storage 1073

1. Introduction. With the rise of the Internet of Things [1], more and more information-
aware devices are connected to the Internet, connecting people, devices, and things [2].
According to IDC data, there will be 41.6 billion IoT devices or “things” in 2025 that
generate 79.4 ZB of data [3]. However, in the face of massive data, traditional information
systems need more processing units and storage devices to maintain and manage them,
which requires a higher cost. Fortunately, cloud storage has played a revolutionary role
in data storage [4]. With this storage model, users do not maintain servers, storage,
and network devices locally, but simply outsource storage management to cloud server
providers (CSPs) [5], who are typically responsible for maintaining physical security and
availability of data, such as using encryption schemes to ensure that data is confidential
and not leaked, while reducing storage costs and achieving greater economic benefits for
data owners [6]. However, when data is outsourced to cloud storage [7], there are still
serious security problems, which may not only leak users’ privacy [8], but also lead to
users’ property loss and threaten their life security. Overall, the current cloud storage
solution has the following security issues.

1) Whether the cloud server maintains data integrity: users only know that the data
is stored in the “cloud”, but do not know where and how it is stored. This “secret” will
naturally lead to decreased acceptance of safety. While the CSP promises good privacy,
being subject to some force majeure, such as earthquakes, floods, and power outages, can
lead to data loss.

2) CSP is not entirely trustworthy: to save on storage resources, CSP can remove data
rarely retrieved without notifying the data owner (user). Data can be manipulated, but
CSP is not aware of the risks of violating users’ privacy, and may lead to the loss of
users’ property, and even threaten the personal safety of users. For example, a cloud
storage provider called LinkUp (MediaMaSi) lost 45% of its storage customer data due
to a system administrator error, eventually causing [9] to shut down.

In view of the above threats, this paper builds a blockchain-based multi-cloud data
storage solution and aggregated digital signatures to solve security problems:

Blockchain in Multiple CSPs: Create a blockchain replica of user data for each CSP
that can be tamper-proof.

Proxy Aggregated Signature (PAS) Scheme: This scheme can compress blockchain
storage space and reduce communication bandwidth.

The rest of the paper is organized as follows. Based on literature research, Section 2
introduces basic knowledge of cloud storage and blockchain. Section 3 introduces the sys-
tem model. Section 4 introduces the definition of proxy signatures. Section 5 describes the
signature scheme of proxy aggregation. Section 6 analyses the plan. Section 7 evaluates
the signature length and time required of PAS scheme.

2. Related Work. The Byzantine problem is a significant issue in distributed systems.
It involves achieving reliable information exchange and decision-making in an untrusted
environment. Research on the Byzantine problem holds essential significance in construct-
ing secure and dependable distributed systems, as well as in fields such as blockchain
technology, where it can ensure data consistency and security in environments with par-
tial trust. Driscoll et al. [10] discussed typical failure properties from a practitioner’s
perspective and proposed solutions addressing the Byzantine problem.

Efanov and Roschin [11] believe that blockchain is a distributed database containing
transaction records that are shared among participating members. Each transaction re-
quires consensus confirmation from the majority of members, preventing fraudulent trans-
actions from being collectively confirmed. Once a record is created and accepted by the



1074 J.-N. Chen, J.-D. Wang, K.-H. Tao, Y.-P. Zhou and H.-Y. Li

blockchain, it cannot be changed or disappear, ensuring the security and trustworthiness
of the data.

Rashid and Chaturvedi [12] introduced how cloud computing can provide reliable and
cost-effective services in various applications, exploring various cloud computing services,
applications, and characteristics. They also discussed cloud computing service models
and their advantages. Cloud storage is essentially a cloud computing system [13] where
users can store and share data on the Internet, and can be used for simple data storage
such as enterprise databases and local hard drives. In cloud storage, data is stored in
third parties, not dedicated servers used in traditional network data storage. A user is
looking at a virtual server when storing data, but such a place does not exist in reality. Its
advantages are unlimited storage space, secure, simple, efficient file access and low cost
of use. Cloud storage is based on a virtualized infrastructure and consists of four layers,
as shown in Figure 1.

Figure 1. Structure of cloud storage

1) The storage layer is the fundamental part of cloud storage that consists of a large
number of storage devices and is managed and maintained by a unified storage device
management system.

2) The management layer is the core part of cloud storage used to realize collaboration
between storage devices.

3) The application interface layer is the most flexible part of cloud storage, and various
interfaces can provide a range of services.

4) The last is the level of access through which users can access and enjoy cloud services.
As stated above, cloud storage refers to services that integrate devices and servers, not
devices. Cloud storage services are available, but there is no security mechanism for
data transfer and storage of cloud storage. Shahid et al. [14] specifically focus on data
security issues in a multi-cloud environment and propose a distributed storage solution.
To counter related key attacks, pollution attacks, known ciphertext attacks, and known
plaintext attacks, the approach divides data into two categories: regular data and sensitive
data, with sensitive data further divided into two parts. Each part undergoes encryption
and distribution across multiple clouds, while regular data is uploaded in encrypted form



Application of Proxy Signature Scheme Based on Blockchain in Multi Cloud Storage 1075

to a single cloud. During the decryption stage, sensitive data is merged from multiple
clouds, which involves relatively intricate operations. Alouffi et al. [15] conducted a
review of cloud computing security-related research published between 2010 and 2020
in reputable digital libraries. They expounded upon seven major security threats that
cloud computing services face. Their research findings indicated that data tampering and
leakage were among the extensively discussed topics. The paper identified blockchain as
a collaborative technology to mitigate security concerns.

Due to the interconnectivity of distributed networks [16] and the importance of cloud,
Namasudra and Deka [17] believe that blockchain technology is the best way to provide
security for cloud storage. Wu et al. [18] propose an enhanced protocol for identity veri-
fication in a distributed cloud computing architecture. Blockchain technology [19] can be
the best security solution in the cloud environment because it allows quick communica-
tion and significantly reduces the required processing resources. In other words, it is not
possible to modify or delete the transaction information by using the security inherent in
blockchain technology. Ismail et al. [20] believe that distributed data book can support
anomaly invariance and data security even if shared across all nodes in the cloud. Be-
cause the encryption chain algorithm is adopted in the blockchain block, the privacy of
the data is more liable to be protected. Because of these characteristics, blockchains are
the most likely candidates for providing cloud data security. Zhang et al. [21] present
a blockchain-based multi-cloud storage data auditing scheme to protect data integrity
and accurately arbitrate service disputes. Xiong et al. [22] propose an an ECDSA based
verification scheme that can achieve efficient large-scale batch verificationTo ensure lower
storage, computation and communication costs, we have designed the following scheme.

3. System Model.

3.1. Blockchain-Based Multiple CSPs. Our storage model is shown in Figure 2. Un-
like the traditional cloud storage model, we build a multi-cloud storage provider environ-
ment to replace a single cloud storage provider.

Figure 2. Storage model

The data blockchain is built on the basis of several cloud service providers. Each
provider, in turn, consists of multiple cloud storage servers that can store unlimited
amounts of data. In addition, each provider has a copy of the blockchain. The data
is stored in the blockchain and the storage confirmation is executed by the storage trans-
action. Each client sends data to the cloud server. After receiving the data, the cloud
server writes the signed data to the blockchain according to the PAS scheme.

3.2. Blockchain Storage.



1076 J.-N. Chen, J.-D. Wang, K.-H. Tao, Y.-P. Zhou and H.-Y. Li

3.2.1. Advantages of Blockchain Storage. First, blockchain storage stores data [23] on tens
of millions of nodes worldwide with high reliability, rather than using multi-copy mode,
but using more advanced redundant encoding modes [24]. This effectively avoids the
negative effects of single point of failure. Distributed data storage as the main direction
of future storage technology development can improve system reliability, availability and
access efficiency and is easy to expand [25].

Second, the costs are relatively low. The basic reason for the low cost of blockchain
storage is that blockchain technology effectively solves the problem of removing data
duplication. In addition, the construction cost of each storage node is also very low. The
edge node architecture used in the blockchain has lower hardware requirements and much
lower costs than setting up a central data storage center [26].

Third, the storage form and consensus mechanism of the blockchain ensure that the
manipulated data of a single or even multiple nodes does not affect the databases of other
nodes and the manipulated data can be synchronized with the correct data. As long as an
attacker does not control more than 50% nodes or has 50% computing power, he cannot
really manipulate the blockchain [27]. Attackers are unlikely to crack this system.

3.2.2. Disadvantages of Blockchain Storage. High Storage Cost: Due to the need for
each node on the blockchain to store all blockchain data, and to store historical data,
information cannot be deleted, the storage requirement of each node on the blockchain
will continue to increase, resulting in increased storage device costs and high storage
resource consumption [28].

Slow Processing Speed: Blockchain transactions require all nodes in the chain to par-
ticipate, and nodes also need to be encrypted and transmitted over the network, which
can make the transaction speed quite slow. Slow processing results in low parallelism,
which will limit the scale and user experience of the blockchain.

3.2.3. Our Solution. This article proposes a PAS system. This schema can combine the
signatures of all users into one signature, improving the efficiency of signature verification.
In addition, it can compress storage space and reduce communication bandwidth. The
length and transmission efficiency of signatures have always been a concern. This article
uses a short signature scheme that can effectively reduce network traffic and avoid network
congestion. The user’s output signature can be integrated into the digital signature via
a central gateway or cloud server and stored in the blockchain in a multi-cloud server
environment, as shown in Figure 3. The administrator of each data block generates
proxy signatures with corresponding keys for each data block, and then aggregates all
proxy signatures to obtain the final signed proxy aggregation signature. The cloud server
performs proxy signatures and sends the final signature to the blockchain. Administrators
only need to use their own private key authentication to view data.

4. Preparatory Knowledge.

4.1. Definition of Proxy Signature. The proxy signature is defined as follows:
1) Creation of system parameters: Key Generation Center (KGC), input security pa-

rameter k, and output system public parameter params.
2) Key pair generation: KGC input user ID and system public parameter params,

output user private key SID and public key QID.
3) Proxy authorization: Input the system public parameters params, the key pair of the

original signer and the authorization file w, and output the proxy authorization certificate
W . Among them: w contains the identity information of the original signer and the proxy



Application of Proxy Signature Scheme Based on Blockchain in Multi Cloud Storage 1077

Figure 3. Signature scheme

signer, the description of the authorization relationship, the scope and duration of the
messages allowed to be signed, etc.

4) Proxy authorization verification: Input system public parameters params, original
signer U0 identity ID0 and proxy authorization certificateW . The verifier verifies whether
W is a valid proxy authorization certificate.

5) Proxy key generation: Proxy signer Ui enters system public parameters params,
proxy authorization certificate W , and outputs X as the proxy signature private key.

6) Proxy signature: Input system public parameters params, proxy authorization doc-
ument w, proxy signature private key X and message m to be signed, output signature
message σ.

7) Proxy signature verification: Enter the system public identity parameter params,
original signer U0 identity ID0, proxy signer Ui identity IDi, authorization certificate
W and signature information σ, return “1” means verification passed, return “0” means
verification failed.

4.2. Security Assumptions. The hard problems of this article are as follows:

Definition 4.1. the k−CAA problem. G1 is a cyclic additive group of order a safe large
prime q. For an integer k and x ∈ Z∗

q, given {e1, e2, . . . , ek}∈ Z∗
q. P , xP ∈ G1 and

{P/(x + e1), P/(x + e2), . . . , P/(x + ek)}, compute (e, P/(x + e)), where e ∈ Z∗
q, e /∈{

e1, e2, . . . , ek}.

Definition 4.2. Elliptic curve Diffie − Hellman problem (CDH). Given an elliptic
curve group G, generate element P and two points a, b ∈ Z∗

q. Compute abP using the
known aP and bP .

Definition 4.3. Bilinear pairing: in the system, G1 and G2 are groups of order q with
generators P and Q, respectively. Gr is also a group of order q. The constructed signature
uses the bilinear mapping e: G1 ×G2 → Gr, with the following properties:
-Bilinear: ∀a, b ∈ Z∗

q, e(aP , bQ) = e(P , Q)ab = e(abP , Q) = e(P , abQ).
-Non-degenerate: e(P , Q) ̸= 1.
-Computability: e(P , Q) is computable.
e: If G1 ̸= G2, G1 ×G2 → Gr is an asymmetric bilinear pair; otherwise symmetric.



1078 J.-N. Chen, J.-D. Wang, K.-H. Tao, Y.-P. Zhou and H.-Y. Li

4.3. Adversary Model. On behalf of the original signer, the proxy signer can create a
valid proxy signature for the designated verifier, but a proxy signature cannot be generated
by the original signer and other third parties, except for the designated verifier. This
situation occurs because the outsider does not know either the proxy private key or the
private key of the designated verifier. Before discussing the strong unforgeability of our
proxy signature scheme in the random oracle model, we first addressed the following types
of adversaries that could exist in the system:

1) Type 1: Attacker A1 knows both the public key of the original signer and the public
key of the proxy signer.

2) Type 2: Attacker A2 knows not only the public key of the original signer and the
public key of the proxy signer, but also the private key of the original signer, but not the
private key of the proxy signer.

3) Type 3: Attacker A3 not only knows the public key of the original signer and the
public key of the proxy signer, but also knows the private key of the proxy signer, but
not the private key of the original signer.

From the description of the capabilities possessed by the above three types of attackers,
it is clear that when the proxy signature scheme is existentially unforgeable for attacker
A2 and attacker A3, then it is also unforgeable for attacker A1. Therefore, in this paper,
only attacker A2 of type 2 and attacker A3 of type 3 are considered in the subsequent
security models and security proofs.

5. Signature Scheme Construction.

5.1. Basic Construction. The proxy aggregation signature scheme is as follows:
1) System Parameters Generation.
When the security parameter λ is given, the system key generation centerKGC first

selects a secure bilinear mapping e: G1 × G1 → G2, and G1 is an additive group with
order secure prime q and generating element p, and G2 is a multiplicative group with the
same order secure prime q. Then it selects two collision-resistant secure hash functions
H1: {0, 1}∗ → G1, H2: {0, 1}∗ → Z∗

q. Finally, expose the system parameters params =
{q, G1, G2, e, p, H1, H2 }. Select the system master key s.

2) Key Pair Generation.
Taking the system public parameter params as input, KGC then randomly picks S0 ∈

Z∗
q and computes Q0 = S0p and outputs (Q0, S0) as the key pair of its original signer U0.

KGC randomly selects Si ∈ Z∗
q, compute Qi = Sip and output (Qi, Si) as the key pair

of the proxy signer Ui.
3) Delegate Authorization.
The original signer U0 takes as input the system disclosure parameter params and first

randomly selects r ∈ Z∗
q, compute R = rp, and R is used as the identifier of the proxy

signer Ui, which can be used to revoke the authorization and broadcast the public. Then
calculate h0 = H1(ID0, w, R), where w is the authorization file containing an explicit
description of the authorization relationship, the identity information of the original signer
U0 and the proxy signer Ui, the scope and duration of the messages allowed to be signed,
etc. Finally, d = (S0 + r)h0 is calculated and (R, d) is output as the authorization
permission of the original signer to the proxy signer.

4) Proxy Authorization Verification.
The proxy signer Ui receives the authorization permission and enters the system public

parameter params, verifies that e(d, p) = e(h0, Q0+R) holds, and accepts the authoriza-
tion permission if the equation holds.

5) Proxy Key Generation.



Application of Proxy Signature Scheme Based on Blockchain in Multi Cloud Storage 1079

The proxy signer Ui, according to the system public parameter params, calculates
Xi = d+ Sih0, and outputs Xi as the proxy signature key.
6) Proxy Signature.
The proxy signer Ui does the following for a given message mi ∈{0, 1}∗: (1) Compute

hi = H2(ID0, IDi, mi, R); (2) Calculate σi = Xi/(hi + Si); Then σi is the signature of
the proxy signer Ui on the message mi.

7) Signature Verification.
For a given message/signature pair (mi, σi), verification is performed by the following

steps:
(1) Compute h0 = H1(ID0, w, R);
(2) Compute hi = H2(ID0, IDi, mi, R);
(3) Verify whether the equation e(σi, hip+Qi) = e(h0, Q0+Qi+R) holds, if the equa-

tion holds, the signature verification passes; if the equation does not hold, the signature
verification fails.

5.2. Aggregation. The first five algorithms are the same as in Section 5.1.
Aggregate Signature
The proxy signer performs the following operations for a given message mi ∈{0, 1}∗,

(1 ≤ i ≤ n):
(1) Compute hi = H2(ID0, IDi, mi, R);
(2) Calculate σi = Xi/(hi + Si), σagg =

∑n
i σi; and then σagg is the proxy aggregation

signature.
Aggregate Verification
For message/signature pairs (mi, σagg), (1 ≤ i ≤ n), verification is performed by the

following steps:
(1) Compute h0 = H1(ID0, w, R);
(2) Compute hi = H2(ID0, IDi, mi, R);
(3) Verify that the equation e(σagg,

∑n
i (hip+Qi)) = e(nh0,

∑n
i (Q0+Qi+R)) holds, if

the equation holds, then the signature verification passes; if the equation does not hold,
then the signature verification fails.

The detailed procedure of the above stages is shown in Figure 4.

6. Scheme Analysis.

6.1. Correctness Analysis. The correctness of the authorization license is analyzed as
follows:

e(d, p) = e((S0 + r)h0, p) = e(h0, (S0 + r)p) = e(h0, Q0 +R)

The analysis of the correctness of the single signature verification equation is as follows:

e(σi, hip+Qi) = e(Xi/(hi + Si), p(hi + Si)) = e(Xi, p)
= e(d+ Sih0, p) = e((S0 + r)h0 + Sih0, p)
= e((S0 + r + Si)h0, p)e(h0, Q0 +Qi+R)

The analysis of the correctness of the aggregated signature verification equation is as
follows:

e(σagg,
∑n

i (hip+Qi)) = e(
∑n

i Xi/(hi + Si), p(hi + Si)) = e(
∑n

i Xi, np)
= e(

∑n
i (d+ Sih0), np) = e(

∑n
i ((S0 + r)h0 + Sih0), np)

= e(
∑n

i ((S0 + r + Si)h0), np)e(nh0,
∑n

i (Q0 +Qi+R))



1080 J.-N. Chen, J.-D. Wang, K.-H. Tao, Y.-P. Zhou and H.-Y. Li

Figure 4. Proxy aggregation signature

6.2. Security Analysis. Theorem 1 For the second class of attackers, the scheme in
this paper is existentially unforgeable under the stochastic prediction machine model and
the k-CAA hard problem assumption. Assume that the adversary A2 after a finite number
of interrogations breaks the paper’s scheme in polynomial time t by a non-negligible
advantage ϵ, noting qHi

and tHi
are respectively the adversary A2 interrogation Hi(i = 1,

2) the number of times and the time required for one interrogation of the prediction
machine, and denote qR and tR are the number of authorization identifier interrogations
and the time required for one interrogation, respectively, denoted as qs and ts are the
number of proxy signature queries and the time required for one query, respectively, then
there exists an algorithm C with probabilistic polynomial time t

′
<t + (qRtR + qsts +

2qH1tH1 + 2qH2tH2)within a non-negligible advantage

ϵ
′ ≥ (1− 1

2λ
)
qH2

−k

qH2
− ( k

qH2
)qs

Solving the k-CAA hard problem.
Proof. Assume that the instance of the k-CAA hard problem challenged by C is given

by { e1, e2, . . . , ek}∈ Z∗
q, { P/(x+e1), P/(x+e2), . . . , P/(x+ek)} and bP ∈ G1, compute

(e, P/(b + e)), where e ∈ Z∗
q, e /∈ { e1, e2, . . . , ek}. Let the security parameter be λ.

Algorithm C first runs the system parameter building algorithm with the output params
= {λ, q, G1, G2, e, P , H1, H2 }. In the game C selects the original signer A identity as
IDA, the proxy signer B identity is IDB, and randomly selects SA ∈ Z∗

q, and computes
QA = SAP by combining (SA, QA) as the key pair of its original signer A and set the
public key of the proxy signer B, QB = bP . Send (SA, QA), QB and params to A2. C
uniformly and randomly selects qH2 − k numbers f1, f2, . . . , fqH2

−k ∈ Z∗
q, define the set

E ={ e1, e2, . . . , ek}, the set F ={f1, f2, . . . , fqH2
−k}, E∩F = ∅, Ω = E∪F . For the sake

of narrative simplicity, assume that A2 will not make the same queries to the prediction
machine, and that signature queries and forged signatures have been made at the time



Application of Proxy Signature Scheme Based on Blockchain in Multi Cloud Storage 1081

of H1 and H2 interrogations, and all record lists are initialized to empty. C allows A2 to
make the following adaptive queries.

1) Authorization Identifier Query.
C maintains a record structure as an array (IDA, IDB, w, r, R) list LR. When submits

to C a list of records for which the original signer identity is IDA and the identity of the
proxy signer as IDB. C checks the list LR whether the corresponding value of the query
already exists in the list (IDA, IDB, w, r, R), and returns the corresponding value (w,
R) to A2; otherwise C generates the authorization message w, randomly selects r ∈ Z∗

q,
compute R = rP −QB, C returns (w, R) to A2, while returning (IDA, IDB, w, r, R) is
recorded into the list LR.
2) H1 Query.
C maintains a record structure as an array (IDA, IDB, w, R, v, h1) of list LH1 . When

A2 submits a list to C of (IDA, IDB, w, R) of H1 query, C checks the list LH1 whether the
corresponding value of the query already exists in (IDA, IDB, w, R, v, h1), and returns
the corresponding value if it exists h1 to A2 ; otherwise C uniformly and randomly selects
v ∈ Z∗

q, compute h1 = vP , which will h1 return to A2 and also returns (IDA, IDB, w, R,
v, h1 = vP ) is recorded into the list LH1 .

3) H2 Query.
C maintains a record structure as an array (IDA, IDB, m, R, h2) of list LH2 . When

A2 submits a list of (IDA, IDB, m, R) of H2 query, C checks the list LH2 whether the
corresponding value of the query already exists (IDA, IDB, m, R, h2) and if it exists,
returns the corresponding h2 to A2; otherwise a uniformly random selection of h2 ∈ Ω
returns the value given by A2, also return (IDA, IDB, m, R, h2) is recorded to the list

LH2 . Clearly here, the probability of h2 ∈ E is k
qH2

, and h2 ∈ F has probability
qH2

−k

qH2
.

4) Proxy Signature Query.
When A2 submits a report on (m, IDA, IDB, R) of a proxy signature query, then

C gets the record from the list LH1 of records (IDA, IDB, w, R, v, h1), and C gets the
corresponding record (IDA, IDB, w, R, v, h2) from the list LH2 , C gets the corresponding
record from the list LR to get the record (IDA, IDB, w, r, R), and then:

1O If h2 ∈ E, that is, there exists ej = h2 ∈ E, compute σ = v(SA + r)P/(b + ej),
returning σ to A2.

2O If h2 ∈ F , “⊥” is returned and this event is noted as Event1, “⊥” means empty.
It is worth noting that if h2 ∈ E, the constructed proxy signature is able to pass the
verification equation, and its soundness is guaranteed by the following equation.

e(σ, h2P +QB) = e(v(SA + r)P/(b+ ej), ejP +QB) = e(vP , QA +QB +R).

R = rP − QB After polynomially bounded subadaptive interrogation, finally A2 stop
interrogation and output a valid message proxy signature pair (m∗, σ∗). C From the list
LH2 obtains the records (IDA, IDB, m

∗, R∗, h∗
2), and if h2 ∈ E, then the forged signature

is invalid and the event is noted as Event2; otherwise if h2 ∈ F , get the record from the
list LR record from the list (IDA, IDB, w, r

∗, R∗), and from the list LH1 get the record
from the list (IDA, IDB, w, R

∗, v∗, h∗
1 = v∗P ). The following verification equation is

available.

e(σ∗, h∗
2P +QB) = e(h∗

1, QA +QB +R∗)
e(σ∗, h∗

2P + bP ) = e(v∗P , (SA + r∗)P )
e((h∗

2 + b)σ∗, P ) = e((SA + r∗)v∗P , P )
((h∗

2 + b)σ∗ = (SA + r∗)v∗P
P/(b+ h∗

2) = σ∗/((SA + r∗)v∗)



1082 J.-N. Chen, J.-D. Wang, K.-H. Tao, Y.-P. Zhou and H.-Y. Li

That is, the output σ∗/((SA + r∗)v∗) as the answer to the difficult problem, and thus
C solves the k − CAA problem instance.
The following is an analysis of the time and advantages required for C to successfully

solve difficult problems.
1) For H1 and H2 the answers to the prophecy machine queries are uniformly and

independently distributed between G1 and Z∗
q.

2) An instance where C solves the k − CAA hard problem only if both Event1 and
Event2 do not occur. The probability that Event1 does not occur all the time is ( k

qH2
)qs ,

the probability that Event2 does not occur is
qH2

−k

qH2
then the probability that both Event1

and Event2 do not occur is obtained as:

Pr(Event1 ∩ Event2) ≥ qH2
−k

qH2
( k
qH2

)qs

When A2 no forgery is made H2 query and forging a valid signature its probability of
occurrence is 1/2λ, so C ′s advantage in the game is estimated to be satisfied.

ϵ
′ ≥ (1− 1

2λ
)
qH2

−k

qH2
− ( k

qH2
)qs

Running time is met.

t
′
<t+ (qRtR + qsts + 2qH1tH1 + 2qH2tH2)

Thus C successfully solves an instance of the k − CAA problem in polynomial time
t′ with a non-negligible advantage ϵ

′
, which contradicts the difficulty of the k − CAA

problem. So the scheme in this paper is existentially unfalsifiable against the second class
of adversaries.

Theorem 2 For the third class of attackers, the scheme in this paper is existentially
unforgeable under the assumptions of the stochastic prediction machine model and the
CDH hard problem. Assumes that the adversary A3 after a finite number of queries breaks
the scheme of this paper in polynomial time t with a non-negligible advantage ϵ, noting
qHi

and tHi
are the adversary A3 queries, respectively Hi(i = 1, 2) the number of times

and the time required for one interrogation of the prophecy machine, and denote qR and
tR are the number of authorized identifier queries and the time required for one query,
respectively, and denote qs and ts are the number of proxy signature queries and the time
required for one query, respectively, and δ ∈ (0, 1/2), then there exists an algorithm C
with probabilistic polynomial time t

′
<t + (qRtR + qsts + 2qH1tH1 + 2qH2tH2) within a

non-negligible advantage ϵ
′ ≥ δ(1− δ)qs(1− 1/2λ) to solve the CDH hard problem.

Proof. Assume that the instance of the CDH hard problem for the C challenge is:
Given ap ∈ G1 and bp ∈ G1, compute abp, where a, b ∈ Z∗

q. Let the security parameter
be λ. Algorithm C first runs the system parameter building algorithm with the output
params = {λ, q, G1, G2, e, p, H1, H2}. In the game C selects the original signer A identity
as IDA, the proxy signer B identity is IDB, randomly selects SB ∈ Z∗

q, and computes
QB = SBp, which will be (QB, SB) as the key pair of its proxy signer B and set the public
key QA = ap of the original signer A. Send (QB, SB), QA and params to A3. For the sake
of narrative simplicity, assume that A3 will not make the same queries to the propagator
and that H1 and H2 queries have already been made when making signature queries and
forging signatures, and that all record lists are initialized to empty. C allows A3 to make
the following adaptive queries.

1) Authorization Identifier Query.
C maintains a record structure as an array (IDA, IDB, w, c, r, R) list LR. When A3

submits an authorization parameter query to C for an original signer identity of IDA and
a proxy signer identity of IDB, C checks the list LR whether the corresponding value of
the query already exists in the list (IDA, IDB, w, c, r, R), the corresponding values (w,



Application of Proxy Signature Scheme Based on Blockchain in Multi Cloud Storage 1083

R) are returned to A3 if they exist; otherwise C generates the authorization message w
and randomly selects r ∈ Z∗

q, set c = 1 with δ probability and compute R = rp, set c =
0 with 1− δ probability and compute R = rp− ap. Finally C returns (w, R) to A3, and
also returns (IDA, IDB, w, c, r, R) recorded into the list LR in the list.

2) H1 Query.
C maintains a record structure as an array (IDA, IDB, w, R, v, h1) of lists of LH1 .

When A3 submits a record to C about (IDA, IDB, w, R) of H1 query, C checks the list
LH1 whether the corresponding value of the query (IDA, IDB, w, R, v, h1), and returns
the corresponding value h1 to A3 if it exists; otherwise, C randomly selects v ∈ Z∗

q,
compute h1 = vbp and returns h1 to A3 while returning (IDA, IDB, w, R, v, h1 = vbp)
is recorded into the list LH1 .

3) H2 Query.
C maintains a record structure as an array (IDA, IDB, m, R, h2) of list LH2 . When A3

submits a record about (IDA, IDB, m, R) of the H2 query, C checks the list LH2 whether
there already exists a query corresponding to the value (IDA, IDB, m, R, h2), and if it
exists, returns the corresponding h2 to A3; otherwise, uniformly selects randomly h2 ∈ Z∗

q

is returned to A3, while (IDA, IDB, m, R, h2) is recorded to the list LH2 .
4) Proxy Signature Query.
When A3 is submitted on (m, IDA, IDB, R, X) for a proxy signature query, then C

gets the corresponding record h2 from the list LH2 , C gets the corresponding record (IDA,
IDB, w, c, r, R) from the list LR. If c = 0 then calculate σ = (SB + r)vbp/(SB + h2),
return σ to A3; otherwise, return “⊥” and note this event as Event1. The constructed
proxy signature is able to pass the verification equation and its soundness is guaranteed
by the following equation.

e(σ, h2p+QB) = e((SBvbp+ rvbp)/(SB + h2), h2p+QB) = e(vbp, QA +QB +R)
R = rp−QA

After polynomially bounded subadaptive interrogation, finally A3 stops interrogating
and outputs a valid message proxy signature pair (m∗, σ∗). From the list LR, get the
record (IDA, IDB, w, c

∗, r∗, R∗), if c = 0, the forgery is invalid and the event is noted
as Event2.

If c = 1, C gets the record ((IDA, IDB, w, R
∗, v∗, h∗

1 = v∗bp)from the list LH1 , get
the record (IDA, IDB, w, m

∗, R∗, h∗
2) from the list LH2 , with the following verification

equation.

e(σ∗, h∗
2p+QB) = e(h∗

1, QA +QB +R∗)
e(σ∗, h∗

2p+ SBp) = e(v∗bp, (SB + r∗ + a)p)
e(σ∗, (h∗

2p+ SB)p) = e(v∗bp, (SB + r∗ + a)p)
e((h∗

2p+ SB)σ
∗, p) = e((SB + r∗ + a)v∗bp, p)

So C can be calculated successfully.

abp = (h∗
2p+ SB)σ

∗/v∗ − SBbp− r∗bp

Output:

(h∗
2p+ SB)σ

∗/v∗ − SBbp− r∗bp

As an example answer to the CDH problem, thus C solves the CDH problem. The
following is an analysis of the time and advantages required for C to successfully solve
the difficult problem.

1) For H1 and H2 the answers to the prophecy machine queries are uniformly and
independently distributed between G1 and Z∗

q respectively.
2) C solves an instance of the CDH problem only if neither Event1 nor Event2 occurs

all the time during the simulation phase. The probability that Event1 does not occur all



1084 J.-N. Chen, J.-D. Wang, K.-H. Tao, Y.-P. Zhou and H.-Y. Li

the time is (1− δ)qs and the probability that Event2 does not occur is δ. The probability
that both Event1 and Event2 do not occur can be obtained as:

Pr(Event1 ∩ Event2) ≥ δ(1− δ)qs

When A3 does not ask H1 and a valid signature is forged, this simulation is flawed with
a probability of occurrence of 1/2λ, so the advantage of C in the game is satisfied.

ϵ
′ ≥ δ(1− δ)qs(1− 1/2λ)

Running time is met.

t
′
<t+ (qRtR + qsts + 2qH1tH1 + 2qH2tH2)

Thus C successfully solves an instance of the CDH problem in polynomial time t
′
with

a non-negligible advantage ϵ
′
, which contradicts the difficulty of the CDH problem. So

the scheme in this paper is existentially non-falsifiable for the third class of adversaries.

7. Solution Realization And Efficiency Analysis.

7.1. Program Implementation. This paper is based on JPBC (Java Pairing-Based
Cryptography Library) in an operating system of Windows 10 flagship 64-bit, processor
of Intel Core i5-6300HQ, motherboard of ASUS GL552VX, and memory of Kingston
DDR4 2400MHz 8GB The solution was implemented in an experimental benchmarking
environment with the IntelliJ IDEA development platform.

7.2. Computational Efficiency Analysis. The computational efficiency and signature
length of this schema were compared with several existing proxy signature schemes, these
schemes are based on certificateless signature, identity-based signature, the results are
presented in Table 1. Where: Sm denotes scalar multiplication operation, E denotes
exponential operation, Pr denotes bilinear pair operation, H denotes hash operation,
|G1| denotes the length of the elements on the additive group G1, |Z∗

q| denotes the length
of the elements on Z∗

q.

Table 1. Comparison of computational efficiency and signature lengths

Scheme Signature Operation Verify Operation Signature Length
Reference [29] 2Sm+H+E 4Sm+3Pr+4H |Z∗

q|
Reference [30] 2Sm+2Pr+3H 2Sm+6Pr+2E+3H |G1|+|Z∗

q|
Reference [31] 2Pr+3E+3H 2Sm+6Pr+2E+3H 2|G1|+|Z∗

q|
PAS Sm+H Sm+2Pr+2H |G1|

As can be seen from Table 1, in the signature generation process, the scheme in this
paper performs one Sm operation and one H operation, and its computational efficiency
is optimal compared with the scheme in the literature [29, 30, 31]. In the signature
verification process, this scheme performs one Sm operation, two H operations and two
Pr operations, and its computational efficiency is better than [29, 30, 31]. However,
in terms of signature length, the signature length of the scheme in this paper is |G1|,
compared to other solutions, it is shorter.

7.3. Operational Efficiency Analysis. The implementation of this paper’s scheme and
several existing proxy signature schemes were carried out in the same experimental test
benchmark environment, and the operational efficiency was compared after several runs,
and the results are shown in Figure 5 and Figure 6.

From Figure 5 and Figure 6, we conducted five comparative experiments on signature
time and verification time, respectively. The average total time consumed for the scheme



Application of Proxy Signature Scheme Based on Blockchain in Multi Cloud Storage 1085

Figure 5. Time cost of signature algorithm

Figure 6. Time cost of verify algorithm

in this paper is reduced by about 13.0% compared with the scheme in [29], about 49.8%
compared with the scheme in [30], and about 33.4% compared with the scheme in [31].
From the above analysis, it is clear that the scheme in this paper not only has short sig-
nature length and high theoretical calculation efficiency, but also outperforms the scheme
in literature [29, 30, 31] in terms of actual operation efficiency.

8. Conclusions. In this paper, we propose a multi-cloud storage mechanism based on
blockchain in which multi-cloud storage providers build data blockchain. We have devel-
oped a PAS solution to ensure that user data is only viewed by executives and compress
blockchain storage space. We use blockchain technology to store data in the blockchain.
The unchanging nature of blockchain in multi-cloud storage providers ensures data in-
tegrity, reliability, and availability.

If we compare the PAS scheme with the public signature scheme, we can see that our
scheme performs better in resource saving. Comparing the Certificateless system with
traditional ID-based systems, our system consumes less time and has better performance
in the energy consumption of communication. We found that our scheme performs better



1086 J.-N. Chen, J.-D. Wang, K.-H. Tao, Y.-P. Zhou and H.-Y. Li

in compressing blockchain storage space compared to other signatures currently in use,
saving more resources.

Acknowledgment. This work is partially supported by the natural Science Foundation
of Fujian Province of China(2023J01920). The authors also gratefully acknowledge the
helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] S. Madakam and V. Lake, “Internet of things (iot): A literature review,” Journal of Computer and
Communications, vol. 3, no. 05, pp. 164, 2015.

[2] T.-Y. Wu, L. Wang, and C.-M. Chen, “Enhancing the security: A lightweight authentication and
key agreement protocol for smart medical services in the ioht,” Mathematics, vol. 11, no. 17, pp.
3701, 2023.

[3] P. Yang, N. Xiong, and J. Ren, “Data security and privacy protection for cloud storage: A survey,”
IEEE Access, vol. 8, pp. 131723–131740, 2020.

[4] S. Namasudra, “Cloud computing: A new era,” Journal of Fundamental and Applied Sciences,
vol. 10, no. 2, https://doi.org/10.4314/jfas.v10i2.9, 2018.

[5] X. Huang, H. Xiong, J. Chen, and M. Yang, “Efficient revocable storage attribute-based encryption
with arithmetic span programs in cloud-assisted internet of things,” IEEE Transactions on Cloud
Computing, pp. 1273–1285, 2021.

[6] I. Odun-Ayo, O. Ajayi, B. Akanle, and R. Ahuja, “An overview of data storage in cloud comput-
ing,” in 2017 International Conference on Next Generation Computing and Information Systems
(ICNGCIS). IEEE, 2017, pp. 29–34.

[7] M. Ali, S. U. Khan, and A. V. Vasilakos, “Security in cloud computing: Opportunities and chal-
lenges,” Information Sciences, vol. 305, pp. 357–383, 2015.

[8] R. S. Bhadoria, “Security architecture for cloud computing,” in Cyber Security and Threats: Con-
cepts, Methodologies, Tools, and Applications. IGI Global, 2018, pp. 729–755.

[9] C. Cachin, I. Keidar, and A. Shraer, “Trusting the cloud,” Special Interest Group on Algorithms &
Computation Theory, vol. 40, no. 2, pp. 81–86, 2009.

[10] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, “Byzantine fault tolerance, from theory to
reality,” in International Conference on Computer Safety, Reliability, and Security. Springer, 2003,
pp. 235–248.

[11] D. Efanov and P. Roschin, “The all-pervasiveness of the blockchain technology,” Procedia Computer
Science, vol. 123, pp. 116–121, 2018.

[12] A. Rashid and A. Chaturvedi, “Cloud computing characteristics and services: a brief review,” In-
ternational Journal of Computer Sciences and Engineering, vol. 7, no. 2, pp. 421–426, 2019.

[13] T.-Y. Wu, L. Wang, X. Guo, Y.-C. Chen, and S.-C. Chu, “Sakap: Sgx-based authentication key
agreement protocol in iot-enabled cloud computing,” Sustainability, vol. 14, no. 17, pp. 11054, 2022.

[14] F. Shahid, H. Ashraf, A. Ghani, S. A. K. Ghayyur, S. Shamshirband, and E. Salwana, “Psds–
proficient security over distributed storage: a method for data transmission in cloud,” IEEE Access,
vol. 8, pp. 118285–118298, 2020.

[15] B. Alouffi, M. Hasnain, A. Alharbi, W. Alosaimi, H. Alyami, and M. Ayaz, “A systematic literature
review on cloud computing security: threats and mitigation strategies,” IEEE Access, vol. 9, pp.
57792–57807, 2021.

[16] H. Xiong, Z. Kang, J. Chen, J. Tao, C. Yuan, and S. Kumari, “A novel multiserver authentication
scheme using proxy resignature with scalability and strong user anonymity,” IEEE Systems Journal,
vol. 15, no. 2, pp. 2156–2167, 2020.

[17] S. Namasudra and G. C. Deka, Applications of Blockchain in Healthcare. Springer, 2021.
[18] T.-Y. Wu, F. Kong, Q. Meng, S. Kumari, and C.-M. Chen, “Rotating behind security: an en-

hanced authentication protocol for iot-enabled devices in distributed cloud computing architecture,”
EURASIP Journal on Wireless Communications and Networking, vol. 2023, no. 1, pp. 36, 2023.

[19] C.-M. Chen, X. Deng, W. Gan, J. Chen, and S. H. Islam, “A secure blockchain-based group key
agreement protocol for iot,” The Journal of Supercomputing, vol. 77, pp. 9046–9068, 2021.

[20] L. Ismail, H. Materwala, and A. Hennebelle, “A scoping review of integrated blockchain-cloud (bcc)
architecture for healthcare: applications, challenges and solutions,” Sensors, vol. 21, no. 11, pp.
3753, 2021.



Application of Proxy Signature Scheme Based on Blockchain in Multi Cloud Storage 1087

[21] C. Zhang, Y. Xu, Y. Hu, J. Wu, J. Ren, and Y. Zhang, “A blockchain-based multi-cloud storage
data auditing scheme to locate faults,” IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp.
2252–2263, 2021.

[22] H. Xiong, C. Jin, M. Alazab, K.-H. Yeh, H. Wang, T. R. Gadekallu, W. Wang, and C. Su, “On
the design of blockchain-based ecdsa with fault-tolerant batch verification protocol for blockchain-
enabled IOMT,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 5, pp. 1977–1986,
2021.

[23] C.-M. Chen, X. Deng, S. Kumar, S. Kumari, and S. H. Islam, “Blockchain-based medical data
sharing schedule guaranteeing security of individual entities,” Journal of Ambient Intelligence and
Humanized Computing, pp. 1–10, 2021.

[24] W. Liang, Y. Fan, K.-C. Li, D. Zhang, and J.-L. Gaudiot, “Secure data storage and recovery in
industrial blockchain network environments,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 10, pp. 6543–6552, 2020.

[25] S. Sekar, A. Solayappan, J. Srimathi, S. Raja, S. Durga, P. Manoharan, M. Hamdi, and G. B.
Tunze, “Autonomous transaction model for e-commerce management using blockchain technology,”
International Journal of Information Technology and Web Engineering (IJITWE), vol. 17, no. 1,
pp. 1–14, 2022.

[26] H. Yuan, X. Chen, J. Wang, J. Yuan, H. Yan, and W. Susilo, “Blockchain-based public auditing and
secure deduplication with fair arbitration,” Information Sciences, vol. 541, pp. 409–425, 2020.

[27] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang, and D. Mohaisen, “Exploring the
attack surface of blockchain: A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 1977–2008, 2020.

[28] A. Sosin, O. Ivanova, and S. Vasilyeva, “Prospects for implementing blockchain data storage tech-
nology as a process of digital transformation of society,” in 2020 International Multi-Conference on
Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2020, pp. 1–5.

[29] L. Deng, Z. Hu, Y. Ruan, and T. Wang, “Provably secure certificateless proxy signature scheme in
the standard model,” Journal of Internet Technology, vol. 23, no. 2, pp. 279–288, 2022.

[30] L. He, J. Ma, L. Shen, and D. Wei, “Certificateless designated verifier proxy signature scheme for
unmanned aerial vehicle networks,” Science China Information Sciences, vol. 64, pp. 1–15, 2021.

[31] R. Patil and Y. H. Patil, “A secure and efficient identity based proxy signcryption scheme for smart
grid network.” Journal of Engineering Science & Technology Review, vol. 15, no. 4, 2022.


	1. Introduction
	2. Related Work
	3. System Model
	3.1. Blockchain-Based Multiple CSPs
	3.2. Blockchain Storage

	4. Preparatory Knowledge
	4.1.  Definition of Proxy Signature
	4.2. Security Assumptions
	4.3. Adversary Model

	5. Signature Scheme Construction
	5.1. Basic Construction
	5.2. Aggregation

	6. Scheme Analysis
	6.1. Correctness Analysis
	6.2. Security Analysis

	7. Solution Realization And Efficiency Analysis
	7.1. Program Implementation
	7.2. Computational Efficiency Analysis
	7.3. Operational Efficiency Analysis

	8. Conclusions
	Acknowledgment
	REFERENCES

