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Abstract. A variety of different types of sensors are required to be used in the cold
chain logistics system based on wireless sensor network, so how to make better use of
each sensor to serve the cold chain link is a key research issue in the related field. Dur-
ing the cold chain transport process, the special environment of cold chain logistics and the
signal quality of the sensor nodes may lead to inaccurate data recording, so it is necessary
to modify the erroneous data and deal with it in time. To address the above problems, this
work proposes a cold chain logistics sensor node data error correction method. Firstly, in
order to keep the data such as temperature and humidity within a strict fluctuation range,
it is proposed to use Kalman filtering algorithm for error correction of these data. Sec-
ond, in order to accurately locate the original latitude and longitude data to the transport
road, it is proposed to use the Hidden Markov Prediction Model to correct the original
trajectory data. At the same time, for the situation that the Hidden Markov Model is
easy to fall into the local optimum during training, the Baum-Welch algorithm and the
initial parameters of the Hidden Markov Prediction Model are optimised using the im-
proved genetic algorithm, and the trajectory bias correction model with a higher degree
of accuracy is formed. The simulation results show that the proposed improved genetic
algorithm can converge to the global optimum, which can improve the convergence accu-
racy and speed. The proposed trajectory bias correction model has a greater improvement
in road matching accuracy than the existing comparison algorithms.
Keywords: cold chain traceability; WSN; genetic algorithm; dynamic variation; sub-
population migration; Hidden Markov Models

1. Introduction. With the continuous development of smart hardware devices, their
prices are decreasing, so that smart devices can carry a variety of sensors. And the
communication between a variety of devices drives the further development of Wireless
Sensor Network (WSN) [1]. The access devices in WSN can obtain more network data, and
the physical entities can provide more intelligent services to the network users through
the related data [2], which becomes the main driving force for the development of the
Internet of Things (IoT).

WSNs provide humans and computers with the ability to learn from and interact with
billions of sensor devices, enabling the seamless integration of the cyber world with the
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physical world [3]. Internet users can access the services provided by these sensor de-
vices at any time over the Internet, fundamentally changing human interaction with the
world. WSNs have good applications and development in many fields, such as building
smart cities through wireless sensor networks, which allow real-time monitoring of parking
spaces [4], urban noise [5], traffic congestion [5], and street lighting [6] for more effective
management. Smart homes, environmental monitoring, disaster prediction, connected
cars, various wearable devices and smart healthcare are also practical application scenar-
ios for WSNs. However, the rapid development of WSN is also accompanied by many
challenges, such as the security of IoT [7]. How to build a fair and trustworthy WSN
platform is a must think about. The node data error correction technology of WSN plays
an important role in improving the reliability, accuracy, and energy efficiency of sensor
data transmission, and it is one of the key technologies to build a WSN system for the
following reasons:

(1) Data transmission reliability: In wireless sensor networks, sensor nodes usually lack
strong signal transmission and reception capabilities. Due to factors such as weak signals
and complex transmission medium environment, data transmission between nodes may be
affected by interference, noise, attenuation, etc., resulting in data loss, damage or error.
Error correction techniques can help to recover or repair these erroneous data and improve
the reliability of data transmission [8].

(2) Energy efficiency: wireless sensor nodes usually have a limited energy supply, such as
batteries [9]. Error correction techniques for node data can prevent nodes from repeatedly
sending lost data, thus reducing energy consumption and extending the life of the node.

(3) Data quality and accuracy: data collected by sensor nodes are used for analysis and
decision making, e.g., environmental monitoring, health monitoring, etc. If the node data
is erroneous or incomplete, it may lead to wrong analysis results and decision-making
[10]. Through error correction techniques, the quality and accuracy of node data can be
improved to ensure the accuracy of subsequent data processing and applications.

This work starts from a food safety supply project to study WSN node-based data
correction method for tracking the cold supply chain. Due to the special characteristics
of cold chain logistics, the data information involved in cold chain logistics has very strict
requirements, and the accuracy and real-time data need to be effectively guaranteed.
However, the information collected by each sensor due to quality, signal and other prob-
lems may be biased and data redundancy, which is unacceptable for the cold chain link
with strict data requirements. Therefore, this work filters redundant data and corrects
errors in the data collected from sensor nodes in the WSN environment, so as to guarantee
the quality and precision of the information gathered by the middleware.

1.1. Related Work. Cold chain logistics tracking requires high data accuracy and real-
time performance, while various types of sensors may have low data accuracy and missing
data due to quality signals and other problems, which is unacceptable for cold chain
logistics. Therefore, the objective of this work is to study the methods of error correction
for the data collected by the sensors used in the cold chain, which may be inaccurate or
even wrong due to the quality and other reasons.

In the cold chain logistics tracking application scenario, the data of WSN can be mainly
classified into two types [11]: temperature data and location temperature data. Error cor-
rection techniques for these two types of data mainly involve two aspects: error correction
for temperature data and error correction for location data.

Firstly, temperature sensors may be affected by factors such as noise, interference and
sensor errors when collecting temperature data, thus introducing certain errors. In order
to improve the accuracy and reliability of temperature data, researchers have proposed a
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variety of error correction techniques, which mainly include [12]: 1) Statistical analysis-
based methods, such as filtering and smoothing algorithms, which are used to reduce the
noise and smooth the temperature data. 2) Model-based methods, such as Kalman filter
and adaptive filter, which use the system model to predict and correct the data. Li et
al. [13] proposed an error modelling and compensation based approach for improving
the accuracy and reliability of temperature sensor data. By modelling and correcting the
errors, accurate collection and transmission of temperature data was achieved. 3) Error
control coding based methods such as Cyclic Redundancy Check (CRC) and Forward
Error Correction (FEC) [14] were used to detect and correct errors in transmission. Kim
et al. [15] investigated an error control scheme in a WSN based temperature monitoring
system. The quality and reliability of temperature data was improved by introducing
error detection and correction techniques.

Secondly, in WSN, accurate node positioning is the key to cold chain logistics tracking.
However, WSN node position estimation may be affected by sensor errors, signal atten-
uation, signal multipath effect, etc., which leads to errors in positioning data. In order
to reduce positioning errors to improve positioning accuracy and reliability, scholars have
investigated a variety of positioning data error correction techniques, including: 1) Signal
processing-based methods such as signal attenuation compensation, multipath effect sup-
pression, and positioning error correction. Lv et al. [16] proposed a robust positioning
scheme for node positioning in WSNs. By using signal strength fingerprinting and diver-
sity of sensors, the scheme can effectively reduce multipath effects and localisation errors,
and improve localisation accuracy and reliability. 2) Probabilistic and statistical based
methods such as Hidden Markov Models (HMMs) and Particle Filters (PFs) are used for
prediction and correction of localisation data. Hidden Markov Model (HMM) based WSN
trajectory mapping and localisation is a common approach to infer node position trajec-
tories by analysing a sequence of observations from sensor nodes. Alabadleh et al. [17]
proposed an HMM based localisation algorithm using various constraints such as prox-
imity to nodes distance, node motion speed and edge effects, to improve the localisation
accuracy of nodes in WSNs. The robustness and accuracy of localisation is enhanced by
fusing multiple constraints into the state transfer and observation model of the HMM.

In trajectory localisation prediction, Bayesian networks, the conditions under which
neural networks operate are more restricted, whereas HMM is a probabilistic model with
the advantages of high modelling flexibility, low computational complexity and high scal-
ability. The results of the study by Kalkha et al. [18] show that HMM can effectively deal
with a variety of uncertainties present in WSNs, including noise, signal attenuation, and
occlusion, etc. Xiong et al. [19] proposed an unrestricted and efficient attribute-based
encryption scheme for adaptive security in cloud-assisted Internet of things environment.
Attribute-based Encryption(ABE) [20] technology is used in this scheme, which allows
encrypted data to be associated with specific attributes, thus realizing flexible access
control. This scheme makes use of the cooperative work of broadcast data transmission
and cloud server [21], and realizes efficient attribute analysis and key distribution. HMM
can provide quantification of uncertainty in WSN positioning results and trajectories by
estimating the probability distribution of node locations through probabilistic reasoning.
However, HMM also suffers from some problems such as lack of training accuracy and
long time, and the lack of accuracy can also lead to a decrease in the prediction accuracy
afterwards.

1.2. Motivation and contribution. In terms of HMM model optimisation, researchers
have improved the accuracy and reliability of HMMs in the fields of trajectory mapping,
speech recognition, and natural language processing by combining heuristic algorithms
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with HMM models, such as Genetic Algorithms (GA), Particle Swarm Optimization,
PSO) and Ant Colony Optimization (ACO). Heuristic algorithms are able to find the
near-optimal solution quickly through search and optimisation techniques, thus improv-
ing the accuracy and efficiency of HMM models. However, how to select and design
appropriate heuristic algorithms with the characteristics of specific problems is still one
of the challenges in future research.

In order to improve the accuracy of cold chain logistics tracking, this work proposes a
WSN node data error correction method. The main innovations and contributions of this
work include:

(1) According to the required characteristics of cold chain data, an algorithm based on
Kalman filter is adopted to process smooth data such as temperature and humidity, thus
smoothing the data curve and reducing the anomalies.

(2) In order to improve the convergence accuracy and speed, a GA algorithm based on
polynomial variation and adaptive migration, called PAGA algorithm, is proposed and
its effectiveness is verified by several standard functions.

(3) For such irregular and highly variable positioning data as latitude and longitude, it
is proposed to combine the electronic map and HMM model for trajectory mapping and
positioning, and for the situation that the HMM model tends to fall into a local optimum
during training, the PAGA algorithm is used to optimise the Baum-Welch algorithm and
the initial parameters.

2. Kalman filter based error correction for smooth data. The real data in cold
chain environment such as temperature and humidity are smooth and less fluctuating,
while such data are continuous and not regular. Conventional linear equations and other
methods of speculation for regular data are not applicable. In order to solve this kind of
problem, this work adopts the Kalman filter based algorithm to process the cold chain
data according to its required characteristics.

Kalman filtering is suitable for estimating the optimal state of dynamic data consisting
of random variables. Since the data contains noise which results in inaccurate values
measured by the sensors, we need to estimate the true value of the state using Kalman
filtering. The state vectors in Kalman filtering are equipped with dimensionality. In the
cold chain, most of this smooth data is one-dimensional. It implies that numbers may be
calculated from data like temperature and humidity. For instance, let’s say the internal
temperature of the cold chain transport is maintained at T, while the cold chain vehicle
will encounter many situations that may lead to changes in the temperature inside the
temperature compartment during its movement, such as weather, air exchange between
the compartment and the outside world, etc., which is referred to as transport noise, and
the sensor measurement of the temperature is also subject to bias, which is referred to as
measurement noise.

Assume that the temperature at the moment k − 1 is Tk−1, the optimal deviation is
Toe, the prediction uncertainty bias is Tue, the sensor measurement is Ts, and the sensor
measurement bias is Tse. According to the principle of linear superposition, the prediction
bias Tpe of the temperature is obtained as:

Tpe =
√

T 2
oe + T 2

ue (1)

Obviously, the value of Tpe is larger than Toe, which is caused by the inclusion of
prediction uncertainty noise. Since the desired temperature setpoint is fixed in cold chain
vehicles, it is first assumed that the temperature at moment k is equal to the temperature
at moment k−1, at which time there exist two temperature values Tk−1 and Ts at moment
k, at which time the Kalman gain Kg is:
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Kg =
T 2
pe

T 2
pe + T 2

se

(2)

From this, the temperature at moment k is estimated to be:

Tk = Tk−1 +Kg · (Ts − Tk−1) (3)

After finding Tk, the optimal deviation Toe at the time Tk is required:

Toe =
√

(1−Kg) · T 2
pe (4)

Toe at the time of Tk is applied to solve for the temperature at the time of Tk−1,
thus iterating with the value measured by the temperature sensor to eventually derive
temperature data that is closer to the true value.

3. PAGA-HMM modelling.

3.1. Representation of Hidden Markov Models. As a well-established model for
statistical analysis [22], HMM is a derivation of Markov chain to describe a Markov process
with implicit positional parameters. Due to the advantages of simplicity of modelling and
clarity of physical meaning, HMMs are now successfully used in areas such as speech
recognition, text recognition and trajectory mapping.

In general, the events observed by the HMM do not have a one-to-one correspondence
with the states, but are linked to the states through probability distributions. The HMM
model has two parts [23], one is the visible part and the other is the hidden part. In a
simple Markov chain, it can be seen as the part that is visible to the observer, while those
states that are not directly observable are the hidden part. So, each state may have a
certain probability distribution on the output.

For the HMM model, we set Q to be the set of all possible occurrences of hidden states,
and V to be the set of all possible observations to states.

Q = {q1, q2, . . . , qN}, V = {v1, v2, . . . , vM} (5)

where N and M denote the number of all possible hidden states and the number of all
possible observations, respectively.

For a sequence of length T , we set S to be the sequence of states and O to be the
sequence of observations.

I = {i1, i2, . . . , iT}, O = {o1, o2, . . . , oT} (6)

The formula for the HMM model is:

λ = (π,A,B,N,M) (7)

where π is the initial state distribution vector, A is the transfer matrix between states,
and B is the observation probability matrix.

A = {aij}, aij = P (yti+1 = sj | yti = si), 1 ≤ i, j ≤ N (8)

B = {bij}, bij = P (xii = oj | yii = si), 1 ≤ i ≤ N, 1 ≤ j ≤ M (9)

π = {πi}, πi = P (yt1 = si), 1 ≤ i ≤ N (10)
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3.2. HMM model parameter optimisation problem. Given a sequence of obser-
vations O = {o1, o2, . . . , oT}, we need to continuously adjust the size of the parameters
λ = (π,A,B) of the HMM model in order to maximise the probability that the observed
sequence occurs under the model with this parameter P (O | λ). This type of problem
is also an optimisation problem for the model parameters [24]. The Baum-Welch algo-
rithm is mainly used to train the observation sequence. The final obtained λ can explain
the observation sequence well. However, in reality, the training process is numerous and
complicated, and consumes a long time. The transitive expectation of state Si to state
Sj is:

ξt (i, j) = P (qt = Si, qt+1 = Sj|O, λ) , 1 ≤ t ≤ T − 1 (11)

The corresponding states at time t and t+ 1 are Si and Sj, respectively.

ξi (i, j) =
βi (i) aijbj (Oi+1) ηi+1 (j)∑N

i=1

∑N
j=1 βi (i) aijbj (Oi+1) ηi+1 (j)

, 1 ≤ t ≤ T − 1 (12)

where βi (i) and ηi+1 (j) are derived using the forward and backward algorithms, re-
spectively.

βt+1 (j) = bj (Ot+1)
∑N

i=1
βi (i) βij, 1 ≤ t ≤ T − 1 (13)

ηt (i) =
∑N

j=1
ηt+1 (j) aijbj (Ot+1) , 1 ≤ t ≤ T − 1, 1 ≤ i ≤ N (14)

A new model parameter λ′ is obtained from the derived ξi (i, j) and the loop continues
until the model converges.

3.3. PAGA algorithm design. As a heuristic algorithm that simulates the biological
evolution mechanism imitating the nature, GA algorithm is able to automatically acquire
information during the search process and adaptively control the search process to get
the optimal solution [25].

GA algorithm is different from traditional ground intelligence algorithm, its process
simulates the natural selection, and there is little chance of elimination for the indi-
viduals with a large fitness function, and after surviving, it generates a new individual
through mutation. The crossover approach means that there is only one crossover point
on the chromosome code, and the exchanged segments are random, and new individuals
are formed after the exchange [26]. The schematic diagram of chromosome single point
crossover is shown in Figure 1. Mutation is a genetic algorithm in which some genes in
the coding strings of an individual chromosome are replaced with other alleles to form a
new individual.

Since the GA algorithm uses a stochastic search method, its search process may take
a long time to find the optimal solution, especially when faced with complex problems
[27]. In addition, during the optimisation process, the GA algorithm may converge to
the local optimal solution too early and fail to discover the global optimal solution. This
is because the crossover and mutation operations between parent individuals during the
stochastic search may cause the genetic algorithm to fall into the local optimal solution
and fail to jump out. Therefore, this work improves the traditional GA algorithm from
two aspects and proposes a GA algorithm based on polynomial variation and adaptive
migration, called PAGA algorithm.

Firstly, the polynomial variation operator based on dynamic variation rate is con-
structed to adjust the variable values in the later stage of the algorithm, in order to
overcome the problem that the algorithm cannot converge after many generations or
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Figure 1. Schematic diagram of single point crossover of chromosomes

easily falls into the local optimum due to the small variation probability. Polynomial
variational is a very effective and commonly used variational method [28] in the form of:

v′k = vk + α× (uk − lk) (15)

α =


[2u+ (1− 2u)×
(1− vk−lk

uk−lk
)
βm+1

]
1

βm+1 − 1, u ≤ 0.5,

1− [2(1− u) + 2(u− 0.5)×
(1− uk−vk

uk−lk
)
βm+1

]
1

βm+1 , u > 0.5,

(16)

On this basis, a dynamic variability rate is introduced to adjust the probability values
after each generation run as follows.

Pm(i+ 1) = Pm(i) + (
g

G
)n × (

Pc(i)

3
− Pm(i)) (17)

where u is a random number between [0, 1], βm is the user-specified distribution index,
g is the current number of runs, G is the total number of runs, Pm(i) is the probability
of variation for the i-th population, and Pc(i) is the probability of crossover for the i-th
population.

Because the three key parameters of HMM matrix requires each row of probability sum
of 1, the population after selection, crossover, mutation need to be normalised for each
matrix, and to ensure that the maximum fitness of the population is only increasing rather
than decreasing [29].

Secondly, an adaptive immigration operator using the hybrid subpopulation exchange
mechanism is constructed. This operator increases the immigration between populations
compared with the traditional operator, but the immigration with too large magnitude
will cause the algorithm to fall into local optimum while improving the convergence speed,
and the Hamming distance can measure the similarity between populations, so the type of
immigration is selected according to the average weighted Hamming distance of individuals
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in the population [30], and the calculation method is shown as follows:

Havg =
1

n

n−1∑
i=1

n∑
j=i+1

k∑
m=1

ω(xm)|bim − bjm| (18)

ω(xm) = 2m (19)

The population migrant needs to find the maximum fitness value Fmax of each popu-
lation and put it into the set F, and sort the populations according to the fitness value
from the largest to the smallest, call the corresponding population with the largest value
in F as the father’s population and the corresponding population with the smallest value
as the child’s population. According to the size of the population’s Hamming Distance,
judge whether to replace the child’s population with the father’s population in order to
increase the convergence speed. Individual immigration filters the best and worst indi-
viduals in each population based on fitness, and replaces the best individual of the former
population with the worst individual of the latter population. To satisfy the closure, the
best individual of the last population replaces the worst individual of the 1st population
to achieve the information exchange between populations. The execution process of the
adaptive migration operator is shown in Figure 2.

Population 1 Population 2

Individual 

evaluation

Individual 

evaluation

Population N

Population

evaluation

Individual 

evaluation

Parent

population

Children

population

Worst 

individual

Best 

individual

Worst 

individual

Best 

individual

Worst 

individual

Best 

individual

immigrant

immigrant

immigrant

Figure 2. Execution process of the adaptive immigration operator

The criteria for selecting the type of immigrant are shown as follow :{
Pm, H

1
avg −H2

avg ≥ ξ
Im, H

1
avg −H2

avg < ξ
(20)

where Pm is the population immigration, Im is the individual immigration, and ξ is the
population Hamming distance threshold.

3.4. Operational flow of the PAGA-HMM model. Through the analysis, it can be
seen that the process of training the HMM model by Baum-Welch algorithm needs to
set the initialisation parameter (π,A,B), and iteratively obtain the new parameter so
that the output probability P (O | λ) is the most. However, the solution obtained by
Baum-Welch algorithm is easily affected by the initial value and easily falls into the local
optimum, while the traditional GA algorithm has the problem of immature convergence,
in order to make up for the shortcomings of the two, this paper proposes the PAGA-HMM
model, in which the selection of the important parameters is as follows:



1096 J.-W. Wang, and H. Li

(1) Selection of chromosome codes.
PAGA requires the encoding of the object it is seeking to optimise, and the solution

process is represented using the encoding of the solution. Therefore, it is necessary to
encode the initialisation parameters of the HMMmodel (π,A,B), and ensure that the sum
of the elements of each row of (π,A,B) is 1. The specific form of the HMM chromosome
encoding is shown in Figure 3, with the following constraints.

N∑
i

πi = 1

M∑
j

aij = 1, 1 ≤ i ≤ N

M∑
j

bij = 1, 1 ≤ i ≤ N

(21)

Initial state matrix 

parameters
State transition 

matrix parameter

Observe probability 

matrix parameters

Figure 3. HMM chromosome coding

(2) Adaptation function.
The goodness of the model depends on the size of the fitness function value, the smaller

the fitness function value the better the model. Considering that the aim of the HMM
model when using the Baum-Welch algorithm is to find the parameter that maximises
the conditional probability P (O|λ) , the fitness function chosen in this work is:

ffitness (λ) = log
(
P
(
Ok

)
|λ
)

(22)

(3) Genetic operators.
The selection operator of the PAGA algorithm uses a roulette wheel approach, while the

polynomial variation operator and the adaptive immigration operator are implemented
as described above.

(4) Termination conditions.
A preset maximum number of evolutionary generations was used as a termination

condition, and the maximum number of evolutionary generations G = 50 was set in
this work.

Eventually, the operational flow of the PAGA-HMM model is shown in Figure 4.

4. Trajectory correction based on the PAGA-HMM model. The deskewing of
vehicle trajectories [31] is the use of the PAGA-HMMmodel to solve its decoding problem.
After knowing the latitude and longitude information acquired by the device, it goes to
infer the real position information of the corresponding observation, to straighten out
information that clearly doesn’t fit with how a car moves on the road.

Firstly, we need to correspond the vehicle trajectory correction to the PAGA-HMM
model, including two aspects.

(1) Visible Status Chain: latitude and longitude of the monitoring obtained from the
positioning device.
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Figure 4. Run flow of the PAGA-HMM model

(2) Markov chain: obtaining the true location of the positioning device where the
latitude and longitude information is located.

Create a sequence of positional information observations Y = (Yx|x = 1, 2, 3, . . . , X),
where X represents the number of observations (latitude and longitude). Create a road
network observation sequence where N = (V,A), V = (pi|i = 1, 2, 3, . . . , N) represents
the nodes on the roads and A = (rj|j = 1, 2, 3, . . . ,M) represents the roads on the road
network in the track. Create a hidden sequence R = (ri|i = 1, 2, 3, . . . , T ) to locate the
real position of the device.

When finding the state transfer probability of the vehicle deviation correction model,
the relationship between the device positioning information should not be considered, but
simply the data that exists in-between the actual locations of the candidates. Since the
chance of a state transfer is proportional to the actual distance between the candidate
points, the likelihood of a transfer increases as the distance between the candidate points
decreases.

aij = p(px+1 = pj|px = pi) ∝ e−βdij (23)

where dij denotes the distance between the candidate points pi and pj, and β denotes
the parameter that controls the element that affects the shortest distance between pi and
pj.

After establishing the vehicle trajectory deviation correction model based on PAGA-
HMM, the Viterbi algorithm [?] is used to solve it. The Viterbi algorithm, which essen-
tially uses dynamic programming to solve the problem, is used to solve for the probabilistic
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maximum path in the trajectory deviation correction model. The iterative formula is as
follows:

δt(i) = max
i1,i2,...,it−1

P (it = o1, o2, ..., ot|λ), i = 1, 2, ..., N (24)

5. Experimental results and analyses.

5.1. Validation of the PAGA algorithm. The simulation experiments were carried
out in MATLABR2014a environment, with the operating systemWindows7, CPU i3-4160,
and memory 8 G. Firstly, the validation of the effectiveness of the PAGA algorithm was
carried out. Then, the feasibility verification of the vehicle trajectory correction model
based on PAGA-HMM was carried out.

In order to verify the performance of the proposed PAGA algorithm for merit seeking,
four standard test functions were selected for merit seeking experiments and compared
with standard GA, IGA [33], and MGA [34]. All GA algorithms have a population of size
50, an iteration number of 200, and the selection operation is roulette selection.

(1) Sphere function.

f1(x) =
n∑

i=1

x2
i , − 100 ≤ xi ≤ 100, min f1(x) = f1(0, 0, . . . , 0) = 0 (25)

(2) Rosenbrock function.

f2(x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
, − 200 ≤ xi ≤ 200, min f2(x) = f2(1, 1, . . . , 1) = 0

(26)
(3) Griewank function.

f3(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
xi√
i
+ 1, − 600 ≤ xi ≤ 600, min f3(x) = f3(0, 0, . . . , 0) = 0

(27)
(4) Schaffer function.

f4(x, y) = 0.5− sin2
√

x2 + y2 − 0.5

(1 + 0.001 (x2 + y2))2
, − 10 ≤ x, y ≤ 10, minf4(x, y) = f4(0, 0) = 1

(28)
The geometric curve characteristics of the four functions are shown in Figure 5.
The average optimisation results of the 4 algorithms run 10 times are shown in Table

1.

Table 1. Optimization result

Arithmetic Indicators
Sphere
function

Rosenbrock
function

Griewank
function

Schaffer
function

GA
average value 4.0Ö10-15 1.3Ö10-6 1.3Ö10-7 2.8Ö10-16

standard deviation 2.5Ö10-15 1.5Ö10-6 3.2Ö10-7 2.5Ö10-16
time/s 0.81 0.15 0.70 0.19

IGA
average value 8.7Ö10-8 0.1Ö10-1 3.1Ö10-8 0.8Ö10-2

standard deviation 1.7Ö10-7 0.9Ö10-2 3.6Ö10-8 0.5Ö10-2
time/s 10.26 11.20 11.01 0.78

MGA
average value 2.9Ö10-35 1.9Ö10-5 2.8Ö10-28 1.1Ö10-3

standard deviation 9.3Ö10-35 4.8Ö10-5 3.5Ö10-28 2.2Ö10-3
time/s 12.88 11.52 11.06 0.96

PAGA
average value 0 0 3.1Ö10-30 0

standard deviation 0 0 5.5Ö10-30 0
time/s 2.16 2.21 2.41 0.46
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(a) Sphere function (b) Rosenbrock function

(c) Griewank function (d) Schaffer function

Figure 5. Geometric Curve Properties of 4 Functions

As seen from the results of the test function, the PAGA algorithm has the highest
overall optimisation accuracy. From the standard deviation, the PAGA algorithm is less
volatile. From the running time, the PAGA algorithm is slightly inferior to the standard
PSO algorithm, but significantly better than the IGA algorithm and MGA algorithm.
Comprehensively analysing the algorithm’s optimization accuracy, optimization speed
and robustness, the PAGA algorithm is better than the other three algorithms, and thus
the PAGA algorithm adapts to a wider range of solving optimization problems, thus
providing a strong support for the subsequent performance analysis of the PAGA-HMM
model.

5.2. Data error correction results. As shown above, the WSN node data is divided
into smooth data, and latitude and longitude data. Firstly, the constant temperature
T is set to be 3◦C, assuming that the initial temperature Tk−1 is also 3◦C, and the
transport noise Toe is 0.3◦C. Secondly, multiple road segments are selected, and about
200 consecutive positioning points in motion are selected on each road, and the distance
in seconds between waypoints is 5s. Ten trajectory datasets are obtained, in which the
time is used in the format of Unix timestamps for convenient storage, and some of the
data are shown in Table 2.
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Table 2. Selected data from the trajectory dataset.

Coordinate
system

Latitude Longitude Time Velocity/km-h−1

GCJ02 118.94306578 32.11705188 2022-10-12 08:00 32.21
GCJ02 118.94337778 32.11619665 2022-10-12 08:05 32.17
GCJ02 118.94353583 32.11577970 2022-10-12 08:10 32.83
GCJ02 118.94382966 32.11519097 2022-10-12 08:15 36.16
GCJ02 118.94416870 32.11463515 2022-10-12 08:20 38.63
GCJ02 118.94441540 32.11411700 2022-10-12 08:25 39.51
GCJ02 118.94471602 32.11361997 2022-10-12 08:30 40.07
GCJ02 118.94506685 32.11304509 2022-10-12 08:35 42.23
GCJ02 118.94533914 32.11259178 2022-10-12 08:40 41.65

Firstly, according to the experimental parameters, the smooth data error correction
algorithm based on Kalman filtering is used for experiments. The Kalman filtered tem-
perature is calculated based on the initial temperature and the sensor measurement tem-
perature, and the measurement error is analysed, and the results are shown in Figure 6:
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Figure 6. Comparison of temperature error correction deviation

It can be seen that the calculated values using the Kalman filter algorithm are closer
to the real values and have less measurement deviation than the data measured directly
using the sensors. This indicates that the Kalman filtering algorithm has a good error
correction effect on smooth data such as temperature in the cold chain environment.

Then, the effect of introducing polynomial variation operator and adaptive immigration
operator on the fitness function of the GA algorithm is analysed, as shown in Figure 7.

It can be seen that under the condition of the same number of iterations, the size of the
fitness function of PAGA is higher than that of the other GA and IGA when considering
the polynomial variation operator and adaptive immigration operator, which is due to
the fact that the excellent individuals are directly retained in the process of population
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Figure 7. Comparison of the effect of the new operator on the fitness function

evolution. The size of the fitness function is about the same for PAGA and MGA, but the
number of iterations is fewer in PAGA, which leads to the smoothness earlier. state. This
is because the MGA algorithm only considers polynomial variance and common selection
factors, which leads to too much randomness, and although it improves the accuracy of
the fitness function, the computation time for a single iteration increases.

A comparison of the convergence of the fitness functions calculated by the Baum-Welch
algorithm in the traditional HMM model and the PAGA-HMM model is shown in Figure
8.

It can be seen that the Baum-Welch algorithm in the traditional HMM model computes
the value of the fitness function in the interval [-2.29, -1.91], while the PAGA-HMM model
computes the value of the fitness function in [-2.12, -1.70]. In contrast, the traditional
HMM model is globally unstable and more likely to fall into local optima. However, the
PAGA-HMM model has fewer iterations, is faster, and improves the maximum value of
the fitness function by 0.21, an improvement of nearly 12%, which is effective and more
accurate.

The median filter, HMM model, and PAGA-HMM model are used to calculate the
trajectory correction for the positioning data shown in Table 2, respectively. After the
experiments conducted on several road sections, the final experimental results are obtained
as shown in Figure 9.

It can be seen that the processing of trajectory points with the PAGA-HMM model
effectively removes the deviation points, so that the invalid interfering localisation points
applied for trajectory matching are removed, thus improving the availability of localisation
points. The accuracy of trajectory correction using the PAGA-HMM model is almost
always above 90%, and the trajectory accuracy is effectively improved relative to other
models, thus verifying the correctness and feasibility of trajectory correction by combining
the PAGA algorithm with the HMM model.
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Figure 8. Convergence comparison of fitness function in conventional HMM and
PAGA-HMM
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Figure 9. Comparison of correction accuracy

6. Conclusion. In the process of cold chain transport, the existence of problems in the
sensor output signal and quality may lead to inaccurate data recording, and it is necessary
to modify the erroneous data and make an early warning in time. Therefore, for the WSN
node data generated during the cold chain transport process, this paper firstly proposes
to use the Larman filtering algorithm to correct the errors of these data, which can
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make the data curve become smooth and reduce the anomalies, so as to improve the
usability of the data. Then, the latitude and longitude data is special, due to its large
variation and difficult to speculate, this paper proposes to combine the GA algorithm
and HMM model to correct the original trajectory data trajectory. In order to improve
the convergence accuracy and speed, a GA algorithm based on polynomial variation and
adaptive migration, called PAGA algorithm, is proposed, and its effectiveness is verified by
several standard functions. The trajectory correction method based on the PAGA-HMM
model is finally constructed. The experimental results show that the accuracy of trajectory
correction using the PAGA-HMM model is almost always above 90%. Compared with
other models, the trajectory accuracy of the PAGA-HMM model is effectively improved,
and it has high reference value for promotion in various application scenarios of IoT.

However, the existing work operates on the assumption that all sensor nodes and devices
are working properly. If a sensor node or device fails, the collection and use of data can
be greatly affected. Further research on this issue will be conducted in the future.
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