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Abstract. Image dehazing is an important research topic and hotspot in the fields
of image processing and computer vision. Therefore, evaluating the performance of
image dehazing algorithms has become an import research issue. However, current image
quality assessment (IQA) algorithms only judge the final dehazed image and do not give
an analysis of the capabilities of the image dehazing algorithm. In order to fill this
gap, we propose an image dehazing quality assessment method that integrated the dark
channel prior with image depth estimation. The proposed method first uses the dark
channel prior to estimate the absolute amount of haze removed from each pixel as an
indication of the performance of dehazing. Then, a dual-scale variance ratio method is
introduced to estimate the scene depth of the image. Finally, the relative dehazing is
calculated from the obtained absolute dehazing and the image depth to represent the
capability of the dehazing algorithm. The method proposed in this paper first introduces
the concepts of relative and absolute dehazing quantities, along with pioneering a pixel-
level evaluation of dehazing outcomes. Extensive experiments show that the algorithm
proposed in this paper is more in line with human subjective judgment than other IQA
algorithms.

Keywords: image dehazing, dehazing evaluation, depth estimation, dark channel
prior, pixel-level estimation.
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1. Introduction. Image dehazing is an important research topic and a current hotspot
in the fields of image processing and computer vision [1]. In various practical applications
such as traffic monitoring and security inspection systems, the majority require high-
definition images as input [2, 3, 4]. However, if these uncorrected images are fed into an
outdoor surveillance system, there is a great likelihood that the results of the system’s
normal operation will be affected, leading to the occurrence of significant errors. This dis-
ruption could potentially lead to critical errors with substantial implications. As a result,
image dehazing has attracted increasing attention from a growing number of researchers.

Haze and fog can lead to a decrease in image quality, significantly impacting the visual
quality and post-processing of images. Due to the practicality of image dehazing, many
researchers have conducted studies in this area [5, 6]. Furthermore, there are various
methods for evaluating image quality [7, 8, 9, 10, 11, 12]. However, there has been
very little dedicated research on objective evaluation methods specifically for dehazing.
If the dehazing results can be accurately assessed, it would be possible to choose the
most suitable dehazing algorithm for different scenes. Unfortunately, when assessing the
effectiveness of dehazing algorithms, the existing methods primarily rely on subjective
visual evaluations. Subjective evaluations are susceptible to personal biases, leading to
less reliable evaluation outcomes. Consequently, it is evident that achieving an objective
and quantitative assessment of dehazing effects remains a challenge yet to be effectively
addressed.

Existing objective IQA methods can be classified into three categories based on their
requirement for reference information: full-reference, reduced-reference, and no-reference
methods, with the first two categories relying on reference images. Concerning the spe-
cific application of evaluating image dehazing effects, the existing objective evaluation
methods can be broadly categorized into two types. The first type measures the dehazing
performance solely from the perspective of image contrast. For instance, the Contrast
Enhancement Assessment method [13], proposed by Hautiere et al., indirectly assesses
dehazing algorithms by obtaining a contrast map through visible edge detection. How-
ever, this method fails to accurately evaluate images with excessive enhancement. The
reduced-reference based methods consider both image contrast and color in a compre-
hensive manner. For example, global and local contrast metrics are employed by Wang
et al. to gauge the degree of contrast enhancement in dehazed images. Additionally,
evaluation metrics such as hue polar histogram, principal component analysis of RGB
image, and histogram similarity are used to assess color quality from the perspectives of
color restoration ability, color rendition ability, and natural color representation. Li et
al. used Canny operator and bright channel to detect the effective edge intensity of the
dehazed image, while histogram similarity was used in color evaluation to measure the
color reproduction ability of the dehazed image [14]. Zhang et al. proposed the evaluation
indexes of reduction coefficient and color reduction coefficient, which are also aimed at
the contrast and color of the image to objectively evaluate the dehazing performance.

All current algorithms for evaluating the effectiveness of dehazing have roughly the
following three drawbacks:

1. Many algorithms are not specialized in objective evaluation methods for dehazing
quality, so these algorithms are not able to objectively evaluate the quality of image
dehazing, which results in these methods not having good reliability.

2. When these algorithms are utilized to do image dehazing evaluation, they also can
only get the evaluation of the whole image, and cannot be accurate to the evaluation
of a specific pixel point.
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3. It is well known that since under normal circumstances, the further away the scene
is from the camera, then the more severely the obtained image is affected by haze, so
the third flaw of the above algorithms is that the evaluation of the image dehazing
performance is not combined with the depth of the image.

In this paper, an effective method for evaluating the effect of image dehazing is proposed
by combining the dark channel prior theory. The algorithm proposed in this paper has
the following three advantages:

1. This algorithm is specifically designed to evaluate the dehazing performance of the
image and therefore has some reliability.

2. This algorithm not only evaluates the whole image but also evaluates each pixel
point.

3. This algorithm considers the relationship between scene depth and haze amount
when evaluating the quality of dehazing, which has not been considered in all previ-
ous algorithms.

Experiment results show that compared with several existing classical methods for
evaluating the effect of dehazing, the method proposed in this paper is not only more
consistent with human subjective judgment, but also more objective.

2. Related Work. In this section, we review the relevant work on IQA. Evaluating
image quality is a highly challenging task due to the distinct characteristics of different
types of image distortions. Moreover, the diversity of image content introduces further
challenges to IQA. IQA can be broadly categorized into two types: traditional models
based on prior knowledge and models based on convolutional neural networks.

2.1. Traditional image quality assessment. In traditional Image Quality Assessment
(IQA) algorithms, features are extracted based on the characteristics of image distortions.
Natural scene statistics serve as a common example of this approach. Methods such
as Directionally Individuated Visual Estimation (DIVINE) using oriented pyramids [15]
and Blind Image Integrity Notator using DCT coefficients (BLIINDS) [16] fall under
the umbrella of natural scene statistics. While traditional models perform well when
evaluating images with synthetic distortions, their capabilities are often constrained when
predicting image quality in real-world scenarios.

2.2. Learning-based image quality assessment. Due to the immense success of deep
learning in computer vision tasks [1, 17], many researchers have turned their attention to
IQA models based on convolutional neural networks (CNNs). CNNs can extract reliable
semantic features from deep architectures and then be fine-tuned for prediction with
appropriate modifications. Given the lack of large-scale data directly related to image
quality, most CNN-based models employ transfer learning techniques, using pretrained
models (typically pretrained on ImageNet [18]) and fine-tuning them with actual image
quality labels.

Zhang et al. [19] employed two separate CNNs to handle real scenes and artificially syn-
thesized scenes independently. Kim et al. [20] used Full-Reference IQA (FR-IQA) as an
intermediate regression target during training. Zeng et al. [21] utilized statistical distribu-
tion of subjective scores during training, leading to faster convergence and superior quality
estimation. Su et al. [22] introduced an adaptive hyper-network architecture to decouple
quality prediction from content understanding. Ying et al. [23] demonstrated that train-
ing with both image and patch quality scores significantly improved model performance.
These authors’ developed PaQ-2-PiQ algorithm also benefited from the availability of an
exceptionally large real distortion image subjective database. All these models rely on
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specific supervised fine-tuning mechanisms to achieve enhanced performance. In contrast,
our work focuses on unsupervised feature learning, eliminating the need for fine-tuning
processes. This distinction sets our approach apart from the aforementioned methods.

3. Methods. This paper proposes an image dehazing quality assessment algorithm based
on the dark channel prior and image depth estimation. The algorithmic workflow of this
paper is illustrated in Figure 1. Its main steps encompass pixel-level absolute dehazing
estimation, image depth estimation, and pixel-level relative dehazing estimation. Com-
pared to traditional image dehazing evaluation methods, the algorithm presented in this
paper introduces a pixel-level image dehazing evaluation. This enables the assessment of
the dehazing effect at each individual pixel in an image. This approach not only serves for
evaluating the dehazing effect of an image but also guides further dehazing processing for
localized image regions with suboptimal dehazing results. Firstly, the depth information
of the image is computed. Subsequently, the dehazing amount for specific pixels in the
experimental image is calculated. Finally, the dehazing amount for each pixel is divided
by its corresponding depth value. This yields a quantified value representing the dehazing
capability of the current dehazing algorithm at the given pixel location. By calculating
the average of these values, the overall dehazing effectiveness evaluation for the entire
image is obtained.

Pixel-wise Absolute Dehazing Estimation

Image Depth Estimation

Pixel-level Relative Dehazing Estimation

Figure 1. Flowchart of the proposed method in this paper.

3.1. Dark channel prior. He et al. [6] proposed a dark channel prior knowledge for
image dehazing. This prior knowledge is obtained through statistical analysis of a large
number of outdoor haze-free images, suggesting that the majority of pixels in haze-free
outdoor images, except in the sky region, have very low values in at least one of the RGB
color channels.

For any given image I, its dark channel can be defined as follows:

Idark(i, j) = min
(k,l)∈Ω(i,j)

( min
c∈(r,g,b)

Ic(k, l)) (1)

In this equation, Ic represents a color channel of I, and Ω(i, j) is a local neighbor-
hood region contered at pixel (i, j). Extensive experiments in [6] have demonstrated the
effectiveness of the dark channel prior in the image dehazing process.
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3.2. Depth estimation. How to extract the structure and attributes of the three-dimensional
world from two-dimensional images is a fundamental problem in computer vision [24, 25].
Therefore, automatically extracting image depth information from one or multiple images,
namely performing depth estimation, is a significant research area in computer vision.

Currently, mainstream methods for scene depth estimation can be divided into two
categories: active vision (AV) approaches and passive vision (PV) approaches. Active
vision methods involve emitting controlled beams of light towards the object of interest,
then capturing the images formed by these beams on the object’s surface. The distance to
the object is calculated through geometric relationships to estimate scene depth. Passive
vision methods, on the other hand, usually do not employ special light sources for illu-
mination. They estimate scene depth solely from one or multiple two-dimensional image
information obtained from one or more camera systems.

This paper studies and proposes a single-image depth estimation algorithm based on the
ratio of dual-scale local neighborhood variances. This algorithm falls under the category
of passive vision methods. The method utilizes the minimum-to-maximum ratio of pixel-
wise local neighborhood window grayscale variances at two different scales to estimate
image depth. The principle behind this lies in the fact that images of natural scenes often
exhibit variations due to the varying distances between objects and the camera during
the capture process. Distant parts of the scene tend to be less sharp with fewer details,
resulting in similar grayscale variances for local neighborhood windows at both scales,
yielding a ratio close to 1. Conversely, closer objects in the scene tend to have sharper
images with more details, leading to significant differences in grayscale variances between
local neighborhood windows at two scales, resulting in a ratio far from 1. Furthermore,
compared to regular natural images, hazy images are better suited for estimating image
depth using the ratio of minimum-to-maximum grayscale variances of pixel-wise local
neighborhood windows at two scales. This is because in hazy images, distant regions are
often characterized by a higher concentration of haze particles suspended in the air, which
further blurs the details of the distant areas. As a result, the ratio of grayscale variances
for local neighborhood windows at both scales tends to be closer to 1 for these regions. In
contrast, areas with less haze in closer regions have less impact on image details, causing
the ratio of minimum-to-maximum grayscale variances of pixel-wise local neighborhood
windows to remain distant from 1. Therefore, the dual-scale local neighborhood variance
ratio can be used to estimate the image depth information at each pixel. For a given pixel
p(i, j) and two different scales S and L, the image depth estimation process at this pixel
is illustrated in Figure 2:

Retrieve the neighborhood windows Ω𝑆 and Ω𝐿 centered 

around the pixel 𝑃(𝑖, 𝑗)

Calculate the variance of windows Ω𝑆 and Ω𝐿, denoted as 

𝑉𝑆 and 𝑉𝐿 respectively

Calculate min(𝑉𝑆, 𝑉𝐿) divided by max(𝑉𝑆, 𝑉𝐿) 

as the depth estimation result.

Figure 2. Depth Estimation Process.
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To validate the effectiveness of the proposed method for image depth estimation, the
image shown in Figure 1(a) is taken as an example, and Figure 2 presents its depth
estimation results.

3.3. Absolute Dehazing Amount. The dark channel prior theory [6] introduces the
concept of the dark channel. Inspired by this, this paper proposes a minimum channel
concept. For any given image I, its minimum channel is defined as follows:

Imin(i, j) = min
c∈(r,g,b)

Ic(i, j) (2)

here, (i, j) represents a pixel point, and min
c∈(r,g,b)

indicates selecting the minimum brightness

value from the RGB three channels.
The dark channel prior theory [6, 26, 27] suggests that for outdoor haze-free images,

the dark channel values of most pixels outside the sky region are close to 0. Therefore,
the difference between the minimum channel value of a hazy image and the minimum
channel value of its dehazed result can be used to quantify the absolute dehazing amount
of an image. Its formal description is as follows:

H(i, j) = Imin(i, j)− Jmin(i, j) (3)

here, H(i, j) represents the absolute dehazing amount at pixel (i, j), and Imin(i, j) and
Jmin(i, j) respectively denote the minimum channel values of the hazy original image and
the dehazed result image.”

Figure 3(a)-(d) shows the original hazy image of a natural scene, the dehazed image,
the minimum channel image of the hazy input and the minimum channel image of the
dehazed result, respectively.

(a) Original hazy image

(c) Minimum channels for 

hazed images

(b) Dehazed image

(d) Minimum channels for 

fog-free images

Figure 3. Minimum channel map of the hazy image and the dehazed image.

3.4. Relative Dehazing Amount. The absolute dehazing amount can only characterize
the extent of dehazing at a specific pixel, but it cannot fully capture the quality of the
dehazing effect. This is because different image regions at varying scene depths have
different amounts of haze content. Distant regions often have more haze content than
closer ones. The dehazing effect brought about by the same absolute dehazing amount
in distant and close regions can differ. To address this, this paper combines image depth
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estimation and introduces a concept of relative dehazing amount to describe the dehazing
effect at a particular pixel using an algorithm. The definition of relative dehazing amount
is as follows:

H̃(i, j) = H(i, j)/D(i, j) (4)

here, H(i, j) represents the absolute dehazing amount at pixel (i, j), D(i, j) represents
the dehazing capability of the algorithm at that point, and (10) denotes the scene depth
estimation value at pixel (i, j).

For the entire hazy image, the dehazing effectiveness of the algorithm is defined as
follows:

H̃(x) =
1

MN

M∑
i=1

N∑
j=1

H̃(i, j) (5)

where M and N represent the number of rows and columns of the image, respectively.

4. Experiments. In order to validate the efficacy of the algorithm proposed in this
paper, we conducted grouping experiments using diverse sets of images. The representa-
tive image dehazing algorithms chosen for the experiments include: DCP [6], Histogram
Equalization and Tarel et al. [28]. The rationale behind selecting these algorithms is
as follows: Global histogram equalization is one of the most commonly employed image
enhancement techniques, renowned for its exceptional contrast enhancement capabilities.
The algorithms by He et al. and Tarel et al. are recognized for their simplicity and effec-
tiveness, with DCP, in particular, emerging as a focal point of research in the field of image
dehazing in recent years. In addition, to validate the effectiveness and robustness of the
proposed IQA method, we conducted an analysis of its performance on a self-constructed
dataset. This database encompasses a diverse range of data, facilitating a comprehensive
assessment of the method’s performance. An example of the data used in this study is
illustrated in Figure 4. The image database at our disposal comprises a total of sixty
images, encompassing diverse scenes including aerial landscapes, architectural structures,
forest vistas, cityscapes, indoor gardens, as well as beaches.

(a) Aerial (b) Building (c) Forest

(d) City (e) Indoor garden (f) Beach

Figure 4. Example images of the dataset.
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4.1. Image quality evaluation algorithms. Considering the absence of a standardized
criterion for objective IQA within the realm of image dehazing, this section will initially
employ several commonly utilized objective evaluation metrics associated with digital
image processing. The metrics selected for this study include Peak Signal-to-Noise Ratio
(PSNR), Mean Gradient, and Color Image Information Entropy.

The Peak Signal-to-Noise Ratio (PSNR), commonly established through the utiliza-
tion of Mean Square Error (MSE), serves as a prevalent metric. In the context of two
monochromatic images, denoted as l and k, each characterized by dimensions of m×n, if
one image can be reasonably approximated by the other with the inclusion of noise, their
respective Mean Square Error is articulated as follows:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

∥I(i, j)−K(i, j)2 (6)

The Peak Signal-to-Noise Ratio is defined as follows:

PSNR = 10 log10(
MAX2

I

MSE
) = 20 log10(

MAXI)√
MSE

(7)

where ”MAX” represents the maximum color value for image pixels. If each sampling
point is represented using 8 bits, it would be 255.

The Gray Mean Gradient (GMG), employed to reflect image contrast, detail variations,
and texture characteristics, is commonly utilized to assess image blurriness. A higher
GMG value indicates richer image details, clearer textures, and better image quality. The
GMG function is defined as follows:

GMG =
1

(M − 1)× (N − 1)

M−1∑
i−1

N−1∑
j=1

√
[g(i, j + 1)− g(i, j)]2 + [g(i+ 1, j)− g(i, j)]2

2

(8)
The information entropy H reflects the grayscale information of pixel positions in an

image and the comprehensive characteristics of grayscale distribution within pixel neigh-
borhoods. It serves as a measure of the information content in an image. A higher
entropy value indicates a greater amount of information. The formula for its definition is
as follows:

H = −
L−1∑
r=0

Hr

M ×N ×D
log

Hr

M ×N ×D
(9)

where L stands for the maximum grayscale level of the image; Hr represents the count
of pixels with a grayscale value of r in the image; M , N , and D respectively denote the
length, width, and dimension of the image.

In addition, this section will also compare the algorithm proposed in this study with the
contrast enhancement evaluation method introduced by Hautiere, a French scholar [13].
Based on the contrast enhancement evaluation method rooted in visible edges [13], the
approach primarily relies on the International Commission on Illumination’s atmospheric
visibility definition. It combines this definition with the Logarithmic Image Processing
(LIP) model to derive contrast maps. By utilizing three metrics: the ratio of newly visible
edges after complex enhancement (e), the normalized gradient mean of visible variations
(r), and the percentage of saturated black or white pixels (σ), this methodology objectively
assesses the dehazing efficacy of different algorithms from distinct perspectives.
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Table 1. Perormance comparison on synthetic datasets.

Database Metrics
IQA methods

PSNR SSIM AG Entropy e r σ Ours

Aerial
SROCC 0.765 0.632 0.541 0.504 0.368 0.331 0.357 0.865
PLCC 0.721 0.612 0.532 0.501 0.378 0.312 0.337 0.843
RMSE 5.786 6.351 9.886 9.754 10.785 11.968 11.968 5.234

Building
SROCC 0.756 0.674 0.532 0.534 0.401 0.387 0.331 0.841
PLCC 0.771 0.645 0.521 0.512 0.398 0.346 0.321 0.867
RMSE 5.754 6.341 9.876 9.653 11.986 11.964 8.696 5.674

Forest
SROCC 0.765 0.681 0.541 0.541 0.398 0.365 0.331 0.867
PLCC 0.750 0.674 0.523 0.523 0.378 0.321 0.312 0.851
RMSE 5.872 6.423 9.535 9.985 11.795 12.886 8.864 5.321

City
SROCC 0.734 0.691 0.551 0.519 0.410 0.332 0.314 0.810
PLCC 0.744 0.687 0.545 0.501 0.397 0.312 0.301 0.828
RMSE 5.684 6.351 9.944 9.865 12.912 12.853 8.124 5.012

Indoor
SROCC 0.731 0.676 0.512 0.488 0.386 0.299 0.286 0.799
PLCC 0.743 0.634 0.514 0.487 0.365 0.297 0.287 0.831
RMSE 5.464 6.254 9.786 9.785 12.995 12.975 12.234 5.045

Beach
SROCC 0.734 0.654 0.504 0.478 0.399 0.278 0.289 0.676
PLCC 0.725 0.645 0.501 0.456 0.383 0.297 0.275 0.664
RMSE 5.842 6.101 8.899 9.421 11.986 12.786 12.542 5.775

e =
nr − n0

n0

(10)

r = exp[
1

nr

∑
Pi∈Ψr

log ri] (11)

σ =
ns

dimx× dimy

(12)

where e signifies the proportion of newly visible edges, which can be determined by cal-
culating the number of visible edges before enhancement (n0) and after enhancement
(nr) using the Canny edge detection method; r denotes the normalized mean gradient of
edges. The set of all visible edges in the processed image is represented as Ψr, Pi stands
for pixels positioned on the edge, and ri is the gradient ratio of individual pixels on the
edge (gradients are typically computed using the Sobel operator); σ stands for the ratio
of saturated black or white pixels. ns represents the count of such pixels in the image.
dimx and dimy are the pixel width and height of the image under evaluation.

For each algorithm, the ideal dehazing effect should inherently maintain appropriate
image contrast without sacrificing visual information. In the context of the contrast
enhancement evaluation based on visible edges, higher values of e and r and lower values
of σ indicate better dehazing results.

4.2. Comparison on image quality assessment. As can be seen from Table 1, the
method proposed in this paper outperforms the state-of-the-art IQA algorithm in the vast
majority of cases. These include referenced PSNR and SSIM, possibly because they have
difficulty learning perceptual rules or meta-knowledge about image dehazing. In addition
to this, the results show taht classical IQA algorithms such as AG and Entropy different
significantly from the dehazing quality evaluation algorithms.
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Figure 5. Comparison of dehazing performance among different algorithms.

To validate the performance of the proposed algorithm, a comparison was conducted
with the methods introduced in references [6], histogram equalization, and the approach
proposed in reference [28]. The dehazing effects are illustrated in Figure 5, and the
experimental results are presented in Tables 2.

From Figure 5, it is evident that although image (c) exhibits enhanced details in the
foreground, yielding a slightly improved effect, the overall dehazing performance is com-
paratively poorer in most areas, resulting in an inferior visual outcome compared to the
dehazing effects of (b) and (d). Upon observing images (b) and (d), it’s apparent that
image (d) retains a smaller amount of residual haze in regions with abrupt depth changes
and maintains a thin layer of haze in other areas. Consequently, the dehazing effect of
(d) is not as effective as that of (b). Therefore, based on visual observation, the dehazing
effect of (b) is better than that of (d), and (d) is better than (c). Continuing to examine
images (f), (g), and (h), it can be seen that although image (g) has a slightly better effect
in the foreground, the dehazing performance is poorer in most regions, resulting in an
inferior overall visual outcome compared to (f) and (h). Further observation of images
(f) and (h) reveals that both exhibit residual haze in areas with abrupt depth changes,
with image (f) retaining a small amount of haze, while image (h) contains a considerable
amount of residual haze. Hence, the dehazing effect of (h) is not as good as that of
(f). Therefore, based on visual observation, the dehazing effect of (j) is better than (k),
and (j) is better than (l). Continuing to observe images (n), (o), and (p), it’s apparent
that image (n) features vibrant colors and significantly better contrast than images (o)
and (p). Further observation of images (o) and (p) reveals that although image (p) has
slightly higher contrast compared to image (o), they both exhibit a visually similar thin



Dehazing Quality Evaluation Algorithm Integrating Dark Channel Theory and Image Depth Estimation1129

layer of haze. However, the bottom dehazing effect of image (o) is noticeably superior to
that of image (p). Therefore, based on visual observation, the dehazing effect of image
(n) is better than that of (o), and (o) is better than (p). Continuing to examine images
(j), (k), and (l), the overall performance of image (l) is notably inferior to (j) and (k).
Hence, based on visual observation, the dehazing effect of (k) is better than (l), and (l)
is better than (j). Continuing to observe images (j) and (k), both exhibit similar overall
characteristics, but image (j) displays a noticeably better dehazing effect in the audience
area compared to the corresponding portion of image (k).

Table 2. Objective evaluation of Figure 5 by three image quality evalua-
tion algorithms.

Images PSNR AG Entropy

(b) 10.7535 4.6197 16.5300
(c) 14.6951 4.8458 13.2733
(d) 13.8248 7.3011 15.8010

(f) 12.2096 6.9587 15.8977
(g) 10.7010 7.2212 14.3344
(h) 12.4057 5.8980 16.6127

(j) 10.0334 11.1157 16.0541
(k) 11.2783 9.2780 16.0923
(l) 10.9687 7.5816 15.7942

(n) 10.7883 3.4181 16.3161
(o) 13.2242 2.7080 14.0193
(p) 13.2823 3.1054 15.6599

From Table 2, we can observe that the evaluation based on Peak Signal-to-Noise Ratio
(PSNR) suggests that the effect of image (c) is better than (d) and (b), the effect of
image (k) is superior to (j), and the effect of image (n) is inferior to both (o) and (p).
The evaluation based on Mean Gradient indicates that the effect of (g) is better than
(f). Moreover, the evaluation derived from Information Entropy implies that the effect of
image (h) is superior to (f). These data results are inconsistent with our observations.

Hence, from Table. 2, we can infer that traditional image evaluation algorithms are
inadequate for assessing dehazing quality.

Table 3. Literature [13] computed for each of the dehazing image evalua-
tion metrics.

metric (b) (c) (d) (e) (f) (g)

e 1.7348 0.8237 1.4449 0.21386 0.095142 0.19748
r 2.6142 2.2477 3.4905 2.1801 1.7653 1.6039
σ 0.0547% 0.0019% 0.0270% 4.1827% 0.0003% 3.7578%

metric (h) (i) (j) (k) (l) (m)
e 0.6015 0.4761 0.4605 2.2009 1.2912 0.6397
r 3.3404 3.0051 2.5417 3.5538 2.6084 3.793
σ 2.7761% 2.4141% 0.0050% 1.8468% 0.0002% 0.0012%

Reference [13] indicates that an ideal dehazing effect should necessarily have proper
image contrast without losing visual information. In the visible edge-based contrast en-
hancement evaluation method, the larger the e and r, the smaller the value of σ, indicating
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the better the dehazing effect [13]. Table. 3 shows the results of the calculation of each
dehazing image in Figure 5 using the above three indicators. It is noted that the value
may be negative, mainly because for some dehazed images, although the number of visible
pixels has increased significantly compared to the original image, the number of visible
edges of the dehazed image consisting of these visible pixels is reduced compared to that
of the original image when counting these visible pixels, resulting in a negative value.

When using the contrast enhancement evaluation method to quantitatively evaluate
the dehazing effect, it should be ensured that the same evaluation result can be obtained
by using any of the indexes in the method, i.e., the better dehazing algorithm should
satisfy the larger e and r, as well as the smaller σ value at the same time, but it can be
seen that this is not the case for the evaluation results from Table 3.

Table 4. The algorithm proposed in this paper compares the objective
evaluation metrics of Figure 7.

Original [6] Histogram Equalization [28]

(a) 28.3243 14.6347 20.2835
(e) 19.5247 11.7686 16.6035
(i) 26.7615 18.7928 17.6118
(m) 36.0446 12.9137 11.9877

Upon examining the data presented in Tables 2 and 3, it becomes evident that the
utilization of peak signal-to-noise ratio, mean gradient, information entropy, and contrast
enhancement assessment based on visible edges, as outlined in the work of reference [13],
all fall short in precisely evaluating the efficacy of image dehazing.

From Table 4, it can be discerned that the evaluation of image dehazing effects gener-
ated by the algorithm proposed in this study aligns with the outcomes derived from our
human visual perception. This congruence substantially substantiates the precision of the
algorithm presented in this paper.

As illustrated in Figure 6, seven distinct regions imbued with haze have been demar-
cated utilizing rectangular boxes of varying colors and dimensions, each measuring 15 by
15 units. Subsequently, we proceed to appraise these eight delineated regions employing
the algorithm introduced within this paper.

The coordinates of the centers of the red, orange, yellow, green, blue, white, black, and
purple boxes are (106,15), (212,104), (183,182), (167,258), (487,13), (480,51), (606,279),
and (232,49), respectively.

Table 5. Pixels with notable dehazing efficacy in Figure 6 along with their
corresponding scores.

(106,15) (212,104) (183,182) (167,258)
5.7603 9.1209 6.6716 10.3665
(487,13) (460,51) (636,279) (232,49)
7.4423 8.9771 9.9261 8.2583

From Table 5, it is evident that for the eight subregions with subpar dehazing effects
identified through visual inspection, the algorithm proposed in this study assigns signif-
icantly lower scores to each individual subregion as compared to the score attributed to
the entire image. This disparity underscores the algorithm’s capability to discern regions
where the dehazing effect is notably inferior to the average effect across the entire image.
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Figure 6. The evaluation scores for the above eight 15*15 regions are
shown in table 5.

This observation further underscores the utility of the proposed evaluation algorithm not
only for assessing entire images but also for precise evaluation at the level of individual
pixels.

5. Conclusion. In contrastive experiments, the proposed dehazed image evaluation method-
ology is compared against three commonly employed image assessment metrics: Peak
Signal-to-Noise Ratio (PSNR), Mean Gradient, and Information Entropy, alongside an
algorithm designed specifically for evaluating dehazing effects. Experimental findings un-
derscore that the dehazed image evaluation approach put forth in this study not only
offers comprehensive image assessment capabilities but also exhibits precision in evaluat-
ing specific regions. The outcomes of this evaluation are characterized by objectivity and
fairness, and they notably align with subjective human visual judgments. Moreover, the
proposed methodology proves versatile in its capacity to assess a diverse array of dehazing
algorithms.
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