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Abstract. 3D laser scanning technology can be used to obtain complete information
about large buildings by means of point clouds. In addition, there is no need to con-
tact the measured object during the 3D laser scanning measurement process, so it is
possible to obtain building information away from dangerous objects and complex envi-
ronments. Traditional inspection methods have limitations in terms of efficiency and
accuracy, which make it difficult to meet today’s needs for inspecting the quality of build-
ing walls. Therefore, this work explores the potential of 3D laser scanning technology in
complex building measurement modelling through point cloud data and inverse modelling
techniques. Firstly, the point cloud slices of the point cloud data acquired by 3D laser
scanning are extracted by the RANSAC algorithm. However, the RANSAC algorithm
cannot fully identify the noisy points immediately adjacent to the building façade and the
computation is time-consuming. Therefore, the Hierarchical Particle Swarm Optimisa-
tion (HPSO) algorithm in Intelligent Computing is combined to improve the efficiency
and accuracy when extracting point cloud slices. Secondly, a method that can reduce the
fitting error of point cloud density to point cloud data is proposed in order to compensate
for the shortcomings of 3D laser scanning techniques. Finally, the proposed modelling
method is compared with the traditional method of measuring evenness based on ruler,
plug ruler and total station. The results show that the proposed modelling method has
the characteristics of minimum error and stable error value, and the average value of
deviation is only 0.0295 mm, which is highly practical.
Keywords: 3D laser scanning technology; point cloud data; PSO; data fitting; evenness
measurement
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1. Introduction. Structural inspection modelling of a building usually refers to the col-
lection of data on some of the components and materials of the structure at a specific
time, and the use and safety performance of the structure is determined by the corre-
sponding specifications [1,2,3]. Common types of building inspection include verticality
inspection of building walls, inclination inspection of buildings, deformation inspection of
beams and columns, etc. On this basis, there are also more complex inspection categories
such as structural health inspection to judge the structural stress condition and internal
damage. From the characteristics of structural inspection, it can be seen that the inspec-
tion efficiency in the inspection process often depends on the speed of obtaining building
information, the accuracy of obtaining building information and the convenience of ma-
nipulation [4,5,6]. Therefore the research direction of structural inspection is developing
along the direction of speed, convenience and accuracy.

Building wall evenness is used to describe the degree of unevenness of the wall surface
and the overall thinness and thickness of the wall, which is one of the important standards
for the acceptance of the quality of building projects [7,8]. Currently, the measurement
method of wall evenness mainly relies on simple methods such as ruler and plug ruler,
and this detection method will also bring the problems of poor detection accuracy, slow
detection speed and low efficiency due to the randomness of selecting detection points [9,
10]. It is also necessary to build scaffolding when inspecting high-rise buildings, which
creates a safety hazard for the personal safety of the staff. In the social background of the
rapid development of digitalisation, the traditional evenness measurement method is not
enough to meet the development needs of wall inspection. Scholars at home and abroad
have done research on the application of three-dimensional laser scanning technology in
the deformation detection of the measured object, expanding the application field of three-
dimensional laser scanning technology, and this mode of three-dimensional laser combined
with deformation detection has been widely used [11, 12].

Terrestrial 3D laser scanning inspection method is a new type of building structure
inspection method that has gradually emerged in recent years, which is mainly used by
terrestrial 3D laser scanner, together with tripod, target ball, target paper, computer and
other ancillary accessories. The basic principle is to calculate the time difference between
the emitted and received rays and the emission angle to obtain the spatial coordinates
of the measurement point, and with the emission of a large number of lasers, the global
coordinate information of the building can be obtained. After obtaining all the point
cloud data, the required building information can be obtained through the processing of
internal data [13].

At present, terrestrial 3D laser scanning technology in the field of tilt and verticality
detection has been increasing, due to the terrestrial 3D laser scanning technology through
the point cloud data can obtain a wealth of data information, and the wall facade data
acquisition is very convenient, greatly reducing the wall verticality and building tilt detec-
tion difficulty. Ground-based 3D laser scanning also has an inherent advantage for reverse
modelling of buildings because of its global nature. By using terrestrial 3D laser scanning
to obtain the global information of the building for reverse modelling, the structural in-
spection of the building can be carried out efficiently, conveniently and non-destructively
due to its non-contact characteristics [14].

However, due to the existence of systematic errors such as point cloud density and point
cloud uncertainty in the measurement process, how to reduce the point cloud data errors
has become one of the main research directions in this field, which is also the purpose and
focus of this work. Based on the above advantages, exploring its application in the field
of building inspection has a very broad practical significance and research prospects.
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1.1. Related Work. 3D laser scanning technology is a new application in the field of
measurement. The research of 3D laser scanning technology progressed rapidly in the
1990s, and the results of this technology are now widely used in many industries [15,16].
By the 1990s, the point cloud data acquired by 3D laser scanners have been qualitatively
improved in terms of accuracy and efficiency, as well as in terms of point cloud data
conversion and processing.

Three-dimensional laser scanning technology is developing rapidly, mapping technology
is improving, and technological progress provides technical support for the efficient use of
building elevation point clouds to produce building elevation drawings [17]. The external
environment, the accuracy of the instrument itself, etc. will affect the accurate acquisition
of the target object data by the 3D laser scanner, making the point cloud acquired by
scanning noisy, making it difficult to use the subsequent data, and it is necessary to denoise
the acquired data before use. In recent years, scholars at home and abroad have proposed
some point cloud denoising methods, Xu et al. [18] proposed to segment the building
roof point cloud data through the RANSAC algorithm, and increase the improvement
of the seed point algorithm, which in turn improves the confidence of the point cloud
surface slice segmentation. Meanwhile, the Kd-Tree and R-radius densities are used to
optimize the segmented facets, and the point cloud segmentation of building roof facets
is effective. Trevor et al. [19] proposed RANSAC combined with the Euclidean clustering
algorithm in point cloud segmentation, which improves the accuracy of segmenting point
cloud information of the building façade. Burt et al. [20] uses automatic fine segmentation
algorithm to process the initial building facade point cloud data, which can accurately
segment the building facade point cloud data. In the effect of building facade processing,
this algorithm has advantages over RANSAC algorithm. Ma et al. [21] extracted the face
slices of the scanned building façade point cloud by the RANSAC algorithm, and added
the R radius density algorithm, which further removes the The introduction of R-radius
density improves the accuracy of extracted faces, but it cannot completely identify the
noise points immediately adjacent to the building façade and the computation is time-
consuming.

Wall evenness inspection is a key issue in building quality assessment. The traditional
instrument-based wall evenness measurement methods, such as leaning rule, plugging rule,
total station, etc., have the problems of complicated operation, accuracy dependent on
surveyors, small coverage, no quantitative analysis, lack of digital management, difficult
to measure at high places, many safety hazards, no real-time monitoring, and high cost
of human resources. On the whole, these traditional measurement methods are limited
in efficiency and application, and it is difficult to meet the needs of modern intelligent
quality assessment of buildings. The current method is mainly based on image processing
and machine learning technology, through the analysis of wall image features to achieve
wall defect identification and quality rating, but there are problems such as poor detection
stability and weak adaptability to complex environments.

Based on 3D laser scanning technology, Sun et al. [22] explored the influence of math-
ematical model on building evenness detection, fitted the point cloud data in Geomagic-
qualify software, compared the fitted plane with the point cloud, and analysed the even-
ness of the wall surface. By adding the least square fitting and Huber’s iteration method
to the wall point cloud data, the best fitting plane can be obtained, which can effectively
resist the influence of gross error and improve the accuracy of evenness measurement.

1.2. Motivation and contribution. As a typical optimisation algorithm in intelligent
computing, Particle Swarm Algorithm (PSO) [23] has a large application in RANSAC
algorithm improvement. PSO can find the global optimal model through parallel fast
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iteration, effectively identify and exclude outliers, and enable RANSAC to obtain more
accurate in-group points [24, 25]. This is more robust and reliable than the random sam-
pling of RANSAC. Meanwhile, PSO is easy to implement parallel computing efficiently
on hardware such as GPUs, which can handle large-scale data and significantly reduce
the model fitting time of RANSAC. Optimising the search strategy also accelerates the
convergence and reduces the time complexity, and the parallel computing performance
and global search capability of PSO can significantly compensate for the shortcomings
of RANSAC, which is an important means to improve RANSAC. Overall, PSO can si-
multaneously optimise the accuracy and time performance of RANSAC by improving the
fitting efficiency and the ability to identify outliers.

The main innovations and contributions of this work include:
(1) In order to remove the noise immediately adjacent to the building more accurately

and quickly, this work proposes a method for denoising the building façade based on
the RANSAC algorithm combined with the Hierarchical Particle Swarm Optimisation
(HPSO) algorithm [26] in intelligent computing, in order to improve the efficiency of the
building denoising and the accuracy of the extracted building façade.

(2) A method that reduces the point cloud density error in the fitting of point cloud data
is proposed in order to compensate for the shortcomings of 3D laser scanning techniques.
The core idea of the method is the process of discretising the overall point cloud data
in chunks and combining them into point cloud area features. The least squares method
with singular matrix decomposition was used to fit the wall elevation and generate the
point cloud area features.

2. Inverse modelling based on terrestrial 3D laser scanning technology.

2.1. Principles of 3D laser scanning technology. A variety of high and new tech-
nologies are integrated in the 3D laser scanning system, which enriches the comprehensive
performance of the 3D laser scanner. The core of the terrestrial 3D laser scanning sys-
tem consists of laser ranging system, scanning system and integrated CCD camera. The
auxiliary parts include tripod, prism, target, handheld laser rangefinder, power supply,
storage, and computer data processing system.

Three-dimensional laser scanning technology is figuratively known as high-definition
measurement technology, the basic structural components include laser light source, scan-
ner and so on. Obtaining the point cloud information on the surface of the object is re-
alised by using the emission and reception of the laser, which can measure the reflectivity
and the three-dimensional coordinate value of the measured point, and the laser scanning
system uses this laser ranging principle to store the point cloud data in the storage device.
The complete three-dimensional information of all kinds of entities and real scenes will
be collected to the computer equipment, and the data of the measured target will be
processed and analysed through the PC data processing software. The composition of the
terrestrial three-dimensional laser scanning system is shown in Figure 1.

The principle of laser distance measurement makes use of the characteristics of the laser,
calculates the time difference between the laser emission and reception, and combines the
speed of the laser to calculate the distance between the laser emission point and the laser
reflection point S. Through the goniophotometric system, the horizontal and vertical
angles between the laser emission point and the target object can be calculated. By
establishing the relationship between the distance and angle between the object to be
measured and the laser emission point, the relative position of the object to be measured
and the laser emission point P (x, y, z) is determined. The laser emission point is taken
as the coordinate origin of the 3D position P (x, y, z) of the DUT; the origin is defined
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Figure 1. Components of a terrestrial 3D laser scanning system

as the Z-axis vertically and positively upward; in the scanning transverse plane of the
instrument, the line perpendicular to the Z-axis from the origin is defined as the X-axis.
In the transverse plane of the instrument, the ray from the origin perpendicular to the
X-axis and Z-axis at the same time is defined as the Y -axis. The rays point in the
direction of the object to be measured as the positive direction of the X-axis and Y -axis.
As shown in Figure 2, the origin, X-axis, Y -axis, and Z-axis form a coordinate system,
the coordinate system O −XY Z conforms to the right-hand rule.

X

Z
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P(x, y, z)

S
θ

α

Figure 2. Principles of 3D Coordinate Calculation

The 3D laser scanning system point cloud coordinates are calculated using the formula: x = S sin θ sinα
y = S sin θ cosα
z = S cos θ

(1)
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The laser beam passes through the same distance once round trip to generate phase
difference, the phase method laser distance measurement makes use of this characteristic
of the laser beam, by adjusting the amplitude of the continuous laser beam, the phase
change generated by the laser beam round trip is calculated, so as to calculate the required
time and distance travelled. Ultimately, based on the angle of the scan, combined with
the distance between the scanner and the object being measured, the three-dimensional
coordinates of the object being measured are calculated.

Phase type laser ranging adjustment container in the middle of the laser round trip,
the laser speed is expressed by c, the distance between the laser emission point and the
reflection point is expressed by x, the laser emission to receive a round trip time consuming
is expressed by t.

t =
2x

c
(2)

The frequency of oscillation of a modulating wave is denoted by f and the phase
difference between transmission and reception is denoted by φ. The phase difference is
given by:

φ = 2πft = 2πN +∆φ =
4πfx

c
(3)

where N denotes the number of complete lower waves of the cycle and ∆φ denotes the
residual phase of the wave that is not enough for one cycle.

We can obtain the distance x between the centre position of the scanning instrument
and the object to be measured.

x =
φc

4πf
=

c

2f

(2πN +∆φ)

2π
=

c

2f
(N +∆N) (4)

The phase ranging method is used in three-dimensional laser scanning, which is charac-
terised by high ranging accuracy, but the measured distance is relatively short. Generally,
within 200 m its measurement accuracy can be up to the millimetre level, so the phase
type rangefinder is mainly used in the short and medium distance building measurement.

2.2. Terrestrial three-dimensional laser scanning equipment. Terrestrial 3D laser
scanning technology in the field of measurement for an emerging technology, in the space
three-dimensional acquisition of data has many advantages, breaking through the limi-
tations of the traditional three-dimensional data acquisition and processing of measuring
objects. This work uses a Leica ScanStation P50 remote 3D terrestrial laser scanner, as
shown in Figure 3. By scanning hard-to-reach locations from a safe position in the field,
field time is reduced with fewer setups and productivity is maximised.

The 3D laser scanner acquires the position information of the target and stores it in the
form of point cloud coordinates, so the single-point-to-single-point absolute and relative
accuracy determines the overall accuracy of the point cloud data. Total stations and 3D
laser scanners have the same principles of distance and angle measurement. However, the
main errors within the 3D laser scanner system are ranging and angular measurement
errors. The nominal error of the measuring instrument is the main factor affecting the
ranging and angular errors, and these two errors directly determine the performance of the
3D laser scanner work. The influence of the instrument on the accuracy of the measured
point cloud is shown below:

m2
x = f 2

sx ×m2
s + f 2

αx ×m2
α + f 2

βx ×m2
β (5)

m2
y = f 2

sy ×m2
s + f 2

αy ×m2
α + f 2

βy ×m2
β (6)

m2
z = f 2

sz ×m2
s + f 2

αz ×m2
α + f 2

βz ×m2
β (7)
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Figure 3. ScanStation P50 remote 3D terrestrial laser scanner
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mp =
√

m2
x +m2

y +m2
z =

√
m2

s +
s2 × cos2β

ρ2
×m2

α +
s2

ρ2
×m2

β (9)

Where ms is the distance accuracy of the 3D scanner, ma is the horizontal angular
goniometric accuracy of the 3D laser scanner, mp is the vertical angular goniometric
accuracy of the 3D laser scanner, s is the slant distance from the 3D laser scanner to the
measured point, and ρ is the adjustment parameter.
In Equation (9) can be seen, the angular and ranging accuracy to determine, analyse

the scanner single-point position accuracy shows that: in close observation, its modelled
point position positioning accuracy is less than 3mm. three-dimensional laser scanning
point accuracy, not only depends on the ranging accuracy is also dependent on the angu-
lar accuracy. Angular accuracy on the one hand, we must consider the angle formed by
the instrument and the target surface to be measured, the size of the angle will affect the
scanning instrument laser reflection signal strength, which in turn affects the instrument
measurement error. On the other hand, the angle between the rear view direction and the
measured object will also affect the measurement accuracy of the scanning instrument.
Experiments show that when the angle between the rear view direction and the mea-
sured object is small, the single-point position of the instrument is more accurate, on the
contrary, when the angle is large, the single-point position error is larger. In summary,
when using 3D laser for physical scanning, we need to choose the appropriate observation
distance and observation angle to ensure the accuracy of the measurement point.

3. RANSAC and HPSO based point cloud facet acquisition.

3.1. RANSAC algorithm. In order to remove the noise immediately adjacent to the
building more accurately and quickly, this work proposes a method based on the RANSAC
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algorithm combined with the Hierarchical Particle Swarm Optimisation (HPSO) algo-
rithm in Energy Computing for fitting the building façade data, in order to improve the
efficiency and accuracy of extracting the building façade.

RANSAC (Random Sampling Consistency) algorithm is an iterative algorithm widely
used for model fitting and anti-noise processing. The random sampling method of RANSAC
can quickly approximate the optimal model parameters in the sample set containing a large
amount of noise, and can effectively resist the interference of the mismatched points, which
is suitable for robust fitting and model estimation. According to the idea of RANSAC, as
the number of iterations of the algorithm increases, the accuracy of the results obtained
is greater. There is a relationship between the probability of ensuring that at least one
set of the extracted data is correct.

P = 1− [1− (1− ε)m]M (10)

Where ε is the probability of error, m is the number of randomly selected data at
one time, M is the number of times of cyclic extraction, and P is the confidence level
(generally taking the value of 0.9 to 0.99).

Taking the logarithm of Equation (10) gives the number of times required for the loop:

M =
log(1− P )

log(1− (1− ε)m)
(11)

The scanned building elevation point cloud data need to be processed to meet the
project use, generally in terms of the building elevation, in the three-dimensional point
cloud in the same plane to meet the following relationship:

ax+ by + cz = d (12)

where (x, y, z) are coordinates in 3D space, (a, b, c) are unit plane vectors (the relationship
between the three vectors satisfies a2 + b2 + c2 = 1), and d is the distance from the origin
of the 3D coordinates to the plane.

The parameters of plane equations of different point cloud facets are determined to
optimise the original building facade point cloud data. The point cloud acquired by scan-
ning has corresponding 3D coordinates, and the set of m point coordinates is represented
by {xi, yi, zi}. The plane equation expression is shown as follow:

[xi, yi, zi,−1]F = 0 (13)

F = [a, b, c, d]T (14)

The Euclidean distance from the point to the plane S is shown as follow:

di = | axi + byi + czi − d | (15)

Determine the threshold distance δ0, if the distance di is less than δ0, keep the point
as a local point, and vice versa delete the point. Iterate through all the points, you can
calculate the number of in-bound points, repeat M times, the plane with the most in-
bound points is recorded as S∗, that is, the desired. Finally the points within the S∗ plane
field (δ0) are exported and the exported points are used as extracted building facade point
cloud data. The schematic diagram of RANSAC point cloud slice extraction is shown in
Figure 4.



Building Laser Modelling on Intelligently 3D Point Cloud 1187

Figure 4. Point cloud facet extraction

3.2. HPSO algorithm. In order to remove the noise immediately adjacent to the build-
ing more accurately and quickly, the HPSO algorithm is introduced. HPSO is an improved
particle swarm optimization algorithm. Its main principle is to divide all particles into
multiple levels, and the number of particles in each level follows the pyramid structure,
and the number of particles increases gradually from the upper level to the lower level.

The upper particles maintain the overall search direction, and the lower particles con-
verge quickly in a local range. The upper and lower particles exchange information regu-
larly. The upper particles are updated by using the global optimal solution, and the lower
particles are updated by using the optimal solution L of this layer, thus realizing the
division of labor and cooperation. Through hierarchical division, the interactive range
of information is controlled, which not only ensures the global search ability, but also
realizes the rapid positioning of the optimal solution. HPSO algorithm makes full use of
the idea of multi-particle collaborative optimization and hierarchical control, which makes
the search process of complex problems more efficient.

The particle velocity update method is shown below:

vk+1
id = ωvkid + c1r1(p

k
id − xk

id) + c2r2(p
k
gd − xk

id) (16)

xk+1
id = xk

id + rvk+1
id (17)

where c1, c2 are learning factors, ω is the velocity weight of the previous time period,
r1 and r2 are step parameters.

Firstly, the particles are divided into chunks by space, and the optimal value is solved
separately for the particles in each chunk of space, while the position is continuously
adjusted according to the global optimal value. The principle of hierarchical particle
swarm is described as shown in Figure 5. According to the initial position of the particles,
the 160 particles in the particle swarm are divided into 10 groups, each group contains
16 particles. The PSO algorithm is executed in each of the 10 subgroups to update the
velocity and position, and each update is compared with the global optimal solution to
adjust the direction of the next particle update.

Firstly, the M particle swarms are divided into L parts according to equal amount to
establish L subpopulations, Equation (16) and Equation (17) are used to iterate in L
subpopulations respectively, as shown in Figure 6. Then the adaptive maxima pig of the
i-th subpopulation is compared with the global maxima pg, so as to guide the motion
direction of the subpopulation particles.
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Particle Spatial division boundary

Figure 5. Spatial segmentation of HPSOs

M particles

(M=L×N)

Population 1 Population 2 Population L
Population 

L-1

Figure 6. Structure of HPSOs

The subpopulation particles will combine the subpopulation individuals, pig and pg, to
correct the particle positions. The hierarchical particle swarm velocity update will be
improved on the basis of Equation (16) [26].

vk+1
id = ωvkid + c1r1(p

k
id − xk

id) + c2r2(p
k
ig − xk

id) + c3r3(p
k
g − xk

id) (18)

The c1, c2 and c3 values are set to 2 by default in this work.

4. Building evenness detection based on point cloud area features. This work
proposes a method that can reduce the point cloud density error on the fitting of point
cloud data in order to compensate for the shortcomings of 3D laser scanning techniques.
The core idea of the method is the process of discretising the overall point cloud data
in chunks and combining them into point cloud area features. The least squares method
with singular matrix decomposition was used to fit the wall elevation and generate the
point cloud area features [28].
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Figure 7. Characterisation of point cloud areas

Through the point cloud processing software, the endpoint coordinate dataA1(X1, Y1, Z1),
A2(X2, Y2, Z2), A3(X3, Y3, Z3), A4(X4, Y4, Z4) of this point cloud are obtained. By deter-
mining the direction of the plane in which the overall façade is located, the coordinate
values of the skeleton points in the plane in which the façade is located are substituted
respectively, i.e., the third coordinate value is solved by bringing the two coordinate values
into the basic unit plane equation [29]. Assuming that the plane is in the X − Z plane,
the point cloud density fluctuates roughly in the Y direction, and the X coordinate values
of the corners of the façade are X1, X2, X3 and X4, as shown in Figure 7.
After obtaining the boundary coordinates, the least squares method can be used to

solve for the coordinates of the internal skeleton points, usually the coordinates where
the plane is located are derived directly by calculation, and another coordinate value is
solved by substituting the obtained coordinates into the equation [30]. When i ̸= 1, the
variation of the X coordinate in the column direction is shown below:(

X1 +
(X2 −X1)

n
× (2j − 1)

)
−
(
X3 +

(X4 −X3)

n
× (2j − 1)

)
/n× (2i− 1) (19)

Similarly, for Z-direction coordinates, their variation in the column direction when i ̸= 1,
is shown below:(

Z1 +
(Z2 − Z1)

n
× (2j − 1)

)
−
(
Z3 +

(Z4 − Z3)

n
× (2j − 1)

)
/n× (2i− 1) (20)
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After obtaining the X and Z coordinates of the point cloud area segmentation points,
they are substituted into the basic unit surface equations to obtain the Y coordinates of
each basic unit surface, and at the same time, the area segmentation point coordinates
are also obtained. After obtaining the area segmentation points, the complete point
cloud area characteristics can be obtained by connecting them. By observing the point
cloud features, the deformation of the structural façade and the overall change trend can
be completely reflected. In the case of wall façade evenness inspection, the point cloud
region contained in the façade needs to be fitted numerically.

Due to the small number of segmentation points in the point cloud region, it is easy
to use the singular value decomposition method for the operation when fitting the plane
through the segmentation points. The point cloud matrix is decomposed as follows:

A = U × S × V T (21)

where A is the point cloud coordinate matrix, U and V are both correlation unitary
matrices, and S is the singular value matrix.

After obtaining the plane equations of the elevations in the point cloud area, the cal-
culation of the evenness can be carried out. The elevation evenness is the offset between
the elevation to be measured and the elevation with an angle of 90◦ to the datum in
that direction. According to the angle trigonometric relationship, it can be seen that
the relationship of the angle is usually calculated by the value of the cosine of the angle.
After obtaining the plane equations, the normal vector is n = (A,B,C) and the absolute
horizontal plane normal phase is i = (0, 0, 1), then the angle to be measured is calculated
as shown as follows:

cos θ = cos < n, i >=
n · n0

|n||n0|
(22)

Then the evenness offset is:

i = H × sin(90◦ − θ) (23)

where H is the height of the elevation to be measured and i is the evenness.

5. Experimental results and analyses.

5.1. Data acquisition. A ScanStation P50 remote 3D terrestrial laser scanner was used
to evaluate the evenness measurements on the east elevation of a building as the measured
object. Four measurement points were set up at all four corner points out of the building.
The length of the measured object is 81.36 m and the width is 28.13 m. It is necessary to
add two measurement stations in the length direction of the measured object to ensure
the accuracy of the data in the middle part of the building and the completeness of the
acquired data. The measurement points have a wide field of view, and the data between
neighbouring measurement points are correlated with each other to form a closed loop.

The acquired point cloud was imported into Scan-Master software [31] for point cloud
data stitching processing, and the results are shown in Figure 8. Due to the large volume
of the measured object, different stations need to be set up for 3D laser scanning. The co-
ordinate system of different stations is different, and it is necessary to unify the coordinate
system of cloud data of different stations. All the point clouds in the basic unit surface
are fitted by the least squares method to obtain the basic unit surface equation. After
completing the fitting of the basic unit surface equation, the calculation of the coordinates
of the pleasing split point can be started.
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Figure 8. Point cloud of building elevations

5.2. Optimisation performance of the HPSO algorithm. The values of the number
of subpopulations L and particle velocity weights ω of HPSO affect the convergence speed
and global optimisation search performance of the PSO algorithm. In order to verify the
optimisation performance of L and ω for point cloud alignment, L and ω are differentially
selected to verify the performance of the algorithms proposed in this paper in point cloud
data fitting, which is shown in Table 1 and Table 2.

Table 1. Fitting performance of point cloud data with different velocity weights

Speed weight ω Rms error Time/s
0.8 9.211 x 10-5 0.912
0.9 7.142 x 10-5 0.914
1.0 1.802 x 10-5 0.915
1.1 4.873 x 10-6 0.915
1.2 1.091 x 10-5 0.915

From Table 1, it can be seen that the weight increases, the root mean square error of
point cloud data fitting shows a trend of decreasing first and then increasing, while the
difference in the alignment time is not large; when the weight is 1.1, the feature points
of the source point cloud obtained from HPSO search can obtain the optimal matching
accuracy after fitting by the RANSAC algorithm.

From Table 2, it can be seen that the root mean square error of the fitted model
decreases as the number of subpopulations increases. It can be seen that the higher
the number of subpopulations, the more effective the feature point extraction and the
higher accuracy of point cloud data fitting. When the number of subpopulations is 6, the
root mean square error tends to be stable, with a value of 4.779 × 10−6 . However, as
increases, the alignment time also increases gradually, due to the fact that the number of
subpopulations is too large causing the extraction of the hierarchical PSO feature points
to be more time-consuming. With little difference in time, the number of subgroups is
chosen to be 6 which is more suitable for fitting the point cloud data by this method.
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Table 2. Performance of point cloud data fitting for number of subgroups

Number of
subgroups L

Rms error Time/s

2 3.717 x 10-5 0.9252
4 7.901 x 10-6 0.9393
6 4.779 x 10-6 0.9416
8 4.762 x 10-6 1.0007
10 4.754 x 10-6 1.0216

5.3. Comparison of point cloud data fitting performance. In order to further verify
the performance of HPSO+RANSAC in 3D point cloud fitting, the standard RANSAC
algorithm and the HPSO+RANSAC algorithm are simulated separately using commonly
used Stanford point cloud data samples, and the simulation results are shown in Table 3.

Table 3. Error of fit for different samples

Arithmetic
Sample point

cloud
Rms error

Standard RANSAC

Dragon 5.379 x 10-6
Han 5.135 x 10-6
Blade 5.058 x 10-6

Happy Buddha 5.099 x 10-6
Horse 5.182 x 10-6
Bunny 5.059 x 10-6

HPSO+RANSAC

Dragon 5.048 x 10-6
Hand 4.626 x 10-6
Blade 3.889 x 10-6

Happy Buddha 4.279 x 10-6
Horse 4.409 x 10-6
Bunny 4.174 x 10-6

It can be seen that compared with the traditional RANSAC algorithm, the HPSO-
optimised RANSAC algorithm has a slightly higher fitting accuracy for the six different
samples of Stanford’s commonly used point cloud databases, but the difference between
the two is not significant. The HPSO+RANSAC algorithm has the best alignment per-
formance for the Blade sample, with a RMS error of 3.889× 10−6, and the worst for the
Dragon sample, with a RMS error of 5.048Ö10. is the worst, with a root mean square
error of 5.048× 10−6.
In standard RANSAC, the alignment time is mainly consumed during the iteration

process, whereas in the HPSO+RANSAC algorithm, the alignment time is consumed
mainly by 2 aspects: feature point extraction and point cloud fitting of the particle swarm.
Although the latter increases the feature extraction time, the feature point extraction
reduces the number of point clouds in the RANSAC iterations and saves the alignment
time.

5.4. Evenness analysis. Each of the 30 points on the wall were examined using four
evenness detection methods, including lean-to, total station, point cloud, and point cloud
area features.
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Figure 9. Comparison of bias of different detection methods

The deviation values of the four detection methods are measured for each of the 30
points, and a scatter plot with smoothed lines and data markers is formed with each
detection method as a group. As shown in Figure 9, it can be seen that the deviation size
of each point position measured by total station and point cloud is similar. Compared
with the above two methods, the leaning ruler method has a large reading error and
measurement point location error, which can be reduced by averaging the same point
over several measurements. In addition, compared with the total station and point cloud,
the deviation value of the point cloud area feature is smaller and without big fluctuation,
and the average value of the deviation is only 0.0295 mm. Therefore, the building evenness
inspection based on the point cloud area feature can be used in the construction inspection
of the building project, so as to realize the reliable modelling and to ensure the quality of
the construction.

6. Conclusion. In this work, the HPSO algorithm in intelligent computing is used for
building façade point cloud data fitting to improve the accuracy of point cloud facet ex-
traction. Firstly, a combination of HPSO algorithm and RANSAC is used to improve
the efficiency and accuracy of extracting building facades. Secondly, the process of dis-
cretising the overall point cloud data in chunks and combining them into point cloud area
features. The least squares method with singular matrix decomposition was used to fit the
wall façade and generate the point cloud area features. The experimental results show
that the HPSO+RANSAC algorithm has high accuracy and efficiency in fitting point
cloud data. In addition, the building evenness detection based on the point cloud area
features has a small deviation, which enables reliable modelling and ensures construction
quality. However, the terrestrial 3D laser scanning technology still has much room for
improvement in high-precision measurement and modelling, and future work will try to
combine BIM software and 3D laser scanning technology, thus realising the high-precision
measurement of entities in building modelling.
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