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ABSTRACT. Identifying and quantifying node or graph similarity of different graphs is
a challenging important task for practical use. Current methods of node comparison are
only able to extract very limited local information or are computationally very demand-
ing. In this paper, we present an efficient and intuitive measure for node comparison in
different networks based on the Personalized Random Walks with Restart (RWR) pro-
cess. We find that it can effectively and efficiently quantify topological differences of a
node in different networks and is sensitive to changes of mesoscopic structure, such as
merge/split of clusters or remove of critical links that connect or disconnect connected
components. We then extend this method to measure graph stmilarity and show its su-
periority over the state-of-the-art method.

Keywords: Node similarity, Graph similarity, Random walks.

1. Introduction. Using a network representation is a good way to model the relation-
ship among a group of entities. In a network, nodes denote entities, while edges represent
some relationship between each pair of entities. In many applications, there are multiple
methods for defining edges, which can be collectively analyzed to gain a more comprehen-
sive understanding of the data. These data and corresponding networks have been proven
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to be useful in many situations, such as comparing genetics and protein protein interac-
tions in cells, understanding potential relationships and community structures between
social networks, and analyzing time networks [1]. Considering the inherent diversity of
cross domain network data and the latest theoretical developments in processing these
types of data, it is necessary to develop appropriate tools that can utilize information
from all network layers.

A problem that comes up often is the following: how much do nodes of different net-
works differ in terms of topological structure and how to calculate the similarity value
between two networks? Measure this similarity is an important task making sense: study
the relationship of neurons in chemical and electric networks; exceptional changes in the
network traffic may result in a computer attack. In addition, network similarity can pro-
vide insight into behavioral patterns: is Facebook’s message graph similar to Facebook’s
wall to wall graph? Tracking the changes of networks over time, discovering anomalies,
and detecting events is a highly focused research direction [2].

There are two main kinds of node similarity in a single network: local structure based
and global structure based. The similarity measurement based on local structure uses
local structure to determine the similarity score between two nodes. The similarity score
calculated through this type of measurement is usually proportional to the number of
mutual neighbors between two target nodes, and can be written as S;; = (|N ()N (j)])/C,
where N (7) is the set of neighbors of node 4, |-| returns the number of elements of a set, and
C'is a normalizing term whose value is determined by the specified similarity measure. For
example, by Jaccard similarity the value of C'is | N (¢)UN (j)|, by cosine similarity the value
of C'is [N(4)||N(j)|, by topology overlapping the value of C' is min(|N(7)|, [N (j)]). See
Ref. [3] for detail. The measurement based on global structure considers the structure of
the entire network to determine the similarity score between node pairs. Katz similarity
[4] is based on the total number of paths between two nodes, where longer paths are
assigned lower weights.

Another way to look at the similarity of nodes in a network is to measure the approxi-
mation between nodes. PageRank, Personalized Random Walks with Restarts 0, SimRank
0, and Belief Propagation 0 are some of the most successful techniques. The SimRank al-
gorithm defines the similarity score between two nodes in a recursive manner: two objects
are similar if they are referenced by similar objects. These schemes have been success-
fully adopted in a lot of tasks including ranking, classification, information retrieval [18],
malware and fraud detection [19], and recommendation systems [20]. However, this kind
of approximation, which is a proxy to measure the tendency of link formation, is usually
asymmetric, not normalized and inconvenient for comparison. There are also some other
ideas to consider the similarity problem [21-23].

To the best of our knowledge, there is still not direct approach to measure the similarity
or proximity of nodes in different networks. The main difficulty lies in the lack of explicit
connections among networks, which disables most of the similarity measures used in a
single network. A more or less similar problem is anomalous node detection in dynamic
networks. The major task is to detect events in time when nodes deviate from their normal
behavior, or to identify the particular parts of the network that are responsible for the
change. The main idea behind these methods is extracting and comparing various features
of the local structure of a node, such as in-degree, out-degree, number of neighbors, or
eigenvector, between two layers. According to different definitions of the local structure,
some methods compare the direct neighbors of the node 0, and others compare the local
cluster 0. Unfortunately, this problem is difficult to be transformed to ours because most
methods only concern which parts of a network induce anomalies and do not give similarity
scores.
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Another problem similar to ours is the measure of graph similarity with known node
correspondence. This kind of problems mainly concern how much two graphs or networks
differ in terms of connectivity and some can be considered measuring nodal similarity
first and then averaging them to get graph similarity score. One of the most remarkable
methods is DELTACON algorithm 0 which computes the pairwise node affinities in a
single network and treats the difference of nodal affinities of two networks as the graph
similarity. We compare our method with DELTACON and show results in Section 4.

In this paper, we focus on two main issues: How to measure the similarity of a node
among different networks? How to measure the graph similarity? Our main contributions
are:

(1) Node similarity measure algorithm: we propose a novel method for measuring crit-
ical structural differences of a node between two networks, and show that it is: (a) sen-
sitive to important topological structural changes; (b) intuitive, giving similarity scores
that agree with common sense and can be easily explained.

(2) Graph similarity measure algorithm: based on node similarity, we propose a graph
similarity measure and conduct experiments on extensive synthetic networks to show
that it achieves many good properties and overcomes some critical disadvantages of the
state-of-the-art method.

The rest of the paper is organized as follows. Section 2 explains our proposed method
in detail. Section 3 discusses the experimental result of our proposed method. Finally,
Section 4 concludes the whole paper.

2. Proposed Scheme.

2.1. Desired Properties. How can we evaluate the similarity in connectivity between
two nodes in various graphs, or more formally how can we tackle the following problem?
Given: (a) two graphs, G1(V; E1) and G»(V; Es) with the same node set V', and different

edge sets E) and Es, (b) the node correspondence, and (c) a node U( ) in G, and its

counterpart vz@) in Gs.

Find: a similarity score 0 < sz‘m(vgl), vZ@) < 1 between the two nodes. Similarity score
of value 0 means that two nodes have totally different local structures, while 1 means
identical local structures.

Then we want the similarity measure to obey the following properties:

Al. Identity property: sim(v; . ), 2 )) =1, when G; = Gs.

A2. Symmetric property: szm(vl(l) v@)) = szm(v( ) ol ))

A3. Null property: szm(v( ) 01(2)) = 0 when G, and G5 do not have any overlapped
edges.

P1. [Distance Awareness 1| The farther a change happens from a node, the less
impact it has on the node.

P2. [Distance Awareness 2] The farther we move a node from its original position,
the less similarity the node has to its initial state.

P3. [Cluster Awareness| Structural changes such as clusters split around should be

much more importance than changes maintaining the connectivity or affiliation to clusters.

2.2. Local Region Definition and Local Structural Feature Extraction. Measur-
ing the proximity or similarity between nodes in a graph becomes the base for various
data mining tasks. Among many methods computing nodal proximity, random walk with
restart (RWR) is very popular for its good intuition and ability to consider the global
network structure. RWR measures proximity between a given seed node s and the other
nodes. It assumes a random walker walking to its neighbors by the given rule. The walker
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first starts at a seed node s and then at each walk step either restarts at s with probability
¢ or moves to a neighboring node along an edge with probability 1 — c¢. The probability
of the next edge that the walker passes through is proportional to its weight. Finally, the
stationary probability of the walker being at all the nodes of a graph corresponds to the
RWR score and is denoted by a vector r. The ¢—th entry of r corresponds to RWR score
of the node i. The vector r satisfies the following equations:

r=(1-¢)(D'A)r+cq (1)

or more compact form:

I—(1-c)(AD )Jr = cq (2)
Where D is the diagonal matrix of nodal degrees and q is the starting vector in which
the index of the seed node is set to 1 and others to 0. In the rest of the work, we always
let ¢ = 0.15, following the convention of PageRank algorithm.

The reasons we choose RWR to measure nodal similarity are: (a) it satisfies all the
desired properties A1-A3 and P1-P3, (b) the RWR score, indicating the stationary proba-
bility distribution of a random walker’s position, is a naturally normalized feature, which
makes it very suitable to be a similarity measure and (c) unlike most methods consid-
ering only the 1- or 2-step neighbors as the local region, RWR takes advantage of the
whole structure information of a graph. It is convenient to assume that RWR defines a
“soft” local region and meanwhile gives features reflecting or summarizing the topological
structure that we are interested in.

2.3. Similarity Definition. After we have obtained the RWR score of a node in two
networks, the next step is to compute the similarity between features. Because the RWR
score is essentially a probability distribution, we use the Hellinger distance [14] which
quantifies the distance between two probability distributions in statistics to measure the
similarity between two nodes. For two discrete probability distributions P and @), their
Hellinger distance is defined as

V2
H(P.Q) =" | VP3| 3)

As can be seen, the distance of two identical probability distributions is zero and the
Hellinger distance H(P, () satisfies the desired property,

0<H(P,Q)<1 (4)

We then defined the similarity of two graphs as 1 — H(P,Q). It is notable that a
random walker restarts its trip at the seed node with probability ¢ in the original con-
figuration of RWR algorithm, which always makes the stationary probability, i.e. the
RWR score, of the seed node larger than c¢. As a result, two graphs without any over-
lapped edge may have Hellinger distance less than 1, namely, non-zero similarity score.
For example, if the stationary probability of two graphs without any overlapped edge are
S1 = 10.3,0.3,0.4,0,0] and Sy = [0.2,0,0,0.4,0.4] respectively and the first element of
S and S, are stationary probability of the shared seed node, we then find the Hellinger
distance H(S1,52) ~ 0.9. This means the similarity of the two not overlapped graphs is
about 0.1. To avoid this counterintuitive case, we normalize the RWR score vector r to
be R by the following equation:

r— [0, ..., "seeds -]

1— T'seed

R =

()

Formally, our algorithm is described as follows:
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Algorithm of RWR Node Similarity Computation

INPUT: two networks G1(V; E1), Go(V; Ey) and a target node v.
Calculate the RWR score vector of the node v in G; and Ga: 1 and 7.
Calculate the normalized RWR score vector Ry, R

OUTPUT: sim(vy,v2) =1 — H(P,Q) //Hellinger distance

Our method can be generalized to measuring similarity between graphs easily. For
example, we may use averaged nodal similarity as graph similarity. We will show in
next section that our graph similarity has many desired properties and produces more
reasonable and robust result than the state-of-the-art method.

3. Simulation and Results.

3.1. Node Similarity. In this section, we conduct several experiments on important
topologies (circles, paths, barbell and lollipops graphs) and synthetic benchmark networks
to find if the RWR node similarity satisfies properties P1 to P3. We compare our method
to four effective similarity or dissimilarity measures.

(1) Vertex/Edge Overlap (VEO) that is defined as follows:

VinVo| + By N By
Vil + [Va| + [ Ex | + | s
(2) Graph Edit Distance (GED) that is defined as follows:

(6)

Sim\/EO =2

simgpo = [Vi| + [Va| = 2[Vi N Va| + | Ex| + [ E2| — 2[Ey N By (7)
(3) Jaccard Similarity (JCD) that is defined as follows:
Vi N Va

simjcp =

8
TASA (®)

(4) HOAD (HOrizontal Anomaly Detection) [18]: This algorithm also uses the random-
walk-like method to extract global topological information for nodal similarity. Calcula-
tion flow is shown in Figure 1, where A and W are adjacent matrices of two graphs to be
compared, and M is identity Matrix. L is the Laplacian Matrix and matrix H’s column
is composed of the top k eigenvectors of L. The similarity is defined as

u; - v;

(9)

Because methods 1, 2 and 3 are based on local structures, to calculate the node simi-
larity, we compare the egonet (the neighbor) of target nodes between two network layers.

P1. Distance Awareness 1: “The farther a structural change happens from a node,
the less impact the change has on the node”. In the cycle graph (Figure 2(a)), we can
see that impacts of the edge-deletion on nodes’ similarity decrease with the distance from
the change increase.

P2. Distance Awareness 2: “The farther we move a node from its original position
in a graph, the less similarity the node has to its initial state”. In the path graph (Figure
3), we disconnect the node 0 first, and then link it with node 1, node 2, node 3 and
node 4 respectively. When the node 0 deviates farther from its original position, its nodal
similarity decreases monotonically from 0.74 to 0.5.

P3. Structure Awareness: “Important structural changes such as cluster split/merge
around the node should be penalized more than other changes maintaining the connec-
tivity or affiliation to clusters”. From the barbell graphs as shown in Figure 2(b), where
the graph in the first row is the original graph and the second and the third graph is
compared with the original graph respectively, we can see that the change of connectivity

simpoap = 1 — -—=—
[Fwi ([l v |l
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F1cURE 1. Calculation flow chart of the HOAD algorithm.

of a local region around a node has much more impacts on nodal similarity than a trivial
change.

To test the sensitivity of our method to non-trivial structure changes such as cluster
split, we use our method to find the split clusters in a dynamical network that evolves as
time goes by. We generate two network snapshots with a dynamical community network
generator 0. The first snapshot contains 1000 nodes constituting about 50 communities.
In the second snapshot, 5 (about 10%) of the communities in the first snapshot split into
two smaller clusters and meanwhile, links inside all communities are randomly rewired
in its own community for simulating internal activities of community members. We then
randomly select a seed node from each community in the first snapshot and measure its
nodal similarity score as the indicator of the community split (an anomaly event). In
other words, the lower the similarity score is, the more likely to split the community is.
We use ROC analysis, one of the most widely used evaluation approaches in anomaly
detection, which represents the trade-off between the detection rate and false alarm rate.
A good detection method would produce an ROC curve as close to the left-top corner
as possible, and thus the area under the ROC curve (AUC) in the range [0,1] is a good
evaluation metric. The higher the AUC value is, the better the algorithm performs.

The experimental results are shown in Figure 4, where the first graph is the original one,
node 1 is moved from its original position farther and farther. As can be seen, the RWR
method always has higher AUC score than the baseline methods when the community
overlap rate varies. Our method satisfies the structural awareness property and performs
well even in high noisy circumstance. It also provides an effective and efficient method to
detect the split or merge of communities before any community detection operation.

In a word, the baseline methods, VEO, JCD and GED, do not have the desirable
properties, and despite their straightforwardness and fast computation speed, they fail to
discern various changes in the graphs.

3.2. Graph Similarity. Graph similarity computation is an important task in many
real-world applications such as brain connectivity comparison, social network analysis
and anomaly detection. Our method is natural to be extended to measure graph similar-
ity. Recently, the DELTACON 0 graph similarity method using the so-called Fast Belief
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FIGURE 2. Nodal similarity of some graphs. (a) Nodal similarity of two
cycle graphs,(b) Nodal similarity of barbell graphs.

Propagation algorithm has obtained many good results. Its stationary equation is:
I+ &’D —cAjr =q (10)

where ¢ is a coefficient, D is diagonal degree Matrix, A is adjacent Matrix and q is initial

position vector.
The graph distance d and similarity is consequently defined as:

SN (s — V) (11)

i=1 j=1

d
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SIMDELTACON = i+ (12)

The intuition behind the equation is that it imitates a belief propagation process in
a network. It takes into account not only direct neighbors, but also 2-, 3- and k-step-
away neighbors, with decreasing weight. Although DELTACON satisfies many desired
properties, we find two critical problems of DELTACON that prevent its practical use.
The first problem is that DELTACON will produce a non-zero or not small enough value
even if two graph have no common edges. We find the reason is the same as the RWR
algorithm’s we mentioned above. The seed node always accounts for some affinity score
even if two graphs are totally different, which in a distance d not large enough in equation
9. The similarity score of two graphs in Figure 5(a) is shown in Figure 5(b). The author
defined parameter is marked by the red point. We can see that the similarity values are
always far away from zero, which does not make any sense. The second problem is that the
parameter € = 1/(1+max(d;;)) requires the max degree of nodes in a network which could
be as large as tens of millions in some social network platforms. Many practical networks
have power-law degree distribution, which means a small proportion of nodes have huge
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FIGURE 4. Prediction of community split with different methods.

degree and the rest only have small degree. The great unbalance of degree would reduce
serious numerical problem in practical and things would become worse when we consider
edges’ weight.

Although the algorithm has above drawback, it has the desired properties proposed by
the author:

P’1. [Edge Importance] Creating changes to disconnected components should be
punished more severely than maintaining changes to connection properties.

P’2. [Weight Awareness] In a weighted graph, the greater the weight of the removed
edges, the greater the impact on similarity measurement.

P’3. [Edge-“Submodularity”] In graphs with few edges, specific changes are more
important than in graphs with higher density but equal size.

To show that our RWR graph similarity also has properties P’1, P’2 and P’3, we follow
the author’s test on the same networks as shown in Figure 6. Here we only consider some
limited amount of classical networks for two reasons: 1. Many practical networks are
composed of such small modular networks. 2. Real networks topology is too complex to
make solid mathematical analysis.

The results for the first three properties are presented in Table 1, Table 2 and Table 3
respectively. We compare the graphs (A, B) and (A, C') and report the difference between
the pairwise similarities of our proposed methods. Table entries that are positive mean
that the corresponding method satisfies the corresponding property.

The graph distance measure A-distance is defined as:

k

dA(G1,G2) = 4| Y (i — Aay)? (13)

=1

where \j; and \y; are eigenvalues of G; and G5 respectively, and k is the node number.
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FIGURE 5. Drawback of the DELTACON algorithm.(a) Two graphs with
no overlapped edge,(b) Graph similarity versus the parameter ¢ of DELTA-
CON algorithm.

TABLE 1. “Edge Importance” (P’1)

Graphs RWR \ DELTACON \ VEO \ GEDIT \ A-distance
A B C As = sim(A, B) — sim(A, C)
B10 mB10 mmB10 0.291 0.07 0 0 0.21
L10 mL10 mmL10 0.293 0.04 0 0 -0.30
WhB12 | mWhB12 | mmWhB12 | 0.078 0.03 0 0 0.22
WhB12 | m2WhB12 | mm2WhB12 | 0.344 0.07 0 0 0.59

Generally speaking, our method is more sensitive and reasonable. In Table 1, “Edge
Importance”, the similarity differences As are always larger than DELTACON’s, which
strengthens the importance of the bridge edges. Furthermore, the first and forth items
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FIGURE 6. Small synthetic graphs.

of As is the same 0.07 in DELTACON, which means DELTACON can tell the similar-
ity difference of the two groups of graphs, namely (B10, mB10, mmB10) and (WhB12,
m2WhB12, mm2WhB12). However, it is intuitively reasonable to see the similarity differ-
ence of (WhB12, m2WhB12, mm2WhB12) should be larger than the similarity difference
of (B10, mB10, mmB10) for (WhB12, m2WhB12) is more similar than (B10, mB10) and
(WhB12, mm2WhB12) is less similar than (B10, mmB10), which definitely leads to a

larger As.
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TABLE 2. “Weight Awareness” (P’2)

Graphs RWR \ DELTACON \ VEO \ GEDIT \ A-distance
A B C As = sim(A, B) — sim(A,C)
B10 mB10 B10 | 0.069 0.09 -0.02 -1 3.67
mmB10 | B10 | mmB10 | 0.095 0.10 0 0 4.57
B10 mB10 | wbB10 | 0.02 0.06 -0.02 -1 2.55
wbB10 | w2B10 | whB10 | 0.227 0.10 0.02 1 2.23
wbB10 | w2B10 | whB10 | 0.048 0.03 0 0 1.12

TABLE 3. “Edge-Submodularity” (P’3)

Graphs RWR \ DELTACON \ VEO \ GEDIT \ A-distance
Al B | C| D As = sim(A, B) — sim(A, C)
K5 | mK5 | C5 | mC5 | 0.152 0.03 0.02 0 -0.24
C5 | mC5 | P5 | mP5 | 0.178 0.03 0.01 0 -0.55

In Table 2 “Weight Awareness”, we can find the same result for groups (mmB10, B10,
mmB10, w5B10) and (w5B10, w2B10, w5B10, mmB10).

stim(wbB10,w2B10) — sim(wbB10, mmB10) = 0.1 (14)

stm(mmB10, B10) — sim(mmB10, w5B10) = 0.1 (15)

The As of the two group by DELTACON is the same as 0.10 but it is easy to find that
(w5B10, w2B10) is more similar than (mmB10, B10),

sim(w5B10,w2B10 > sim(mmB10, B10) (16)

which should cause a larger As. In the contrast, the result of our algorithm is more
reasonable in all situations.

As = sim(A, B) — sim(A, C) (17)

In Table 3 “Edge-Submodularity”, following the same thought, we find the similarity
difference As of (C5, mC5, P5, mP5) should be larger than the similarity difference of
(K5, mK5, C5, mC5) because the similarity of (P5, mP5) should punished much more for
P5 is essentially divided into two sub-graphs.

4. Discussion and Conclusions. In this paper, we aim to investigate node and graph
similarities in the case that the correspondence between each pair of nodes is known. We
provide a new scheme based on random walk to compare topological similarity of nodes in
two different networks. Moreover, the graph similarity induced by our nodal similarity is
shown to have many advantages over the state-of-the-art algorithm and meanwhile avoids
its main drawbacks.

As can be seen, the key idea behind our method and DELTACON is same: both con-
sidering the global structure and focusing on local structure information. The local topo-
logical information is obtained by the random walker in RWR algorithm and at the same
time, we need not explicitly define the meaning of ‘local’. Nodes are naturally embedded
into a Euclidean space by a random walker with stationary probability distribution and
meanwhile keep their topological affinity in the original network. An interesting future
work includes find a generalized framework for embedding nodes and graphs.
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