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ABSTRACT. In practical tracking scenarios, the ability of model-based trackers to esti-
mate the potential target trajectories is constrained by their predetermined target track-
ing models. A model-free tracker with the ability to learn unknown parameters online
is presented in this paper, named Gaussian process regression tracker. Different from
the model-based trackers, the proposed tracker online learns the highly nonlinear motion
model using sparse Gaussian process regression. Firstly, sparse Gaussian process re-
gression combined with gradient descent method was used to estimate the motion model
online, and then incorporated into the Kalman filter framework to achieve estimation and
prediction of the target motion state. Monte Carlo experiments show that the proposed
tracker provides an accuracy of the predicted and estimated target states in sixz challeng-
g maneuver test scenarios.

Keywords: Target Tracking, Gaussian Process, Stochastic Gradient Descent, Recursive
Estimation.

1. Introduction. Target tracking (TT) [1, 2] has been at the forefront task, such as radar
tracking, navigation control, and driverless. Its goals are to determine unknown number
trajectories of the target from sensor measurement and predict the state of the targets
of interest in a noisy environment. Considering target characteristics, T'T can be mainly
categorized into three groups, point target [3], extended target, and group target [4, 5,
6]. Generally, point target tracking only involves target kinematics estimation, whereas
extended target tracking and grouped target tracking focus on target kinematics and shape
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estimation. Point target tracking models for kinematics estimation provide a solution for
two major problems, i.e., data association and state estimation problems [7]. The data
association methods is necessary to assign measurements to corresponding targets. The
estimation updates the target state by utilizing the corresponding measurement. This
paper presents an approach that specifically focuses on tracking and state estimation.

The state estimation problem is commonly addressed using a Bayesian filter frame-
work. This framework consists of two components: the motion model, which represents
the motion space, and the measurement model, which represents the measurement space.
In the field of motion analysis, several motion models have been created to estimate the
dynamic path of the target. The motion models are divided into the linear model and
the non-linear model. For the linear model, such as constant velocity (CV) model and
constant acceleration (CA) model, the widely known Kalman filter (KF) [8] is the opti-
mal recursive solution. For the non-linear model, such as coordinate turn (CT) model,
extended KF [9], unscented KF [10], and interactive multiple model (IMM) [11] have
been proposed to address this problem. The IMM (Interacting Multiple Model) is a cost-
effective nonlinear filter [12]. When dealing with sophisticated motion behaviors of the
target, such as time-varying and doubly-stochastic movements, it becomes necessary to
use a diverse set of models with varying parameters to accurately represent the potential
motion patterns. This, in turn, results in a significant increase in computational com-
plexity. To overcome this downside, a formula for estimating the motion parameters of
the target was established in [13], and the method is applied to a multi-target Bayes fil-
ter, developing a filter with adaptive estimation of the parameters. In [14], applying the
adaptive estimation method to Cardinality-balanced multi-target multi-Bernoulli filter,
the model with an unknown parameter can be modified adaptively by using the selected
parameter particles.

All of the above motion model-based filters require to operate in the known motion
model. In practical scenarios, there may be a significant mismatch between the motion
model and the desired motion behavior. If this happen, the tracking performance would
degrade or even unacceptable. In [15], the first model-free filter was proposed, named
Gaussian process (GP) motion tracker. Motion models can be represents by GP, a power-
ful kernelized technique. In existing historical measurement data, the GP can predict and
update the position and velocity of the target. However, the tracker is a non-recursive
method, which can be caused high computational complexity costs. To this end, in [16],
the recursive and learning GP motion tracker was proposed by exploiting the recursive
GP. Replace historical measurement data with a sparse GP induced point set. In the
many open publication, GP approaches has been applied to many areas, such as system
identification [17] nonlinear ARX models [18] ,and evolutionary algorithm [19]. Time se-
ries prediction and estimation are the weak points of GP. This is because a new sample
are added to existing set, the joint probability density of the set is calculated repeat-
edly. Similarly, target state estimation is a time series application. Currently, GP-based
methods are commonly used for extended target tracking to estimate the shape, while
model-based methods are employed for target kinematics estimation. However, GP-based
approaches have not been extensively studied for kinematics estimation due to two main
challenges: 1) Difficulty in incorporating new measurements and 2) Difficulty in online
learning of hyperparameters in a recursive version.

In GP community, the sparse approximation methods are commonly used to construct
recursive GP in a wealth of research to solve the former [20, 21], such as Fully Inde-
pendent Training Conditional (FITC), Power Expectation Propagation (PEP) [21], and
Deterministic Training Conditional (DTC) [23] .et.al. Such approximation is based on
inducing points methods, where the unknown function is represented by its values at a
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F1GURE 1. The proposed tracker block diagram. w denotes the inducing
point or state-space model, & represents the target state, z is the measure-
ment, k is the time index. ~ and * represent, respectively, the predicted
and estimated states. The learning model process uses u;_; as a priori and
incorporate measurement zj to learn the state-space model.

set of M < N pseudoinputs (called inducing points), where M denotes the number of
inducing point, N is the number of samples set. Instead, hyperparameters online learning
methods are rare, but also contain state space framework and Stochastic gradient descent
(SGD). We integrate sparse recursion GP and SDG to build the target tracker in this
paper, the block diagram as shown in figure 1.

2. Background.

2.1. Problem Formulation. Consider a 2-D horizontal motion model with additive
Gaussian noise. The following gives the motion and measurement models of discrete-time
targets:

i = frpp—1(Tr_1) + vk, (1)
Here, ;, = [p*, pz, vk, v’y“]T represents the target state at time index k, zj is the measure-

ment at time index k detected by the sensor. The v, ~ N (0, Q) and n, ~ N (0, R)
are the additive process and measurement Gaussian noise vectors, respectively, where
Q=q I, and R = r- 14,4, where ¢, r, and I,,4 denote the corresponding noise
variance and identity matrix. The f(-) and h(-) represent the state motion model and
the measurement model, respectively. The measurement model is assumed to be a linear
model in this paper, given as follows:

zk:Ha:k—i—nk, (3)
where,
1000
01 00
H = 0010 (4)
0 0 01

According to Bayes’ rule, the x; under the conditioned on the measurements z. is,

p(xp|zie) = ég(zk\mk) p(Tk|z10-1) (5)
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where ¢ is the normalization constant, g(zi|zy) = N(Hzy, R) denotes the likelihood
function of the sensor under the state @y, p(€k|z1.x—1) is the predictive probability density
function.

In real-world situations, the success of target tracking is primarily dependent on how
well the motion model matches the unidentified target dynamics. As a result, the follow-
ing will introduce the GP, which is utilized to represent the target’s motion process by
applying GP priors to the unknown functions f_1(-).

2.2. Regular and Sparse GP Regression. GP is a set of infinite Gaussian random
variables, any realization that existing data fit the unknown functions of which are jointly
Gaussian distributed. As a non-parametric method, the Gaussian Process (GP) is used
to solve regression and classification problems by mapping from the input to the output
space. The GP is characterized by its mean function and covariance kernel function,
which serves as a prior. In many applications, the mean functions consist of two types:
those with nonzero constants and those with zero constants. Therefore, the covariance
kernel function is a crucial parameter in GP-based models.
A GP is used to fit a unknown function f(-) given as follows

z = f(x) +¢, (6)
f(x) ~ GP(m(z), K(z, z')), (7)
e ~N(0,0°I), (8)

where f(x) and z denote, respectively, the true function values and noisy observation of
the function at the input @, € denote the observation noise, GP(m(x), K (x, ')) represents
a GP with a mean and a covariance kernel.
Given a training data set with N pair of training points Dy {x, 2} = {(x1, 21), (22, 22), ..., (N, ZN) }.
The goal of GP is to predict the latent distribution of the function f* = [ff, ..., fi]T at

the test inputs * = [z7,... ,xz]T, conditioned on the training data set. The latent
distribution at test input are

fHID ~ N(E(f7), D(f7)) (9)

E(f") = m(x") + Ku - (K + 0*I)7H(f —m(z)) (10)

D(f*) = Ko — Ko - (K 4+ 0*I) 'K, (11)

where E(f*) and D(f*) are, respectively, the predicted mean and the covariance at test
input point x*, K,, represents the GP covariance matrix between the input p and ¢, - !
and -7 denote the matrix inverse and transpose, respectively. I represents the identity
matrix.

An important downside of GP regression is its computational costs of O(N?), with N
the size of training data set. A common solution so-called sparse GP regression methods
are used to solve this. To apply sparse method, an additional set of M < N latent
random variables w € RM at the input u; = {u},ufc,...,uy } are introduced, which
are called the inducing variables or inducing points. The inducing input is in the one-
dimension domain, and the output w = f(uy) is the corresponding GP function value.
The joint prior f and f* is augmented with the inducing variables w. By marginalizing
out the inducing variables, the original prior p(f,f*) = [ p(f, f*|u)p(u)du is recovered.
Mathematically, all sparse models suppose that f and f* are conditionally independent,
given u. Consequently, the computational costs of these sparse models can be done

O(MN?).
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2.3. SGD. SGD is a simple and very effective optimization method, which is often used
for parameter learning of linear systems under convex functions such as support vector
machines and neural networks. Take the minimization objective function 1(6) as an
example, stochastic gradient descent methods involve finding the parameters which min-
imize a mathematical function. The learning process of the parameter can be described
as follows:

0

0 =0 —aga1(0) (12)

where « denotes the learning rate.

3. The Improved Method. In this section, the recursive and online learning Gaussian
process motion tracker (GPMT) is presented. The tracker consists of two blocks, namely,
learning of state-space motion model and the target state estimating and predicting on-
line. The former is represented by the inducing points of the sparse GP regression. The
proposed tracker contains two assumptions, which will be integrated into the KF frame-
work.

1) the target motion stochastic process, in the z and y axis, are assumed to be inde-
pendent, and they have the same common GP distribution function.

2) The correlation between two samples is determined by the distance between input
points. The farther apart these two points are, the weaker the correlation.

The trackers are described in detail below. Considering the assumption (1), the GPMT
formulation of position for z direction and y direction is given below.

x = f°(t), f°~GP(0,K"(t,t)) (13)
zi = [*(t) + €, € ~N(0,020) (14)
y=f'(t), fY~GPU0,K"(tt)) (15)
zl = fU(t) + €, € ~N(0,0.1) (16)

where f* and fY are respectively the corresponding latent functions in z and y Cartesian
coordinate, t is the input parameter. z; denotes the measurement corresponding to input
t, € represents an the Gaussian observation noise, 02 = 05, K represents the covariance
kernel function.

Considering the assumption (2), the squared exponential (SE) covariance kernel is ap-

plied in proposed tracker.
—llt=t"|)?

k(t,t') = ote™ 22 (17)
where [ denotes the scale parameter, 02 is the variance under the same input points.
Suppose that all hyperparameters 8 = [08,[,0%,05] are known. Consider the sparse

GP method, the unknown function f is represented by N inducing Gaussian variables
u = f(ug) with an initial distribution u = AN(0, Cy). At new measurement, the in-
ducing variables distribution is updated using the corresponding samples and the prior
distribution. By applying Bayes law consecutively, the required posterior distribution
p(u|z1.5) can be obtained

p(ulzin) o< p(en|u, z1.8-1) - p(u]z1n-1) (18)

Suppose that u will be the sufficient statistic of all the past measurement zq.y_1. The
posterior distribution can be approximately in the following recursion.

p(ulzin) < p(zn|u) - p(ulz1.n-1) (19)

The measurement zy and the function values w are jointly Gaussian

[ZN} N ({m(xN)} | {K(Q;N,IN) +op K (mmﬁD (20)

u m(uy) K(ug,vn)  K(ug, uyg)
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By marginalizing out u, the likelihood function and the inducing variables prior are given

by

p(zn|u) = N(z2n; Hyu, Ry) (21)
p(u) = N(0, Cy) (22)
with
HN = K(ZL’N,’U,f) -K(uf,uf)_l, (23)
Ry =K (zy,2y) +0° — K(zn, uz) - K(ugp, up) 'K (us, zy) (24)
CO = K(uf, uf). (25)

The latent function f(-) of target motion is modeled by the sparse Gaussian process
model in this letter. Therefor, the measurements from sensor has two functions, namely,
updating the latent function modeled by inducing points and the estimating the target
state.

3.1. Learning the State-Space Motion Model. In this block, learning of motion
model at each time step requires to complete two stages. At each time step, the inducing
points are updated first. Then, the motion model’s hyper-parameter is updated using
a learning method and the stochastic gradient descent technique. For all steps N = 0
to N = Nz, it assumed that the inducing points are fixed number and equidistant
in location in this paper. Since u is assume to be a GP, the initial distribution w is
Gaussian with mean 0 and covariance K (ug, uy), i.e.,u = N (0, K(uys, us)). The goal is
now to obtain the posterior distribution w with zi.5, recursively by updating the prior
distribution of w from the previous step N — 1.
According to the KF framework, the posterior distribution w is given by

uy =uUn_1+ Gy - (2v — f(zN)) (26)
é’N: éN—l_ GNHéN_l (27)

where ) )
Gy = Cy HT(D [ f(xN)] 4ot (28)

- and ° denote the predicted and updated variables. Equation (26) and equation (27)
denote the mean and covriance matrix of the state-space motion model.

For unknown hyper-parameters, online learning hyper-parameter is crucial in tracking
system. we summarizes its online learning procedure proposed, which the goal to learn
hyper-parameters 6 simultaneously with estimating the values of the latent function f(-)
at the inducing points. By marginalizing out u, one can obtain the log marginal function

log p(z).

N
log p(z1.x) = log | | p(2n|21:n-1)
rH (29)
= logN (z; Hytiy_1, HyCny_1HL + Ry — o*I).
According to equation (29), the log likelihood function is given by
¥(8) = log p(z1.v) = TN (rs 0, 8Y)
(30)

N 1
= —ElogQW — §Zgzllog|5n| +rl'S-ip,.
where 'l"?v = ZN — HN’&'N—I and S]% = HN(A}N_lHj]\} + RN — O'2I.
In this paper, we utilize stochastic gradient descent to identify the maximizer 8 € © of
the objective function (@) by employing the update method.
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oY
() — gt=1) _ -1 OUN
6" =6 150 losetn (31)

where v*~1 denotes the search step. The derivative of ¥(f), we have
0v(0) _  10log|Sy|  19(ry)(S%)'(r})
06 2 06 2 06

The gradients of the mean and the covariance across time are recursively propagated
using the chain method for derivatives of u and C, that is.

(32)

8’&]\[ B 8'&N_1 8GN 87'N
96 ~ o0 o0 Nt Cvae (33)
0Cy  0Cn-1 O0Gn, 98N
060 00 pp SN GN T G Gy 54
Har (34)
—GNnSN 89N
Whereag—gf\’7 agé\’ and ag—BN are computed recursively according to equation (26) to equation

(28). Computing the derivatives of ¢ as explained in equation (32) to equation (34), the
stochastic gradient can be computed for single measurement.

3.2. State Prediction and Estimation. when the measurement zy obtained at N,
the inducing point are learned, then the target state at time NV is updated by learning
inducing points, and further predict the state at time N+1.

To incorporate the new measurements zy at N, This requires determination of the pos-
terior distribution of the state, given the inducing points. The density of this distribution
have

p(f@w)liy) = N(f@an):E |fzx)] D | fzx)]) (35)
with
E(f(an)) = E(f(an)) + Gx(ex —E [ f(on))) (36)
D(f(aw)) = (I = GNP | f(aw)] (37)
where
G =D |f(ex)| (D |f(en)] +0°D)" (39)

For known prior distribution p(u|z1.n), the predictive nonliear function f(-) at uy is
decribed as follows.

p(fana)lin) = N(Fen)iE [f(ensn)| D | Fewin)]) (39)
with
E[foni1)] = mi@xe) + Hoiy = m(uy)) (40)
D [f(IN—H)} = HyCxHY + K(ang, oxa)—
HyK(up, Xni1)

Fig 2. presents the schematic diagrams of the proposed tracker.

(41)

4. Experiments. We present the simulation results to demonstrate the performance of
the sparse GP regression approach for TT. In this section, it are compared to existing
tracker: KF, FGIMM, and Singer et.al.
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FIGURE 2. Schematic diagrams of the proposed tracker

20000
18000
16000
14000
12000
E 10000
8000
6000
4000

2000

1000

Eq.(18) >

A 4

Eq.27)

Eq.(31)

2000 4000 6000
x(m)

(a)

e o o o o o

8000

-1000

-2000 -

(m)

=
-3000 [
-4000 -
-5000

-6000

-1000

-500 0 500 1000 1500 2000

x(m)

(¢)

2500

18000
16000 f
14000
12000 |
10000
B
=
8000
6000 |

4000

2000 b o

0 &
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

F1GURE 3. The figure shows a test trajectory of each scenario. The initial
position is indicated by a red circle. (a) S1: CV. (b) S2: Gradual CT. (c)

x(m)

(e)

1000

0 &

-1000

-2000

-3000

Eq.(18)

A 4

Eq.(27)

2 —»

30000

E 1000
> -
-5000
-6000
-7000
-8000
-9000 . . . . . o
0 2000 4000 6000 8000 10000 12000 14000 16000
x(m)
50000
45000 -
40000 |
35000 -
30000 -
£ 25000
=
20000 - o
15000
10000 f
5000 &
0 &
0 5000 10000 15000 20000
X(m)
3e+07
2.50+07
26407
1.5e+07
1e+07
E se+08 A
=
0
-56+06 ®
1e+07 Nd
1.5e+07 3
26407
26407 -1.56+071e+07 56406 0 5¢+06 1e+07 15e+072e+07 2.5¢+07
x(m)

®

S3: Sharp CT. (d) S4: Singer lazy. (e) S5: Singer Agile. (f) S6: GP

1235

4.1. Compared Methods. Three model-based trackers are compared with the sug-
gested technique. The following is a detailed description of the three related trackers:
KFcy. A constant velocity (CV) model for a Kalman Filter (KF) with state transition.
The process noise variance is set as Qoy = 10 m?/s* KFgy. a constant velocity (CV)
model for a Kalman Filter (KF) with state transition. The process noise variance is set

as Qoy = 10 m?/st.



1236 H.-H. Xie, Y. Yuan and S.-Y. Zeng

Fized grid interacting multiple model (FGIMM). An FGIMM [24] consists of
three KFs, with a transition model that uses a CV model and two Coordinated Turn
models. The rate of turns is set to {—15,15}° /s. The Markov transition probability for
staying in the same mode is set to 0.9, and for changing the mode is 0.05. The initial
model probability vector is {0.15,0.7,0.15}, and the process noise variance is set to 26
m?/s* for each model. This process noise variance is considered optimal for a target
moving at a speed of 200 m/s.

Singer. A Singer model was utilized to depict a KF with a state transition. The
model’s parameters were assigned the following values: F, = 0.4 for the probability of
CV, Apaz = 8m/s? for the maximum potential acceleration, the probability is P,,q, = 0.1,
and 7, = 8s for the time constant of the oeuvre.

4.2. Test Scenarios. The targets’ trajectories in the six test scenarios below are pro-
duced by the aforementioned approaches.

S1): Uniform motion. Uniform motion is widely used as an ideal model, and As with
the motion estimation of light, sound, and airplanes, the target velocity is constant. The
situations match the filters in the CV and FGIMM.

S2): Gradual Coordinated Turns. The motion model for the left and right coordinated
turns (15°/s for 10 s) is utilized to simulate the motion trajectory. The target alternates
between turning left and right. First, it makes a 180° left turn and then follows it with a
right turn.

S3): Sharp Coordinated Turns. Similar to S2, but with turn rates set at 30°/s for 10
s. The scenarios is not match to any filters, and represents highly maneuverable targets
dynamics.

S4): Singer Lazy. The state transition is the singer acceleration model. The parameter
of this scenarios are same as those of the S3.

S5): Singer Agile. A2 = 50m?/s* is the maximum acceleration, while the target

motion is similar to S4. In this test scenario, an agile target is simulated compared d to

S4.

S6): GP. The GP with zero mean and the SE covariance kernel, respectively, model
the z and y coordinates of the motion trajectory. The GPs’ hyperparameters are fixed
constants. The length-scale parameter is [ = 10s, and the variance magnitude is set to
o? = leTm?.

The trajectory lasts for a total of 100 seconds, with each step lasting 1 second. The
measurement noise covariance is 02 = 25*m. The performance of all approaches is evalu-
ated using the root mean square errors (RMSE) of the target’s state. Figure 3 illustrates
an example trajectory for each scenario.

1 )
RMSE = sqriz— ;(f(a» — f(=)) (42)

where, N,,. represents the Monte Carlo number, f (z)is the tracker output, f(x) is the
true value.

4.3. Experimental Results. We perform simulation experiments on the proposed tracker
in six test scenarios in this section. Monte Carlo methods, with 10,000 runs, are used
to simulation the performance of all tracker in each test scenario. The result, graphical
comparison of the estimation procedure are obtained. The result of the procedure are
illustrated in figure 4.

Figure 4(a) demonstrates that in the S1 constant velocity motion scene, the K Fey
method outperforms the other three methods. This is because K F¢y is the optimal state
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estimation algorithm in linear systems. The Singer method performs the worst in S1
scenes. For figure 4(b) and figure 4(c), the proposed method, GPMT, exhibits significant
robustness and outperforms the predefined model in test scenarios. For methods based
on KF, improvements in estimation performance can be observed. The improvement in
the estimate process based on preset model approaches owe to the KF, when compared
to their respective prediction procedures.

In the two CT scenarios of S2 and S3, The proposed trackers showed the most stable
performance and RMSE values remained below 10. The RMSE values of the other three
schemes exhibit ”periodicity”, which is related to the motion attributes of the simulation
target on the one hand, and to the predefined motion models, namely K F¢y, FGIMM,
and Singer, which have insufficient response to turns. The poor performance of FGIMM in
the S4 scenario can be attributed to the mismatching between the predefined motion and
the actual scene, leading to a loss in performance. On the one hand, the trajectory of S4
is generated based on the Singer model and exhibits a certain degree of linearity, so K Fey
and Singer trackers achieve optimal performance in this scenario. The proposed trackers
did not achieve optimal performance in this scenario. Compared to the other four motion
scenarios, due to the high randomness of the S5 scenario, all trackers obtained higher
RMSE values. However, the RMSE value of The proposed trackers gradually decreased,
and the lowest RMSE value was obtained at the end of the iteration.
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5. Conclusion. This paper proposes a model-free technique for filtering and predicting
single target trajectories in cases of mixed and uncertain motion. The approach involves
building a recursive and online learning Gaussian process regression tracker based on
sparse Gaussian process regression and stochastic gradient descent. This tracker is ca-
pable of providing estimates of the target positions in the present time index as well as
predictions for the next time. In challenging environments, we have demonstrated the
superiority and reliability of the proposed tracker by comparing it to alternative online
model-based trackers. The experimental results show that the proposed method gives
more accurate than the model-based result. The performance of the propose tracker in
addressing multi-target tracking issues and the data association between the target and
sensor will be the main topics of future research.
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