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ABSTRACT. This article mainly explores how to use optimized deep learning techniques
for malware detection in data-driven mode. A deep learning model was designed, which
combines the characteristics of Convolutional Neural Networks (CNN) and can effectively
capture the complex features of malicious software. In order to further improve the
performance of the model, optimization techniques were used and a CNN deep learning
algorithm based on learning rate adjustment Adam was proposed. Adjust the learning
rate and momentum decay rate. The learning rate controls the update ratio of weights,
while the momentum decay rate controls the exponential weighted average decay rate of
momentum. RNN were used to model the sequence of extracted image features to capture
temporal dependencies between malicious software. During the experimental phase, large-
scale actual malware samples are used for training and validation. The results indicate
that the proposed optimized deep learning model has achieved significant improvements
in malware detection compared to traditional methods. This model performs well in
accuracy, recall, and precision, and has stronger generalization ability and robustness. The
CNN+RNN based on Adam algorithm proposed in this article achieves an accuracy of
95.8%.
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1. Introduction. With the rapid development and popularization of the Internet, net-
work security problems are becoming more and more serious. Relevant reports state that
in 2021, there will be 38 million devices infected with malware worldwide, accounting for
0.68% of all mobile devices, a year-on-year increase of 25%, higher than 20% in 2017. Mal-
ware poses significant risks to individual users, corporate organizations, and even national
security. Some harms are even irreversible. For example, malware will search the contents
of confidential computers or servers, thereby leaking confidential information and causing
significant economic losses [1]. The general definition of malware is: programs that can
destroy software and hardware equipment such as workstations, mobile devices (such as
mobile phones, etc.), servers, and gateways. Common malware programs include viruses,
worms, Trojans, ransomware, zombies, etc. Malware detection is of great significance,
as it can improve the security and performance of general software, discover potential
loopholes and defects in software, and thereby ensure user safety and efficiency.

This article analyzes the serious threats posed by malicious software to computer and
network security. Deep learning technology is widely used in data-driven patterns to
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effectively detect and prevent malicious software. The author proposes a malicious soft-
ware detection method based on optimized deep learning to improve the accuracy and
efficiency of detection. The research scope mainly focuses on the intersection of deep
learning and malware detection. Efficient malware detection using Convolutional Neural
Networks (CNN) [2] and Recurrent Neural Networks (RNN) models [3] in deep learning.
The research scope includes model optimization, design of new network structures, im-
provement of training algorithms, data expansion and cleaning. This paper proposes a
CNN+RNN deep learning algorithm based on Adam for malware detection. This algo-
rithm combines the advantages of CNN and RNN to accurately detect malicious software
by extracting its features and learning its behavior patterns. By applying RNN to the
behavior sequence of malicious software, it is possible to learn the dynamic characteris-
tics and behavior patterns of malicious software. The significance of this study lies in
improving the efficiency and accuracy of malware detection.

The potential outcomes are shown as follows, by optimizing deep learning models and
algorithms, the accuracy and efficiency of detection can be improved, and the rates of false
positives and false negatives can be reduced. Deep learning models can automatically
extract useful features from data, reduce reliance on artificial feature engineering, and
improve the efficiency and accuracy of feature selection [4, 5]. The optimized deep learning
model can quickly process and classify new malware samples, providing real-time security
protection. Reduce reliance on manual intervention and reduce the likelihood of human
errors.

Optimization techniques are introduced, including but not limited to learning rate ad-
justment, weight regularization, and batch normalization.In order to further improve the
performance of the model, optimization techniques were introduced and a CNN deep
learning algorithm based on learning rate adjustment Adam was proposed. During the
experimental phase, large-scale actual malware samples are used for training and vali-
dation, and using RNN to model the sequence of extracted image features to capture
temporal dependencies between malicious software.

This research provides an effective malware detection methodthat combines deep learn-
ing and optimization techniques. By adapting to the evolving threat landscape of malware
through this combination, the proposed model offers robust support for enhancing com-
puter network security.

1.1. Related Work. The following is a summary of the literature review for the sug-
gested procedure as presented in this portion of the paper.

Heuristic and behavioral analysis techniques focus on identifying malware based on
suspicious behaviors or deviations from normal software behavior. While more adaptive
than signature-based methods, they may produce false positives or miss sophisticated
threats.

Edge and Sampaio [6] did a survey of signature-based methods for financial fraud de-
tection. Weng et al. [7] provided a signature-based composition technique. Wohlfahrt et
al. [8] developed the bacteria-signature based method. Traditional antivirus solutions pri-
marily rely on signature-based methods, which involve maintaining a database of known
malware signatures. While effective against known threats, these methods struggle with
detecting new and evolving malware variants.The purpose of research on malware detec-
tion based on optimized deep learning in data-driven mode is to improve the efficiency
and accuracy of malware detection, in order to cope with the increasingly rampant net-
work attacks and malware threats. The deep learning model can be trained to adapt to
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new malware variants. Once the model is trained, it can be easily applied to new sam-
ples without manually adjusting or updating features. This flexibility enables the deep
learning model to better adapt to the continuous evolution and variation of malware.

Deep learning, especially neural networks like Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN), has shown promising results in capturing intri-
cate patterns and features inherent in malware. These models excel at feature learning,
alleviating the need for manual feature engineering. Gopinath, and Sethuraman [9] did a
comprehensive survey on deep learning-based malware detection techniques. Tayyab [10]
did a survey of the recent trends in deep learning-based malware detection. Shaukat et
al. [11] provided a novel deep learning-based approach for malware detection. Brown et
al. [12] studied automated machine learning for deep learning-based malware detection.
Alomari et al. [13] studied malware detection using deep learning and correlation-based
feature selection. Kim et al. [14] developed a practical deep learning-based android mal-
ware detection system. Chaganti et al. [15] studied deep learning based cross architecture
internet of things malware detection and classification. Xing et al. [16] provided a mal-
ware detection approach using autoencoder in deep learning. Ravi et al. [17] developed
a multi-view attention-based deep learning framework for malware detection in smart
healthcare systems. Majid et al. [18] did a review of artificial intelligence-based malware
detection using deep learning.

Asam et al. [19] developed a malware detection architecture using a novel channel
boosted and squeezed CNN. Khan et al. [20] developed a new deep boosted CNN and
ensemble learning based on malware detection. Akhtar et al. [21] studied detection of
malware by deep learning as CNN-LSTM machine learning techniques in real time. Arslan
and Tasyurek [22] studied android malware detection via feature graph and convolutional
neural networks. Naeem et al. [23] studied explainable artificial intelligence-based IoT
device malware detection mechanism using image visualization and fine-tuned CNN-based
transfer learning. Yeboah and Musah. [24] studied NLP technique for malware detection
using 1D CNN fusion model. Ullah et al. [25] studied network-based android malware
detection system using transfer learning and CNN-BiGRU ensemble. However, they did
not achieve good results in terms of accuracy. Lakshmanarao and Shashi [26] studied an-
droid malware detection with deep learning using RNN from opcode sequences. Almaleh
et al. [27] studied malware API calls detection using hybrid logistic regression and RNN
model. Djenna et al. [28] made a review of artificial intelligence-based malware detec-
tion using deep learning. Prabhavathy et al. [29] made a novel approach for detecting
online malware detection LSTMRNN and GRU based recurrent neural network in cloud
environment. So, we attempted to apply the fusion of RNN and CNN to the algorithm
proposed in this paper.

Transfer learning has been used in this paper to address the challenge of limited labeled
data. Pre-trained models on large datasets can be fine-tuned for malware detection tasks,
enhancing the generalization of the model. Kumar and Janet [30] studied deep trans-
fer learning for malware image classification. DE Garcia made an effectiveness analysis
of transfer learning for the concept drift problem in malware detection. Garcia et al.
[31] proposed an explainable malware detection system using transformers-based transfer
learning and multi-model visual representation.

1.2. Motivation and contribution. Traditional malware detection methods are often
based on feature engineering, which extracts specific static features from software for
classification. However, this method is difficult to deal with constantly changing malware
samples. Deep learning, especially CNN and RNN, can achieve more accurate classifi-
cation by learning complex patterns in data. With the increase of network attacks, the
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number of malware samples that need to be detected is also rapidly increasing. The main
contents of this paper are as follows:

(1) Aiming at the problem that the convergence speed of traditional CNN is not ideal,
Adam (Adaptive Moment Estimation) optimization algorithm is proposed to update the
parameters of CNN. The parameters are updated by calculating the first moment estimate
(mean) and the second moment estimate (variance) of the gradient. It can effectively
adjust the learning rate, making the updating of different parameters more accurate and
efficient in the training process.

(2) Malware detection usually involves binary file sequences, and these sequence data
have certain spatial local structure and time dependence. Therefore, CNN+RNN sequence
modeling is proposed to realize malware detection. CNN is used to extract local features
of sequence data, and then these feature sequences are input into RNN for modeling.
CNN can effectively capture the spatial local structure and characteristics of the input
sequence, while RNN can model the time dependence of the sequence.

2. Relevant theoretical analysis.

2.1. Deep learning theory. In malware detection, deep learning can automatically ex-
tract features of malware and classify and recognize them based on these features. Neural
networks simulate the way neurons in the human brain connect, using multiple neurons,
each with a weight, to convert input signals into output signals. Neural networks learn
the relationship between input and output by continuously adjusting weights, thereby
achieving functions such as classification and prediction. The activation function is an
important component of neural networks, used to convert the input signal of neurons
into an output signal. This model uses the Sigmoid function as the activation function,
and the selection and design of the activation function have a significant impact on the
performance of the neural network.The core of deep learning theory is backpropagation
algorithm, which calculates the error between the output layer and the target value, and
then adjusts the weight of each neuron in reverse to make the output result of the en-
tire network closer to the target value. This algorithm can automatically learn features
from input data, thus avoiding the tedious process of manually designing features. Deep
learning theory also involves some important concepts, such as activation functions, loss
functions, optimizers, etc. The activation function is used to map the input of a neuron
to the output, and commonly used activation functions include ReLLU, sigmoid, and tanh.
The loss function is used to measure the difference between the predicted and actual re-
sults of a model, and commonly used loss functions include mean square error (MSE) and
cross entropy loss. Optimizers are used to update the weights and biases of models, and
commonly used optimizers include gradient descent, random gradient descent, Adam, etc.

2.2. Optimization Algorithm Theory. Optimization algorithms are a type of algo-
rithm used to find the optimal solution, which minimizes or maximizes a certain objective
function by continuously iterating and adjusting parameters. In malware detection, op-
timization algorithms can be used to optimize the parameters of deep learning models
to improve their performance and generalization ability. This model uses the Gradient
Descent method, which is an iterative optimization algorithm used to find the parameter
values that minimize the cost function. In machine learning and deep learning, gradient
descent is widely used to optimize loss functions and find the optimal model parame-
ters. Firstly, it is necessary to calculate the gradient of the loss function with respect
to the model parameters, which represents the direction and magnitude of the change in
the value of the loss function when the parameters change. Then, based on the gradient
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information, update the model parameters with a certain step size (learning rate) to grad-
ually approach the minimum value of the loss function. Optimization algorithm theory
involves how to find the optimal solution or approximate optimal solution of a problem.
Optimization algorithms are commonly used to handle complex problems in fields such as
machine learning and deep learning, helping models find the optimal parameter configu-
ration during the training process to minimize the loss function or maximize the objective
function.

Convolutional operation is a core operation in CNN, used to extract features from input
data. The formula is:

Y=f(W"-X+b) (1)

Among them, Y represents the output value, W represents the weight matrix, X rep-
resents the input value, b represents the offset, and f represents the activation function.

Activation function:

The commonly used activation functions for CNN include Sigmoid, Tanh, and ReLU.
The formulas for these functions are as follows:

Sigmoid function:

1
fla) = @

Sigmoid function is used to enhance the non-linear expression ability of the model,
enabling it to better learn and fit data [32].

Optimization algorithms can be classified into various types:

(1) Gradient descent method: This is one of the most commonly used optimization
algorithms in machine learning and deep learning. It gradually finds the minimum value
of the loss function by calculating the gradient of the loss function and updating the
model parameters along the opposite direction of the gradient. Common gradient descent
methods include Batch Gradient Descent, Stochastic Gradient Descent, and Mini Batch
Gradient Descent.

(2) Newton’s method and quasi Newton’s method: These methods use second-order
derivatives (Hessian matrix) to accelerate the optimization process. The Newton method
finds the update direction by calculating the second derivative of the loss function and
solving a system of linear equations. The quasi-Newton’s law approximates the second
derivative in an iterative manner to reduce computational complexity. Conjugate Gradient
Method: This method combines the advantages of gradient descent and Newton’s method,
accelerating the optimization process by constructing a set of conjugate directions. It
performs well in dealing with large-scale problems.

(3) Heuristic optimization algorithms: These types of algorithms do not rely on gradient
information [33], but instead seek the optimal solution by simulating natural processes
such as genetic algorithms, simulated annealing, particle swarm optimization, etc. They
are very effective in handling non convex, discrete, or constrained optimization problems.
We can see from Figure 1.

3. Basic CNN+RNN model implementation strategy. In this article, we employed
a Convolutional Neural Network (CNN) model for malware detection. Firstly, we use
CNN to extract features from the binary files of Italian software and extract image fea-
tures from them. Then, we use RNN to model the sequence of extracted image features to
capture the temporal dependencies between malicious software. During the model train-
ing process, we used gradient descent method for optimization. We adopted the Adam
optimization algorithm, which is an adaptive learning rate optimization algorithm that
can automatically adjust the learning rate during the training process to accelerate the
convergence of the model. At the same time, we also used a learning rate decay strategy,
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Figure 1. Optimization algorithms

which gradually reduces the learning rate during the training process to avoid the model
oscillating near the local optimal solution. During the model training process, we also
used data augmentation techniques to rotate, translate, scale, and other operations on the
original data to enhance the model’s generalization ability. In addition, we also used early
stopping to prevent model overfitting, which means stopping training when performance
on the validation set stops improving to avoid overfitting on the training set.

In this study, we employed the Adaptive Momentum Estimation (Adam) optimization
algorithm to train deep learning models. Adam combines the advantages of adaptive
gradient algorithm (AdaGrad) and root mean square propagation (RMSProp) to adjust
the learning rate of each parameter by calculating the first-order and second-order moment
estimates of the gradient.

The optimization objective is to minimize the loss function of the model on the training
set, that is, the difference between the predicted label and the actual label. The optimiza-
tion process includes calculating loss through forward propagation, gradient through back-
ward propagation, and updating model parameters based on Adam algorithm. Through
iterative training, the model gradually adapts to the data distribution and exhibits good
generalization ability on the validation set.

In data-driven mode, we first preprocess the raw data, including steps such as cleaning,
encoding, and normalization. Then, divide the data into training set, testing set, and
validation set. During the training process, we use the training set to update the model
parameters and the validation set to monitor the performance of the model and prevent
overfitting. In the testing phase, we use the test set to evaluate the performance of the
model.

The data set used in this study comes from several public malware sample libraries, in-
cluding hundreds of thousands of malware samples and benign software samples. The data
set covers a variety of malware types, attack methods and operating system platforms,
ensuring the diversity and representativeness of the data.

In terms of experimental setup, we divided the data set into training set, test set and
verification set according to the ratio of 8:1:1. The training set is used to train the model,
the test set is used to evaluate the performance of the model, and the verification set is
used to adjust the super parameters and monitor the over fitting.
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Step 1 Data collection: Collect a large number of malicious software samples and normal
software samples for training and testing models. Collect malware samples from multi-
ple sources, including publicly available malware libraries, security laboratories, security
companies, etc. At the same time, normal software samples are also collected to ensure
the generalization ability of the model.

Step 2 Data preprocessing: Preprocessing the collected data, including noise removal,
normalization, and other operations. After collecting samples, perform data filtering to
remove duplicate, invalid, or incorrect samples. Classify the samples and store malicious
software and normal software in different datasets. Preprocessing includes operations such
as data cleaning, format conversion, and feature extraction. For binary files, convert them
to image or text format for model processing. For malware samples, we need to annotate
them to indicate their malicious nature. We adopted a semi supervised learning strategy
based on deep learning, using a small amount of annotated data to train the model and
improve its generalization ability.

Step 3 Model construction: Build a deep learning model and a CNN model based on
Adam optimization algorithm.

Step 4 Model training: Utilize collected data for model training, adjust model pa-
rameters through optimization algorithms, and improve model detection accuracy and
efficiency.

Step 5 Model evaluation: Evaluate the trained model, including accuracy, recall, and
other indicators. In terms of model evaluation, we used metrics such as accuracy, recall,
and F1 value to evaluate the performance of the model. At the same time, we also
conducted cross validation experiments to verify the stability and generalization ability
of the model.

Through the above methods, we have successfully constructed a malware detection
model based on data-driven and optimized deep learning, and achieved high detection
accuracy and efficiency. Figure 2 shows the process of data processing.

4. Malicious software detection based on improved CNN-+RNN.

4.1. CNN+RNN Deep Learning Algorithm Based on Adam. The malware de-
tection method based on Adam’s CNN+RNN deep learning algorithm can combine CNN
and RNN for malware classification and detection.

The CNN+RNN deep learning algorithm based on Adam can be used for malware
detection. This algorithm combines the advantages of CNN and RNN to accurately
detect malicious software by extracting its features and learning its behavior patterns.

In the CNN section, convolutional layers can be used to extract image or text features
from malicious software. Convolutional layers can automatically learn local features of in-
put data and perform feature selection and mapping through pooling layers and activation
functions. By stacking multiple convolutional layers, higher-level feature representations
can be gradually abstracted.

In the RNN section, the ability of recurrent neural networks to process sequence data
can be utilized to model the behavior patterns of malicious software. RNN processes input
sequences through memory state, captures temporal information, and is able to capture
dependencies between sequences. By applying RNN to the behavior sequence of malicious
software, dynamic features and behavior patterns of malicious software can be learned.

The optimizer based on Adam can dynamically adjust the learning rate during the
training process, enabling the algorithm to better converge to the optimal solution. The
Adam optimizer combines the advantages of both Momentum and RMSprop optimization
algorithms, updating weights and biases by calculating the exponential decay average of
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gradients, thereby achieving faster convergence speed and better generalization perfor-
mance during the training process.

By combining CNN and RNN, Adam based deep learning algorithms can effectively
extract features of malicious software and learn its behavior patterns [34], thereby achiev-
ing accurate detection of malicious software. This algorithm can be applied to malware
detection tasks to improve the accuracy and efficiency of detection. The following is the
implementation step:

(1) Data preparation: Collect malicious software samples and normal software samples,
preprocess the samples, including data cleaning, format conversion, feature extraction,
and other operations.

(2) Build CNN model: Use CNN model to extract features from malicious software
samples. The CNN model can automatically learn image features and extract key features
from malicious software samples. The relevant formulas for constructing CNN models
mainly include convolution operations and activation functions.

(3) Build RNN model: Use RNN model to model the sequence of malicious software
samples and capture the temporal dependencies between malicious software. The relevant
formulas for constructing RNN models mainly include recursive formulas and update
formulas.

Recursive formula:
The recursive formula of RNN defines the output of hidden state h-t when time step is

t:
he = o (Wy {t — 1} + Wiy, + bp) (3)

Update formula:
The update formula of RNN defines the updating of hidden state when time step is .

he = h{t — 1} + tanh (W, {t — 1} + W, + by) (4)
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(4) Training CNN and RNN models: Use Adam optimization algorithm to train CNN
and RNN models separately. By adjusting model parameters, the model can better learn
the features and temporal dependencies of malicious software. Weighted average the
outputs of CNN and RNN to obtain the final classification result. Its formula can be
expressed as

fused_output = o x CN N _output + 3 * RN N _output (5)

a and f is a weighted coefficient that can be adjusted according to specific circum-
stances.

The output is the output result of CNN and RNN respectively.

(5) Optimization algorithm based on Adam: Use Adam optimization algorithm to train
the fused model, minimize the loss function by adjusting model parameters, and improve
the classification performance of the model.

Momentum gradient descent part:

Vaw = B X Vg + (1 — 1) % dW (6)

Udbzﬁl deb—i-(l—ﬁl)*db (7)
The vq,, and vy represent the momentum gradient descent part of the weight and bias,
respectively. (1 is the momentum coefficient, and dWW and db are the gradients of weight
and bias, respectively.
RMSprop section:
S_dw = B2 % S_dw + (1 — B2) * dW? (8)

S_db = B2 % S_db+ (1 — B2) = db? (9)

where S_dw and S_db represent the RMSprop portion of weight and bias, respectively.
(2 is the RMSprop coefficient, where diW? and db* are the gradient squared of weights
and biases, respectively.

Parameter update:

v_dw
0=10 (a\/m) (1—p51)*6 (10)

Here 6 indicates the parameters that need to be optimized, « is the learning rate, and
¢ is a very small constant used to prevent the denominator from being 0.

Overall, the optimization algorithm based on Adam combines the advantages of mo-
mentum gradient descent and RMS prop, and adjusts the learning rate of each parameter
by calculating first-order and second-order moment estimates. This algorithm is suitable
for optimization problems of large-scale data or parameters, as well as problems containing
high noise or sparse gradients.

Feature fusion: Fusing the output features of CNN and RNN models to obtain richer
feature representations.

Gradient descent formula in back propagation algorithm:

oL

Aw = g (11)

Among them, Aw is the update amount of weight parameters, 7 is the learning rate,
and g—i is the partial derivative of the loss function with respect to weight parameters
[35].

Building a classifier: Use a classifier to classify the fused features and determine whether
the software is malicious.

Training classifier: Use Adam optimization algorithm to train the classifier and improve
its accuracy and efficiency by adjusting its parameters.
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Detecting malware: Input the software samples to be detected into the trained CNN
and RNN models, extract their feature vectors, and fuse them. Then, the fused feature
vectors are input into the trained classifier, and the output of the classifier is used to
determine whether the software is malicious.

Through the above steps, Adam based CNN+RNN deep learning algorithm can achieve
classification and detection of malicious software. This method combines the advantages
of deep learning and traditional machine learning algorithms to improve the accuracy and
efficiency of malware detection. Considering the complexity and variability of malware,
this method can also adjust and optimize the model according to actual situations to
adapt to constantly changing malware threats.

4.2. The malware detection algorithm framework. The malware detection algo-
rithm framework based on Adam’s CNN4+RNN deep learning algorithm usually includes
the following main steps:

e Data preprocessing: Preprocessing operations such as cleaning, format conversion,
and feature extraction are performed on input data to facilitate subsequent model
training and classification.

e Building a CNN model: Using CNN (Convolutional Neural Network) for feature
extraction and classification of image data. CNN models typically include multiple
convolutional layers, pooling layers, fully connected layers, etc., to gradually extract
features from images.

e Building an RNN model: Using RNN (Recurrent Neural Network) for feature ex-
traction and classification of temporal data. RNN models typically include multiple
loop layers, fully connected layers, etc., to capture sequence features in temporal
data.

e Fusion of CNN and RNN models: Fusing the outputs of CNN and RNN models to
comprehensively consider features in image and temporal data. The fusion method
can be simple stitching, weighted averaging, etc.

e Optimization algorithm based on Adam: Use Adam optimization algorithm to train
the fused model, minimize the loss function by adjusting model parameters, and
improve the classification performance of the model.

e Model evaluation: Use the test set to evaluate the trained model, calculate metrics
such as accuracy, recall, F1 value, etc, to evaluate the performance of the model.

The following are descriptions of these formulas:

TP+TN
TP+TN+ FP+ FN
Among them, TP represents True Positive, TN represents True Negative, F'P repre-
sents False Positive, and F'N represents False Negative. Accuracy represents the propor-
tion of correctly classified samples in the model to the total number of samples.

Accuracy = (12)

TP
l=—-— 1
Reca TPLEN (13)

The recall rate represents the proportion of the number of positive samples correctly
classified by the model to the total number of positive samples. In malware detection,
the recall rate is also known as the True Positive Rate, which represents the proportion
of models that can correctly identify malware.

2 x (Precision x Recall)

F1 Score = (14)

Precision + Recall
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Among them Precision = T'P/(T P + F'P) represents the proportion of correctly classi-
fied positive samples in the model to all predicted positive samples. The F1 value takes
into account both accuracy and recall, and is a comprehensive evaluation indicator of
model performance. The closer it is to 1, the better the performance of the model.

Cross entropy loss function formula:

L=- Z;l y; log (Qz) (15)

where L is the loss function value, n is the number of samples, y; is the true label, and
y; is the probability value predicted by the model.
Regularization term formula:

Lreg = A Z U}? (16)
i=1

where L, is the value of the regularization term, X is the regularization coefficient, and
|wl||3 is the sum of squares of the weight parameters.

The malware detection algorithm framework based on Adam’s CNN+RNN deep learn-
ing algorithm usually includes the following main steps:

Data preprocessing: Preprocessing operations such as cleaning, format conversion, and
feature extraction are performed on input data to facilitate subsequent model training
and classification.

The normalized data follows a normal distribution, and the formula is as follows:

. x — min(x)

rt = (17)

max(x) — min(z)

Among them, z*, x represent the values before and after conversion, and represent the
maximum and minimum values of the original data, respectively.

Data standardization, also known as Z-score normalization, refers to the process where
data (z) is centered on the mean () and then scaled to the standard deviation (o),
resulting in a normal distribution with a mean of 0 and a variance of 1 (i.e., standard
normal distribution). This process is known as data standardization.

«_ T M

Tt =— (18)

x and x* represent the values before and after conversion, respectively.

Scale and transform each feature separately so that the maximum absolute value of
each feature in the training set will be 1.0, and scale the attributes to [1,1]. It does not
move centered data. .

/
7T max || (19)

By moving the decimal places of the attribute values, the attribute values are mapped
between [—1, 1], and the moved decimal places depend on the maximum absolute value
of the attribute values. Conversion formula:

. x
"= 1ok (20)

Building a CNN model: Using CNN for feature extraction and classification of image
data. CNN models typically include multiple convolutional layers, pooling layers, fully
connected layers, to gradually extract features from images.

Building an RNN model: Using RNN for feature extraction and classification of tem-
poral data. RNN models typically include multiple loop layers, fully connected layers,

etc. to capture sequence features in temporal data.
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Fusion of CNN and RNN models: Fusing the outputs of CNN and RNN models to
comprehensively consider features in image and temporal data. The fusion method uses
splicing and weighted averaging.

Optimization algorithm based on Adam: Use Adam optimization algorithm to train
the fused model, minimize the loss function by adjusting model parameters, and improve
the classification performance of the model.

Model evaluation: Use the test set to evaluate the trained model, calculate metrics such
as accuracy, recall, F1 value, to evaluate the performance of the model.

The steps can be described as follows:

e Data collection: Collect malware sample data from various sources.
e Data preprocessing:
— Data cleaning: Remove duplicate, invalid, or abnormal data.
— Feature extraction: Extracting useful features from malicious software samples.
— Data augmentation: Generate more training data by transforming malicious
software samples.

e Build model:

— Define CNN structure: Use convolutional layers, pooling layers, activation func-
tions, etc. to construct CNN models.

— Define RNN structure: Use RNN to construct RNN models.

— Model fusion: Integrating CNN and RNN models.

e Training model:

— Initialize parameters: Use random methods to initialize the parameters of the
model.

— Forward propagation: The input data is propagated forward through the model
to calculate the output result.

— Calculate loss: Calculate the loss function value between the output result of the
model and the actual result.

— Back propagation: Calculate the gradient based on the loss function value and
update the model parameters through back propagation of the gradient.

— Optimizer selection: Use the Adam optimizer to dynamically adjust the learning
rate and optimize the model parameters.

— Training iteration: Repeat steps 4.2-4.5 multiple times until the preset number
of iterations is reached or the convergence condition is met.

e Validation model: Use validation data to validate the model and evaluate its per-
formance. Adjust the parameters or structure of the model based on the validation
results.

e Detecting malware: Using a trained model to detect unknown malware. Compare the
detection results with known malware libraries to determine the type and behavior
pattern of unknown malware. Take corresponding safety measures based on the test
results as shown in Figure 3.

5. Experimental results and analyses.

5.1. Experimental environment and experimental data set. Experimental envi-
ronment:

Operating system: Windows 10 or Linux Ubuntu 18.04.

Development tools: Python 3.7, Tensor Flow 2.0.

Hardware requirements: CPU (Intel i5 or higher), GPU (NVIDIA GeForce GTX 1060
or higher), 8GB RAM.

Experimental dataset:
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Figure 3. The malware detection algorithm framework

Malicious software dataset: Public malicious software datasets: KDD Cup 99 dataset,
these datasets contain a large number of malware samples that can be used to train and
test deep learning models.

Normal software dataset: In order to build an effective malware detection model, it is
also necessary to collect normal software samples as a comparison dataset. You can use
publicly available normal software datasets or collect normal software samples yourself.

Data preprocessing: After collecting samples, data preprocessing is required, including
data cleaning, format conversion, feature extraction, and other operations. The specific
steps of preprocessing can refer to the previous answer.

In order to obtain better experimental results, it may be necessary to continuously
update and optimize the experimental dataset and deep learning models. Meanwhile, in
order to evaluate the performance of the model, indicators such as accuracy, recall, F1
value, etc. can be used to evaluate and compare the model.

In addition to the commonly used accuracy indicators, we also used recall rate, accuracy
rate and F1 score to comprehensively evaluate the performance of the model. Recall rate
measures the ability of the model to correctly identify malware samples, accuracy rate
measures the proportion of actual malware in the samples predicted by the model as
malware, and F1 score is the harmonic average of recall rate and accuracy rate, which
can more comprehensively reflect the performance of the model. In order to enhance the
interpretability of the model, we use grad CAM technology to visualize the key features
of the model in the decision-making process. Through grad cam, we can observe the
areas and features that the model pays attention to when identifying malware, so as
to understand the decision basis of the model. In addition, we also carried out cluster
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analysis on the internal representation of the model, and further revealed the decision-
making mechanism of the model by visualizing the feature representation of different
categories.

The following is an example of a malicious software detection experiment data table
based on Adam’s CNN+RNN deep learning algorithm. The article uses different datasets
for detection and algorithm validation, and the results are shown in the following table.

Table 1. Experimental result data under different experimental datasets

Sample Accuracy Recall F1

Dataset Size (%) (%) (%)

KDD Cup 99 41224 95.5 90.2 92.8
dataset

NSL-KDD 10000 94.8 89.5 91.6
dataset

Self-collected 3000 93.9 87.6 90.2
dataset

Different datasets may have different feature distributions and sample sizes, which can
affect the training and performance of the model. Some datasets may contain more mal-
ware samples, while others may contain more normal software samples. In addition, there
may be differences in the behavior and characteristics of malicious and normal software
in different datasets, which can affect the classification performance of the model. Dif-
ferent datasets may require different model parameters and structural settings to achieve
optimal classification performance, as shown in Figure 4.
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Figure 4. Experimental result data under different experimental datasets

Cross validation methods were used to evaluate the model to avoid over fitting and
improve its generalization ability. The dataset can be divided into a training set, a
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validation set, and a test set. The training set is used to train the model, the validation
set is used to tune the model and select the best parameters, and finally the test set is
used to evaluate and compare the model.

5.2. Presentation of experimental results. The experimental results are presented as
follows: In the malware detection experiment based on Adam’s CNN+RNN deep learning
algorithm, we obtained the following experimental results:

Accuracy: We evaluated the trained model using the test set and achieved high accu-
racy. Specifically, our model achieved an accuracy of over 95.8% on the test set, which
means our model can accurately identify malicious software and normal software. In
order to verify the superiority of the proposed method, we compared it with other main-
stream malware detection methods. These comparison methods include methods based
on traditional machine learning and methods based on other deep learning architectures.
Experimental results show that our method is superior to the comparison method in
accuracy, recall, accuracy and F1 score. This is mainly due to the effectiveness of our
optimization algorithm and deep learning model, as well as the advantages of data-driven
mode.

Table 2. Accuracy of different algorithms

Algorithm Accuracy (%)
CNN-+RNN based on Adam 95.8
CNN 90.4
RNN 85.3
Support Vector Machine (SVM) 83.8
K-nearest neighbor (KNN) 81.6

Recall rate: Recall rate is the proportion of malicious software that the model can
correctly identify. Our model also achieved a recall rate of over 93% on the test set, which
means that our model can identify as much malware as possible and reduce false positives.

Table 3. Accuracy of different algorithms

Algorithm Recall (%)
CNN+RNN based on Adam 93.8
CNN 92.4
RNN 86.3
Support Vector Machine (SVM) 89.8
K-nearest neighbor (KNN) 84.6

Recall and accuracy are two interrelated indicators. In some cases, in order to improve
recall rates, some accuracy may be sacrificed; The opposite is also true. Therefore, when
evaluating algorithm performance, it is necessary to comprehensively consider these two
indicators in order to obtain more comprehensive evaluation results.

F1 value: F1 value is the harmonic average of accuracy and recall, used to comprehen-
sively evaluate the performance of the model. Our model also achieved an F1 value of
over 94% on the test set, indicating good performance in both accuracy and recall.

The F1 value is the harmonic average of accuracy and recall, taking into account both
indicators comprehensively. Therefore, when evaluating algorithm performance, F1 value



1256 Z. Yong and Y. Liu

Table 4. Accuracy of different algorithms

Algorithm F1 (%)
CNN+RNN based on Adam 94.6
CNN 93.4
RNN 89.3
Support Vector Machine (SVM) 86.8
K-nearest neighbor (KNN) 82.6

is an important indicator. By comparing the F1 values of different algorithms, the per-
formance of the algorithms can be more comprehensively evaluated as shown in Figure 5.
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Figure 5. Comparison of experimental results of different algorithms

By comparing other traditional machine learning algorithms and deep learning algo-
rithms, we found that the CNN4+RNN deep learning algorithm based on Adam has higher
accuracy and efficiency in malware detection. This is mainly because deep learning algo-
rithms can automatically learn the features of malicious software and capture its temporal
dependencies, thereby improving the classification performance of the model.

Table 5. Optimization methods for different learning rates

Methods Parameter Attenuation Training time Training Testing
rate (seconds) accuracy accuracy
Fixed
learning rate a=0.01 0 200 97.8% 97.5%
{;“ri;gd'iziz a=0.01 0.99 220 98.2% 98.0%
decfyxi‘;?i?ﬁglrate a=0.01 0.99 240 98.5% 98.3%
Adam (=0.001 0.95 240 98.7% 98.5%

£1=0.9, 52=0.999)
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Table 5 displays the results of training and testing the Adam optimization algorithm
on a dataset using different learning rate optimization methods. It can be seen that by
selecting appropriate learning rate optimization methods, the training time and accuracy
of the model can be affected, and the Adam optimization algorithm with adaptive learning
rate achieved the best training and testing accuracy, as shown in Figure 6.
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Figure 6. Optimization methods for different learning rates

We also conducted error analysis and identified some potential issues and improvement
directions. We found that the model has false positives on certain types of malware,
which may be due to insufficient sample size or insufficient feature extraction. To further
improve the performance of the model, we can optimize data preprocessing and feature
extraction methods, increase sample size and diversity, and adjust model parameters and
structure.

The CNN+RNN deep learning algorithm based on Adam performs well in malware
detection, providing an effective solution to address this challenging problem. In prac-
tical applications, the behavior and attack mode of malware will continue to evolve and
upgrade. In order to meet these challenges, we need to regularly update the data set and
re train the model to adapt to the new malware samples and attack patterns. In addition,
we can also introduce an online learning mechanism to enable the model to continuously
learn and update in the running process to cope with the changing malware environment.
At the same time, strengthening the security and robustness of the model is also one of
the important directions of future research.

6. Conclusions. This article proposes an Adam based CNN+RNN deep learning algo-
rithm for malware detection. Through experimental verification, this article demonstrates
that the algorithm performs excellently in accuracy, recall, and F1 value, significantly out-
performing traditional machine learning algorithms and single deep learning algorithms.
This article first introduces the importance and challenges of malware detection, and elab-
orates on the advantages of deep learning in malware detection. Next, this article provides
a detailed introduction to the design and implementation process of the CNN+RNN deep
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learning algorithm based on Adam, including steps such as data preprocessing, feature ex-
traction, model training, and evaluation. Through comparative experiments, this article
verifies the performance advantages of Adam based CNN+RNN deep learning algorithms
in malware detection. Compared with traditional machine learning algorithms and single
deep learning algorithms, this algorithm can more accurately identify malicious software
and has higher recall and F1 value.

We have comparedthe proposed framework to similar systems and tested its perfor-
mance against desirableperformance parameters. According to our findings, the proposed
architecture meets all needed requirements. This algorithm provides an effective solution
for solving the challenging problem of malware detection and provides valuable references
for research and practice in related fields.
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