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Abstract. With the advent of the big data era, the volume of electronic data in the legal
service system grows dramatically, while the amount of data access gradually increases,
resulting in slower and slower response times for system functions. Therefore, to solve
the response time problem of legal electronic data, this work proposes a performance tun-
ing method based on distributed storage system. Firstly, the distributed storage features
are screened twice to obtain the set of parameters that affect the storage performance.
In the process of performing training sample generation, orthogonal experimental design
method is used to select representative feature samples for experiments to obtain the
experimental values of throughput and latency. Then, the training samples are prepro-
cessed, and the parameter samples and experimental values are combined as the sample
data for the prediction model. An integrated neural network model based on Kernel Den-
sity Estimation (KDE) is proposed for the problem of sample data containing unbiased
noise. The integrated neural network model is used to train and learn from the sample
data, and further feature selection is performed to obtain throughput and delay prediction
models. Finally, according to the characteristics of the throughput and delay prediction
models, multiple swarms co-evolutionary approach is used to improve the position updat-
ing method of the traditional Fruit fly optimisation algorithm. The performance of the
distributed storage system is optimised using the hybrid Fruit fly optimisation algorithm,
and the optimal solution as well as the corresponding optimal parameter configurations
are obtained. Experiments are conducted using four typical workloads to verify the accu-
racy of the proposed prediction model. The results show that the proposed tuning method
can effectively improve the performance of the distributed storage system for legal elec-
tronic data.
Keywords: legal service system; big data; feature selection; integrated neural network;
fruit fly optimisation algorithm

1. Introduction. With the growing legal awareness of citizens, there is an increasing
demand for various legal services. Usually, most of the legal services are repetitive, shared
and generic [1, 2]. In the current real life, the realisation of a legal service information
system has a greater practical application value. However, with the arrival of the big
data era, the amount of electronic data in the legal service system [3] has increased
dramatically, while the amount of data access has also increased gradually, resulting in
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slower and slower response times for system functions. In the distributed storage system,
the response time of some functions becomes larger with the increase of data size, and
the response time of data insertion and retrieval is also getting larger.

In recent years, with the rapid development of cloud computing and the Internet, lead-
ing to the arrival of the big data era, the volume of data has grown rapidly, while the
types of data have also increased dramatically, of which more than 80% is unstructured
data. Since the data model of relational database is fixed, it cannot process and store
new types of unstructured data and can only be used by some specific application scenar-
ios. In order to solve the problem of processing and storing massive unstructured data,
HDFS [4, 5] and MapReduce [6, 7] technologies have emerged one after another, and
Google Inc. has designed and implemented a new data processing and storing scheme by
combining Google File System (GFS) [8] and MapReduce framework. Meanwhile, Google
designed and developed a distributed data storage system, which is used to process mas-
sive data. Distributed data storage system [9, 10] is a distributed, open-source, scalable
non-relational storage system that is a powerful tool for processing and storing semi-
structured and unstructured data. Database applications are able to run properly and
efficiently and have become a major concern for developers. Storing more and more data
in distributed databases leads to slower and slower response times for operations such
as data insertion, updating, and retrieval, and the performance of distributed storage
systems has become a key issue.

Therefore, under the existing equipment resources, how to improve the performance
of the distributed storage system for legal electronic data by modifying the parameter
configuration has become a popular issue. There is a default parameter configuration in
distributed clusters, but due to the different cluster sizes and resources of each system,
the default parameter configuration of distributed clusters can no longer meet the system
performance requirements in many real-life situations [11]. Therefore, how to design
reasonable parameter configurations to optimise system performance has also become
an urgent problem to be solved. Aiming at the problems described above, the research
objective of this work is to improve the service performance by adjusting the parameter
configurations of the distributed storage system under the condition that the computer
hardware resources are determined.

1.1. Related Work. the problem of performance modelling and optimization of storage
systems has gained extensive attention from researchers both at home and abroad.

Zarras [12] proposed an empirical scheme that allows determining the performance
characteristics of component-based applications through benchmarking and analysis, then
obtaining a performance prediction model about this class of applications, and finally ver-
ifying the validity of the model using an application implemented in two base components,
CORBA and J2EE. Zhao et al. [13] developed an algorithm for analysing the performance
of a black-box distributed system by acquiring message traces of system activities, two
different algorithms were developed to analyse the node-specific causal relationships of
a black-box distributed system from these traces, thus enabling developers to overcome
performance bottlenecks.

Currently, the performance analysis of configurable software systems is also attracting a
lot of attention. Pham et al. [14] proposed a methodology to derive a performance impact
model for configurable systems. This methodology trained a performance impact model
by describing the impact of all relevant configuration options and their interactions, and
combining machine learning and heuristic sampling using stepwise linear regression. This
model describes the relationship between configuration options and their interactions
with the performance of a configurable system. Yu et al. [15] proposed a method to



Distributed Optimization of Legal Electronic Data on ML 1299

automatically detect the interactions of performance related features as a way to improve
the accuracy of prediction, and the results showed an average prediction accuracy of
95%. Betta et al. [16] proposed a Fourier transform based algorithm to predict the
performance of any configurable system and mapped the relationship between all possible
combinations of configurations of n features of a system and its performance value into a
Boolean function, i.e., a performance model. Vieira and Eisner [17] proposed a method
for exact parameter space pruning, and the results revealed that some of the candidate
parameters were filtered out through a priori knowledge in optimisation procedures with
evolutionary algorithms.

Machine learning techniques have shown greater advantages in the performance mod-
elling and optimisation problems of storage systems. Jiang and Hassan [18] proposed a
linear regression model which is used to evaluate the interaction of loaded concurrent
queries in a distributed database system. The results show that two important factors
affecting query performance are network latency and local processing overhead. Gao et
al. [19] proposed a machine learning model based performance optimisation approach for
distributed systems. The authors used machine learning techniques to construct an inte-
grated performance prediction model that can predict the performance of a distributed
system and based on this, resource allocation and load balancing is performed. The au-
thors also propose a new resource scheduling strategy that combines machine learning and
deep reinforcement learning techniques, which can allocate resources based on system load
and demand to further improve system performance.

Based on the above analysis, it can be seen that distributed storage systems have
become the current mainstream solution. However, there are a large number of nonlinear
relationships between target variables and process variables in distributed storage systems,
which arise from the fact that many programmes are composed of multiple processes in
series or parallel, which gives rise to nonlinear problems between many variables, which
leads to defective problems in the output of traditional machine learning models when
they are applied to distributed storage systems, such as the partial least squares (PLS)
[20, 21] and the Support Vector Regression (SVR) [22]

1.2. Motivation and contribution. The unique multi-layer architecture of neural net-
works and the activation function at the connection of each layer make it possible to
derive a wide variety of network forms, thus enabling neural networks to extract features
suitable for the task through multi-layer non-linear mapping. In addition, the kernel
function method maps the projection of low-dimensional raw data to a high-dimensional
space, i.e., the raw data is upgraded by a nonlinear function, which is conducive to solving
the nonlinear problem between variables. Therefore, in order to solve the response time
problem of legal electronic data, this work proposes a performance tuning method based
on distributed storage systems in order to obtain the optimal parameter configuration of
distributed clusters for a given device resource.

The main innovations and contributions of this work include:
(1) Construct a performance prediction model. The training samples are preprocessed,

and the parameter samples and experimental values are merged as the sample data for
the prediction model. An integrated neural network model based on Kernel Density
Estimation (KDE) [23] is proposed to address the problem of sample data containing
unbiased noise. The integrated neural network model is used to train and learn from the
sample data, and further feature selection is performed to obtain throughput and delay
prediction models.

(2) Performance optimisation based on predictive models. According to the character-
istics of throughput and latency prediction models, multiple swarm co-evolution methods
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are used to improve the position updating method of the traditional fruit fly optimisation
algorithm. The performance of the distributed storage system is optimised using the hy-
brid Fruit fly optimisation algorithm, and the optimal solution as well as the corresponding
optimal parameter configuration are obtained.

2. Feature selection and training sample generation.

2.1. Performance feature selection. The distributed storage is parameterised using
the file hbase-site.xml. There are as many as 197 features in distributed storage [24,
25], which mainly contain six aspects such as Client, CallQueue, MemStore, BlockCache,
HStoreFile and WAL, but among them, the features that affect the performance of dis-
tributed storage need to be further filtered.

Since there are so many features of distributed storage, only some of them are given here.
This partial list of features allows you to view detailed information about each feature.
Many features just declare a configuration path, a port number or define a field that does
not have an impact on performance, for example, the feature hbase.rootdir is the shared
directory of the RegionServer. The only effect of the feature hbase.cluster.distributed is
to distinguish whether the cluster is fully distributed or pseudo-distributed. The feature
hbase.zookeeper.quorum primarily indicates the nodes running Zookeeper. The feature
hbase.master.info.port indicates the port number of the interface that is open to the
public, which is usually configured as 60020. So when you do the first feature filtering,
you can eliminate those features that have no impact on the performance according to
the feature descriptions.

In the first filtering step, parameter features that have no impact on storage performance
at all need to be filtered out. After the first screening, it is found that the remaining
parameter features are still relatively large, at this time, the parameter feature set also
contains many parameters that have a very small impact on the performance, so in the
next step of feature filtering, it is necessary to filter out this part of the features as well.

Table 1. Selected Parameter Characteristics Affecting Distributed Storage Per-
formance.

Feature name Eigenvalue type Feature Defaults Degree of impact
hbase.rootdir double 3000 High

hbase.cluster.distributed double 0.1 High
hbase.zookeeper.quorum int 32 High

hbase.local.dir double 1.0 High
hbase.master.port int 5 High

hbase.master.info.port int 5 High
Hbase.region.server.handler.count int 30 High

hbase.ipc.server.callqueue.handler.factor double 0 High
hbase.ipc.server.callqueue.read.ratio double 0 High

... ... ... ...

Some parameters have a low impact on performance, for example, hbase.master.logcleaner.ttl,
hbase.rpc.timeout, etc. The impact of these features on performance can be ignored, and
therefore, these features can be filtered out during the second feature filtering. There
is also a part of parameter features whose impact is defined as medium, for example,
hbase.snapshot.master.timeout.millis, etc. Although the impact of these features on the
performance is defined as medium, according to the application experience in the actual
project, it is found that some of these features have negligible impact on the performance
in the actual system, so this part of the parameter features is filtered out, and thus these
features can be filtered out during the second feature filtering. Therefore, this part of the



Distributed Optimization of Legal Electronic Data on ML 1301

parameter features is filtered out, so that the parameter features that affect the perfor-
mance are selected, and a total of 24 parameter features are selected. In this paper, the
information of these parameter features will be given in the form of table, which mainly
includes the feature name, feature value type, feature default value, and the influence of
the feature on the performance, as shown in Table 1.

2.2. Training sample generation. After two steps of feature screening, 24 parameters
in the distributed cluster are screened. In this paper, YCSB tool is used to simulate the
client to experiment on distributed storage performance. Therefore, two performance-
related parameters in YCSB tool, client threads (ycsb.client.threads) and data requests
(operationcount), which simulate the number of client threads and user data requests
in the actual system, are screened. When an orthogonal experimental design is used to
conduct the experiment, the number of levels for each parameter feature and the values
of the levels to be taken need to be determined first.

Algorithm 1 Method for solving orthogonal matrices

1: Input: Level of features S, orthogonal matrix [ai,j]N×M

2: Output: Orthogonal matrix corresponding to the number of feature levels [ai,j]N×M

3: Initialise the matrix [ai,j]N×M to all zeros.
4: for k = 1 to H do
5: j = Math.pow(S, k − 1)/(S − 1) + 1
6: for j = 1 to N do
7: temp = (i− 1)/Math.pow(S,H − k)
8: ai,j = Math.floor(temp)%S
9: end for
10: end for
11: for k = 2 to H do
12: j = Math.pow(S, k − 1)/(S − 1) + 1
13: for s = 1 to j − 1 do
14: for t = 1 to S − 1 do
15: for i = 1 to M do
16: a(i, j + (s− 1)× (S − 1) + t) = (a(i, s) + a(i, j))%S
17: end for
18: end for
19: end for
20: end for
21: Add 1 to each element of the orthogonal matrix.
22: return [ai,j]N×M

Each parameter feature takes 5 values within the range of values. If a parameter feature
does not have 5 values in the range of values, you can use the proposed level method,
which repeats some levels of this feature several times to make up to 5 levels. For example,
the parameter feature hbase.hstore.compactionThreshold is an integer parameter with a
default value of 3, a value range of [3,6], and only 4 level values. We can repeat this
parameter feature once for each of 5 and 6 to make up to 5 levels (e.g. 3,4,5,6,5,6).

In this paper, a 23-factor 5-level orthogonal test was used to select a representative
sample set of parameters for the experiment. The number of orthogonal table trials is
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calculated as shown in Equation (1).

N =
M∑
i=1

(S − 1) + 1 (1)

M =
SH − 1

S − 1
(2)

where M denotes the number of factors, S denotes the number of levels for each factor,
N denotes the number of experiments, and H is a positive integer.
In this experiment, the value of S is taken as 5 and the value of M is taken as 23, which

gives the value of H as 3. Therefore, in this paper, an orthogonal matrix with 125 rows
and 23 columns is designed. The orthogonal table solving procedure for this experiment
is shown in Algorithm 1 with time complexity O(SHM2) and space complexity O(1).

3. Performance prediction model based on integrated neural network.

3.1. Data preprocessing. Data preprocessing is the first step in the whole process of
making throughput and latency predictions, which involves merging the experimental
values of throughput as well as latency with the corresponding parameter feature samples
and converting them into a data format in which the integrated neural network can be
trained as a model.

Data preprocessing is mainly done by reading the log files of the experiments to obtain
the experimental values of throughput as well as delay and combining them with the
parameter feature list to generate a CSV file which is used as an input to the integrated
neural network. Since the integrated neural network is stochastic and insensitive to the
possible outliers in the experiments, there is no need to process the outliers of throughput
and delay when constructing the prediction model using the integrated neural network.
For data preprocessing, the log file and parameter feature list need to be read and then
all the sample data are loaded into the programme.

Firstly read the parameter configuration sample data from the file directory and store
the data into the two dimensional array conf data[rowNum][columnNum], then read the
experimental values of throughput and latency from the log files. Finally, these two arrays
are deposited into two CSV files throughput csv and latency csv respectively, which are
used as input files for the integrated neural network training model.

3.2. Integrated neural network model based on KDE. In this paper, throughput
prediction model and delay prediction model are obtained by training sample data with
integrated neural network model. Generating the prediction models consists of a total of
three steps, the first step is to read the training sample file and differentiate between the
features and the two target values, i.e., throughput and latency. The second step is to
train the sample data using the integrated neural network based on the features and the
two target values respectively and get the importance of each feature in the model and
again perform the feature selection to get the final prediction model.

Various data in distributed storage processes often face superimposed interference from
serial and parallel processes, etc., which manifests itself as interference from unbiased
noise and tends to produce a large amount of weakly labelled data, which leads to a large
number of nonlinear relationships between the target variables and the process variables.
However, traditional machine learning is difficult to cope with such problems. To address
the problem of large number of weak labels in distributed storage processes, an integrated
neural network model based on KDE is proposed.
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KDE is a nonparametric density estimation method [26], which mainly utilises a method
based on experimental data to estimate the probability density function of a particular
random variable. Two types of methods are included in probability density estimation:
parametric density estimation and nonparametric density estimation. Unlike parametric
density estimation, nonparametric density estimation produces more accurate results, and
its applicability is enhanced by the fact that no prior assumptions are made about the
distribution. The probability density estimation used subsequently in this paper is the
nonparametric estimation method.

Histograms are a common form of nonparametric density estimation, and kernel density
estimation is also a commonly used method of nonparametric density estimation, which is
based on nonparametric estimation of the calculated probability density function is shown
below:

p(x) =
1

Nh

N∑
i=1

K

(
x− xi

h

)
(3)

where p(x) denotes the calculated probability density function, N is the number of
samples, h denotes the width of the computational window, and K denotes the selected
kernel function. The commonly used kernel functions are triangular kernel, Gaussian
kernel and linear kernel.

The value of the window size h affects the results of the final kernel density estimation.
When h is too large, the data tends to flatten out, and when h is chosen too small, it
makes the data samples too dispersed to collect the characteristics of the sample data
itself, leading to too much randomness. Therefore the common practice is to choose the
window width empirically.

h = 1.06δ̂N− 1
5 (4)

where δ̂ is the sample standard deviation.
As shown in Figure 1, a Multi-Layer Perceptron (MLP) [27] is a fully-connected layer,

where each layer is connected using an activation function to ensure the existence of a
nonlinear mapping. Because of the activation function, the MLP has the ability to learn
nonlinearly, and the number of layers and neurons in the hidden layer of the MLP is gener-
ally designed according to the requirements, and the MLP is trained by Backpropagation
(BP) algorithm to obtain the corresponding parameters of the fully-connected network.

The BP algorithm uses Jacobi matrices to multiply with vectors. The mapping of
vectors to a function of quantities is assumed to have a gradient given the loss function
l = f(y), where y is the output of the neural network:

∇l =

(
∂l

∂y1
, . . . ,

∂l

∂ym

)T

(5)

As a variety of traditional machine learning algorithms, the main idea of Random
Forests (RF) algorithm [28] is to integrate multiple decision trees in parallel through the
integration learning Bagging idea. Usually, RF is used in classification problems, for
classification problems, the results of the model are voted by a number of decision trees
within the model, and the final result is to select the classification with the most votes.
For regression tasks, the results of the model are selected as the predicted mean of all
decision trees.

Assuming that the input feature (independent variable) under a particular dataset is
X and the target variable (to be predicted target label) is y, and (X, y) conforms to
an independent distribution, then randomly generating the training set θ at (X, y), the
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Figure 1. Structure of the MLP

model prediction result is denoted as f(x), which exhibits a mean-square generalisation
error:

EX,y[(y − f(X))2] (6)

Suppose there are n decision trees, then the mean of the predicted values {f(θ,Xn)}
of the n decision trees is the prediction of the random forest regression. When n → ∞,
then there are:

EX,y[y − f̄n(X, θn)]
2 → EX,y[y − Eθ(X, θn)]

2 (7)

When the number of decision trees n is infinite, the average generalisation error of a
single decision tree is denoted GE.

GE = EθEX,y [y − f(X, θ)]2 (8)

EX,y [y − Eθ(X, θn)]
2 ≤ ρGE (9)

where ρ refers to the weighted correlation coefficient between residuals.
The final regression function for RF is:

Y = Eθf(X, θ) (10)

For the noise reduction problem, the training dataset of RF has a high degree of ran-
domness, which brings variability to each tree model. When the tree model itself has
a strong fitting learning ability, when the training set of each tree model contains the
complete distribution of the target variable. In this case, each tree model represents the
predicted value of that label under the influence of noise, i.e., it can be regarded as a
sampling of that true value under noise interference.

Based on the above analysis, inspired by the randomness of random forests, the strong
fitting of neural networks, and the accuracy of KDEs, this work combines the three to
propose an integrated neural network based on KDEs. The integrated neural network is
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built based on the open-source deep learning platform PyTorch, and the number of layers
l, the number of hidden layer nodes m, the model training learning rate p1, the model
training optimiser Adam, and the number of training cycles ep1 are set for a single lit-tree
neural network, and a set of training data is randomly drawn from the training set to
form a sub-model training set. The parameters of each tree model are initialised, so that
the distribution of layer l parameters Wi is shown below:

Wl ∼ N

(
0,

√
2

nl

)
(11)

where n is the number of neurons in the l-th layer.
With the above distribution process, the exponential effect of the signal in forward

propagation and the exponential effect of the gradient in backward propagation can be
avoided when the tree model is trained, i.e., the problem of vanishing gradients is avoided
from some points of view. The forward propagation process is shown below:

zl = WlXl−1 + bl (12)

Xl = f(zl) (13)

where Wl is the l-th linear layer weight matrix, Xl−1 is the output of the previous layer
which is the input of this layer, Zl is the output of this layer after linear layer and Xl is
the input of the next linear layer.

Using ReLU() as the activation function, it can be obtained:

V ar(zl) = nl−1E(Wl)
2E(Xl−1)

2 = nl−1V ar(Wl)E(Xl−1)
2 (14)

And we expect the state of each intermediate layer to remain unchanged during forward
propagation.

1

2
nl−1Var(Wl) = 1 (15)

It can thus be seen that by initialisation, each state layer of the network will not be
biased by the propagation of the distribution of each state layer, leading to the problem
of vanishing gradients due to state bias.

When the tree models are all trained, the RF model {fi(θi), i = 0, 1, . . . , n− 1} is used
for label prediction. When the data is disrupted, each sub-model training set will contain
complete information about the noise distribution, and due to the high fit of the neural
network, it is able to learn the noise situation under a certain moment. Then, KDE
fitting is performed to obtain the window h according to Equation (4) and the probability
density value of the corresponding point is calculated based on Equation (3). We can
obtain the probability density estimate p(y) under the corresponding fitted probability
density function.

p(y) =
1

n · h

m∑
i=1

K

(
y − xi

h

)
(16)

Finally, the pre-processed data samples are trained using an integrated KDE-based
neural network to obtain throughput prediction models and label models, and the models
are scored.

The closer the importance of a feature is to 0, the less impact the feature has on
throughput or latency. If the importance of a feature is equal to 0, it means that the
feature has no effect on throughput or latency. Feature selection is performed during the
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training of the model to get the throughput and latency prediction model. Taking the
workload UH as an example, the importance of all features in the throughput prediction
model is shown in Table 2.

Table 2. Significance of features of throughput model under workload UH.

Parameter characteristics degree of importance
ycsb.client.threads 0.3671

hbase.regionserver.handler.count 0.0729
ycsb.operationcount 0.059

hbaseregiosnservermaxlogs 0.0341
hbase.ipc.server.callqueue.scan.ratio 0.0298
hbase.client.max.perserver.tasks 0.0213

hbase.hstore.compactionThreshold 0.0206
io.storefile.bloom.block.size 0.0204

4. Performance tuning of hybrid Fruit fly-based optimisation algorithms.

4.1. Problem definition. Improving the performance of distributed clusters on the basis
of existing resource devices has become a problem that must be solved in this project.
To address this problem, this paper implements a performance tuning method, which is
divided into two main steps:

The first step is to model the distributed performance using integrated neural networks.
The goal is to obtain the throughput as well as the relationship between latency and
features (a1, a2, . . . , an).

T = F (a1, a2, . . . , an) (17)

L = G(a1, a2, . . . , an) (18)

A system needs to consider both throughput and latency, so it needs to find a balance
between throughput and latency. Define the performance of distributed storage as the
weighted sum of throughput and latency, then the relationship between performance and
characteristics is shown below:

pref = w1 × T + w2 × L (w1 + w2 = 1) (19)

where pref denotes the performance of distributed storage, w1 denotes the weight of
throughput, and w2 denotes the weight of latency.
The second step is to implement the performance optimisation algorithm. An optimisa-

tion algorithm is designed to obtain the optimal performance pref according to Equation
(19) and the optimisation algorithm along with the corresponding parameter configuration
(a′1, a

′
2, . . . , a

′
n).

In this paper, the relationship between distributed storage performance and features is
investigated by using integrated neural networks to predict throughput and latency. In
addition, an hybrid FOA algorithm is used to optimise the performance of the distributed
storage system, and the optimal solution as well as the corresponding optimal parameter
configurations are obtained, which ultimately implements a performance tuning method.

The main objective of the study is to obtain the optimal solution for performance and
the corresponding parameter configuration, i.e., to obtain the maximum value of perfor-
mance and the corresponding parameter configuration. Using the hybrid FOA algorithm
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with throughput and delay prediction models, the performance is optimised to obtain the
parameter configurations when the performance is optimal, as shown in Figure 2. The
two performance models and the set of parameter configurations are used as inputs to au-
tomatically perform the performance optimisation and search for the optimal parameter
configurations on a global scale.

{a11, a22 ,..., a1n}

{a21, a22 ,..., a2n}

...

{am1, am2 ,..., amn}

1

Prediction model

Throughput Delay

2

w1+w2=1

Fitness function

=F(c,w1,w2,f,g)

{a11, a22 ,..., a1n}

{a21, a22 ,..., a2n}
...

{am1, am2 ,..., amn}
HFOA

3

{a'11, a'22 ,..., a'1n}

{a'21, a'22 ,..., a'2n}

...

{a'm1, a'm2 ,..., a'mn}

4

Figure 2. Performance tuning methodology

4.2. Hybrid hybrid fruit fly optimisation algorithm. According to the character-
istics of the throughput and latency prediction models, multiple swarm co-evolutionary
methods are used to improve the position update method of the traditional fruit fly op-
timisation algorithm. The performance of the distributed storage system is optimised
using the hybrid fruit fly optimisation algorithm, and the optimal solution as well as the
corresponding optimal parameter configuration are obtained.

In this paper, we use the multiple swarm co-evolutionary strategies of the Sparrow
Search Algorithm (SSA) [29] to improve the Fruit Fly Optimisation Algorithm (FOA)
[30], and design a Hybrid Fruit Fly Optimization Algorithm (HFOA).

(1) Population coding.
Set the position vector of fruit fly individual i to be Xi, then the component xj

i should

satisfy the initial search range of fruit fly, 1 ≤ xj
i ≤ n.

(2) Location update.
FOA has the advantages of simple and clear optimisation mechanism, easy to un-

derstand, and easy to implement in programming, etc. In order to retain its essential
optimisation characteristics and to solve the problem that the algorithm tends to fall into
local extremes, instead of adopting the traditional way of updating the position of the
population, the traditional way of updating the position of the population is used here,
and instead, it combines the multiple swarms of the co-evolutionary method in SSA.The
core idea of SSA is that the sparrow population is divided into the discoverers and the
joiners, and the discoverers are responsible for the population’s finding food and provid-
ing foraging areas and directions for the entire sparrow population, and the joiners use
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the discoverers to obtain food. In addition, when the sparrow population is aware of the
danger, it will make anti-predator behaviour, so as to prevent the algorithm from falling
into local optimality.

Based on the core idea of the sparrow search algorithm, we set up a fruit fly group by
sorting the individual fruit fly odour concentration values from small to large. The first
50% are ”discoverers”, the second 50% are ”joiners”, and ”anti-predator behaviour” only
occurs in the first 10% of ”discoverers”. Anti-predation behaviour occurs only in the first
10 per cent of the ”discoverers”.

Setting up fruit fly ”discoverers” to conduct broad-scale searches is a diversity conser-
vation strategy.

X t+1
i =

{
X t

i + rand(FR1), Ri ≤ ST1;

X t
i + rand(FR2), otherwise.

(20)

where t is the number of iterations, xt
i is the position vector of fruit fly individual i in

generation t, FR1 is the fully random flight range, which is determined by the performance
tuning problem, and FR2 is the semi-random flight range, which is determined by the
constraints of hardware resources.

Setting up to perform a secondary search obeys a strategy to accelerate convergence.

X t+1
i =

{
Xpt+1 + rand(FR3), Smellti ≤ ST2;
X t

i + γ1 · rand(FR2), otherwise.
(21)

where Smelli is the value of odour concentration of fruit fly individual i, Xp is the
current optimal position occupied by the ”discoverer”, and γ1 is the perturbation factor.
The individual flight range FR3 is determined by Xp.

By setting ”anti-predator behaviour”, the fruit fly is prevented from always staying at
a certain position and from falling into a local optimum.

X t+1
i =

{
X t+1

i , Smellt+1
i < St

best;
X t

best + γ2 · rand(FR4), otherwise.
(22)

where Xbest is the current global historical optimal position, Sbest is the current global
historical optimal odour concentration value, γ2 is a perturbation factor, and FR4 is the
individual flight range, as determined by Xbest. Individual flies flew randomly to the
vicinity of the global historical optimal position, and the flight distance was constrained
by controlling the number of FR4 components that were zero.

4.3. HFOA-based performance tuning. To compute the fitness value of an individ-
ual using HFOA, it needs to be decoded and the decoded individual is substituted into
the fitness function for computation. Therefore, the real coded value of each feature
corresponding to the actual value of the feature is calculated as shown below:

xi = ⌊(ximax − ximin
)× genei + xi min⌋ (23)

where xi denotes the actual value of the i-th feature, ximax denotes the maximum value
allowed for the i-th feature, ximin

denotes the minimum value allowed for the i-th feature,
and genei denotes the real number encoding of the i-th feature. For example, the first
feature in an individual, hbase.client.max.peregrion.tasks, has a real number encoding of
0.13 and a value range of [1, 4], so the actual value corresponding to this configuration
parameter is 1.

When solving optimisation problems using HFOA, there is a measure of the degree
of individual superiority or inferiority, which is the fitness function. In real problems,
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the fitness function and the objective of the problem are not necessarily identical. The
optimisation problem in this paper is to find the maximum value of the objective function
pref. What needs to be optimised in this paper is the weighted sum of throughput and
delay, which belongs to the single-objective, multi-dimensional optimisation problem, so
the fitness function used is shown below:

fit(f(x)) = f(x) (24)

where f(x) denotes the objective function.

5. Experimental results and analyses.

5.1. Experimental environment. Four machine learning algorithms are used to con-
struct models respectively, and the prediction results of multiple models are compared
and validated and analysed to verify the accuracy of the prediction models in this paper.
The optimisation results of the HFOA algorithm and three optimisation algorithms are
compared and analysed to verify the efficiency of the HFOA algorithm.

Since the required distributed storage system for legal electronic data contains one
master node and eight slave nodes, it is necessary to create nine virtual machines on a
well-performing server and install CentOS system to build a distributed cluster. Secondly,
this paper uses YCSB tool to test the performance, so it is also necessary to create a virtual
machine on the server, install CentOS system and install YCSB tool to simulate the client.
The specification parameters and software versions of the server and virtual machine in
the experiment are shown in Table 3, Table 4, and Table 5.

5.2. Predictive model validation. According to Algorithm 1, 3200 sets of training
sample data are obtained and the sample data are preprocessed. Then, the data are
trained by four algorithms to generate the corresponding prediction models. four different
workloads are shown in Table 6.

Table 3. Server Parameter Specifications.

Parameters Numerical value
Operating system Centos 7.5
Processor model Intel Xeon CPU E5-2698 v3 @2.30GHz
Number of cores 16

Random access memory (RAM) 128 G
Hard drive 10 TB

Table 4. Parametric specifications of the laboratory computer.

Parameters Numerical value
Number of virtual machines 9

Operating system Centos 7.5
Processor model Intel i5-13600kf
Number of cores 14

Random access memory (ram) 8 g
Hard drive 80 gb
Bandwidths 1.0 gbps
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Table 5. Experimental environment software version.

Software name Hadoop HBase YCSB JDK
Version number 2.6.0 1.0.3 0.13.0 1.8.0

Table 6. 4 different workloads.

Filename Paradigm
Workloada update-heavy (UH)
Workloadb read-heavy (RH)
Workloadc read-only (RO)
Workloadd read-latest (RL)

For different workloads, integrated neural network, RF, MLP and Support Vector Ma-
chine (SVM) [31] are used to train the sample data and construct the prediction models
to obtain four different throughput prediction models and four different delay prediction
models, respectively. Then 300 groups of test samples were randomly selected and sub-
stituted into the four throughput and delay prediction models to compare the obtained
predicted values with the actual measured values. These prediction models are compared
and analysed to verify the accuracy of the prediction models of the KDE-based integrated
neural network. Figure 3 illustrates the error rates of the throughput models for four
different workloads. Figure 4 shows the error rates of the delay models for these four
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Figure 3. Error rates of throughput models for four different workloads

workloads, and similarly, the integrated neural network is analysed in comparison with
different delay prediction models constructed by RF, MLP and SVM.
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Figure 4. Error rates of delay models under four different workloads

It can be seen that for different workload conditions, the error rate of the delay pre-
diction model constructed by the integrated neural network, the error rate of the model
under the workload RO is 9.6 %, which is the largest among the four workloads.The av-
erage error rate of the model among the four workloads is 8.2 %. While the average error
rate of the delay prediction models constructed by RF, MLP and SVM are 9.5 %, 10.7 %
and 12.6 % respectively. Thus it can be seen that the prediction models constructed by
the integrated neural network are more accurate as compared to the models constructed
by the traditional machine learning methods.

5.3. Analysis of tuning performance. After obtaining the throughput and latency
prediction models, HFOA was used to optimise the distributed storage performance and
obtain the optimal solution. In order to verify the efficiency of HFOA, HFOA is analysed
against FOA, PSO and GA.

This experiment takes the workload RO as an example and sets the weights of through-
put and latency as w1 = 0 and w2 = 1, indicating that the weight of throughput in
distributed performance is 0 and the weight of latency is 1. Therefore, the latency predic-
tion model is used as the objective function of the optimisation algorithm. Four different
optimisation algorithms are used to optimise the objective function, the initialised popu-
lation size is uniformly set to 200, the number of iterations of the four algorithms is set to
500, and then the experiments are executed for 20 times to take the average, focusing on
comparing the size and stability of the optimal solution obtained by the four optimisation
algorithms. Figure 5 shows the convergence of the delayed optimal solutions obtained by
the four optimisation algorithms.

HFOA has converged to the optimal value when the number of iterations reaches 150,
whereas FOA and PSO converge to the optimal value at 200 iterations and GA converges
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Figure 5. Convergence comparison of 4 optimisation algorithms

to the optimal solution at 250 iterations. Compared with other optimisation algorithms,
HFOA converges to the smallest optimal solution, followed by FOA. It shows that the
HFOA proposed in this paper not only improves in convergence speed, but also works
better than other optimisation algorithms in convergence value.

6. Conclusions. This work proposes a performance tuning methodology applicable to
distributed storage systems for legal electronic data in order to obtain the optimal pa-
rameter configuration of distributed clusters for a given device resource. A KDE-based
integrated neural network model is proposed for the sample data contains unbiased noise
problem. The integrated neural network model is used to train and learn from the sample
data, and further feature selection is performed to obtain throughput and delay prediction
models. According to the characteristics of the throughput and delay prediction models,
multiple swarm co-evolution methods are used to improve the position updating method
of the traditional FOA. The HFOA algorithm is used to optimise the performance of
the distributed storage system, and the optimal solution and the corresponding optimal
parameter configuration are obtained. The experimental results show and compare with
multiple machine learning algorithms that the prediction model based on integrated neu-
ral networks has the highest accuracy. Comparative analysis with multiple optimisation
algorithms shows that the HFOA-based performance tuning approach has better optimal
solutions and convergence speed.
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