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Abstract. This paper proposes an improved reptile search algorithm (IRSA) to over-
come decreasing population diversity and convergent local optima in middle and late
iterations. This paper presents improvements to updating the belly-walking position of
reptiles throughout the exploration phase. Add an approach for learning from the best
individuals and incorporate a greedy selection mechanism to expedite population conver-
gence. Add roulette wheel selection alongside the proposition of a new hybrid mutation
equation aimed at enhancing the overall diversity within the population. The failure
restart mechanism disrupts the optimal solution site to refresh the population, boosting
the algorithm’s ability to escape local optima. IRSA is tested by simulating 28 CEC2013
test functions, and the results reveal that IRSA has faster convergence, higher accuracy,
and better global optimization than the original algorithm.
Keywords: reptile search algorithm, single objective optimization, metaheuristic, CEC2013
test

1. Introduction. Optimization technology is very nascent and has extensive application
across various domains, including science, engineering, the economy, management, and
industry. This technology studies the optimal solution of problems defined by mathe-
matical methods [1]. Within the realm of optimization techniques, traditional methods
are characterized by their arduous nature in solving complex problems that are large-
scale, high-dimensional, and nonlinear in nature. These types of problems are commonly
encountered in real-world scenarios, and their inherent complexity often results in the al-
gorithm converging towards a local optimum solution [2]. Therefore, in this case, inspired
by the principle of bionics, a new optimization method—metaheuristic optimization—has
emerged.

Metaheuristic optimization techniques can be divided into four basic categories: The
majority of optimization algorithms based on evolution draw inspiration from natural
and biological evolution. These algorithms aim to simulate the evolutionary process ob-
served in biology, namely the theory of natural selection, to solve optimization issues op-
timally. Representative algorithms include the Differential Evolution (DE) algorithm [3],
the Biogeography-Based Optimizer (BBO) algorithm [4], the Evolutionary Programming
(EP) algorithm [5], Genetic Programming [6](GP), Genetic Algorithm [7](GA), etc.

Physics-based optimization algorithms are based on natural phenomena, including grav-
ity, inertia force, temperature, and electromagnetic fields. Common physics-based opti-
mization algorithms: Simulated Annealing (SA) algorithm [8], Central Force optimization
(CFO) algorithm [9], Black Hole (BH) algorithm [10], Water Wave optimization (WWO)
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algorithm [11], Galactic Swarm optimization (GSO) algorithm [12], Equilibrium Opti-
mizer (EO) algorithm [13], etc.

Human-based algorithms encompass algorithms that emulate both physical and non-
physical behaviors in humans to effectively identify optimal problem-solving approaches.
Examples of such algorithms include the Imperialist Competitive algorithm (ICA) [14],
Teaching-Learning-based Optimization optimization (TLBO) [15], and Social-Based al-
gorithm (SBA) [16].

Swarm intelligence-based optimization algorithms simulate complex social behavior like
information exchange and mutual cooperation between biological groups in nature to opti-
mize. Among them, Ant Colony optimization (ACO) algorithm [17] is the most represen-
tative algorithm. Ants track and release pheromones during movement, and at the same
time, the concentration of pheromones determines the probability of walking paths, form-
ing a positive information feedback phenomenon. Through this kind of indirect communi-
cation mechanism, we can realise the shortest path and search targets together. Similarly,
Particle Swarm optimization (PSO) algorithm [18], Artificial Bee Colony (ABC) algo-
rithm [19], Bat algorithm [20](BA), Cuckoo Search (CS) Algorithm [21], Krill Herd Algo-
rithm [22](KH), Firefly Algorithm [23](FA), Grey Wolf Optimizer (GWO) Algorithm [24],
Whale optimization Algorithm [25](WOA), Squirrel Search Algorithm [26](SSA), etc. In
2022, Abualigah et al. [27] proposed the Reptile Search Algorithm (RSA).

Achieving higher optimization performance while minimizing computational resources
is a key aspiration in swarm intelligence optimization algorithms. No algorithm is ideal
for all optimization problems, in theory. Consequently, this compels researchers to seek
out optimization strategies that are more efficient. In this context, this paper proposes an
improved reptile search algorithm (IRSA) that aims to enhance both accuracy and speed
of convergence when applied to difficult optimization problems. The primary aspects
pertaining to innovation and motivation are as follows:

1. To improve the exploration phase. Improve the methodology for updating the reptile
belly walk position during the encircling phase. Incorporation of the strategy of reptiles
learning for their individual optimum is implemented to uphold population variety and
enhance the pace of convergence.

2. To add a mutation mechanism. A new individual position update equation with
hybrid mutations is proposed. The mutation population uses roulette wheel selection,
which includes the global best, individual history best, and global worst. This method
improves algorithm convergence speed and population variety, balancing performance.

3. To add a failure-restart mechanism. Once the number of failures surpasses a pre-
determined threshold, the restart equation is employed to perturb the global optimal
individual as the central point, update the population, and increase population diversity,
thereby enhancing the capacity to escape local optima and improving search precision.

The CEC 2013 test results show that on the test set with RSA and compared to other
four kinds of typical optimization algorithms, the proposed IRSA in terms of convergence
speed, precision, and stability has a significant advantage.

This paper’s contents are as follows: Section 2 summarizes some improved algorithm
and RSA algorithm research. Section 3 explains RSA and process principles. Section 4
analyses the drawbacks of the RSA algorithm and further proposes the IRSA algorithm.
Section 5 displays the CEC2013 test set simulation results of the IRSA, RSA, and other
prominent swarm intelligence algorithms. Section 6 summarizes this paper’s algorithm.

2. Related work. Numerous scholars have studied heuristic algorithms to improve their
performance. In 2014, Wang et al. [28] proposed a biogeography-based approach to krill
swarm optimization using a migration algorithm, which used standard KH to reduce
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search speed and added a krill migration (KM) operator to improve search efficiency,
but the parameters needed to be adjusted to solve different problems. In 2015, Kiran et
al. [29] proposed a varied search strategy artificial bee colony method, which selects one or
more search strategies according to the characteristics of the numerical function to obtain
better quality of the solution, but the algorithm exhibits suboptimal efficiency in terms of
optimization. In 2016, Wang et al. [30] proposed an improved BAT algorithm, combining
the mutation operator of the difference algorithm to reduce accurate evaluations of can-
didate solutions, but its application field is relatively limited. In 2017, Wang et al. [31]
proposed a new variant of the firefly algorithm and established a new neighborhood at-
traction model to reduce the mutual attraction of fireflies, which can effectively reduce
the oscillation in the process of calculation iteration and the complexity of calculation
time, but using the same neighborhood size for different search stages is less flexible. In
2020, Hu et al. [32] came up with an Improved Binary Grey Wolf Optimizer to help with
discrete issues like feature selection, looked at the AD range values of GWO in binary
conditions, added a new transfer function, and offered a new equation for updating pa-
rameters based on the AD range value on the transfer function to balance global and local
search and improve classification accuracy. In 2022, Shaik et al. [33] proposed Gaussian
Mutation-Spider Monkey Optimization for feature selection. Gaussian variation changes
where the solution is located after exploration, making it easier to use feature selection
to pick out the right features for better classification and getting around the issues of
overfitting and data imbalance, but the proposed model is computationally too complex.
In 2023, Deng et al. [34] proposed a multi-strategy improved slime mushroom algorithm
and proposed a new balanced exploration and exploitation formula that uses dynamic
random search techniques to increase the adaptive mutation probability to sustain pop-
ulation variety and improve local optima breakout. Chen et al. [35] proposed a genetic
algorithm that encodes multi-pathway genes using simulated annealing and chromosome
creation and uses VNS search to identify solutions. Avoiding local optimal solutions in-
creased performance, but the algorithm’s convergence was inconsistent throughout the
calculation, but the stability of the algorithm’s convergence is not consistent throughout
the calculation process.

For optimal reptile algorithm performance, some researchers have done some work.
Almodfer et al. [36] proposes a quantum mutation reptile search algorithm that leverages
the quantum mutation search strategy to enhance population diversity, achieve higher ac-
curacy in identifying optimal solutions, and utilize the RSA algorithm for exploration and
development. It gets to resolve the imbalance and speed up search convergence. Elgamal
et al. [37] proposed an improved reptile search algorithm that utilizes simulated annealing
as its underlying principle. The utilization of a circular chaotic map was implemented
at the initialization step of the RSA in order to augment the algorithm’s capacity for
exploration within the search space. Yuan et al. [38] proposed an adaptive chaotic reverse
learning variant RSA to optimize the starting population. A shift distribution estimation
strategy is employed to regulate the individual evolution direction of population informa-
tion. An elite alternative pool strategy is implemented to govern the reference points that
follow the population, thereby achieving a balance between algorithm development and
exploration capabilities, ultimately leading to improved overall algorithm performance.
Huang et al. [39] proposed an interactive crossover reptile search algorithm. Interactive
crossover strategies improve crossover operator efficiency through iterative approaches.
This results in improved convergence accuracy and enhanced local exploration precision.
The Lévy flight strategy eliminates premature convergence and enhances the global search
algorithm.
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Based on the aforementioned research conducted on RSA, compared to RSA, the im-
proved RSA has better convergence time and accuracy. Nevertheless, there remains plenty
of room for enhancing convergence performance in the resolution of intricate problems.

3. Reptile Search Algorithm. The foraging hunting behavior of reptiles, which hunt
in packs as predators, served as the inspiration for the metaheuristic RSA. Reptile be-
haviour comprises two phases: encircling and hunting. RSA is a population-based and
gradient-free algorithm that possesses the capability to effectively address optimization
problems of varying complexity, subject to specific constraints. The pseudocode, as shown
in Algorithm 1.

Algorithm 1 RSA

Input: N , dim, G, α, β
Output: The optimal solution and its fitness value
1: Initialize population (X1, X2, . . . ,Xi, . . . , XN)
2: while g<G do
3: Calculate each individual’s fitness value of the population
4: Find the optimal position so far
5: Using Equation (6) to update ES
6: for i=1 to N do
7: for j=1 to dim do
8: Using Equation (4, 5 and 7) to update parameters γ, R, and P
9: if g > G

4
then

10: Update position using the High Walking Equation (2)
11: else if g > G

4
and g < 2G

4
then

12: Update position using the Belly walking Equation (3)
13: else if g > 2G

4
and g < 3G

4
then

14: Update position using the Hunting coordination Equation (9)
15: else g > 3G

4
and g < G

16: Update position using the Hunting cooperation Equation (10)
17: end if
18: end for
19: end for
20: g=g+1
21: end while
22: Return the best solution.

3.1. Initialization. In RSA, N candidate solutions are generated, each of dimension
dim, and the ith solution is Xi = [Xi,1, Xi,2, . . . , Xi,j . . . , Xi,dim]. The initialized equation
for the ith solution to the jth dimension is Equation (1).

Xi,j = XLB
j + rand×

(
XUB

j −XLB
j

)
(1)

Where XUB
j is the upper boundary and XLB

j is the lower boundary. rand is a uniformly
distributed random number from −1 to 1.

3.2. Encircling phase. Based on reptile behavior, RSA has four stages. In the first two
stages, namely the encircling phase, the fundamental purpose is to explore the high-density
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solution space for a more detailed exploration. The behavior of reptiles in mathematics
can be modeled as Equations (2) and (3).

X(i,j)(g + 1) = XBest
j (g)− γ(i,j)(g)× β − P(i,j)(g)× rand, if g ≤ G

4
(2)

X(i,j)(g + 1) = XBest
j (g)×X(r1,j)(g)× ES(g)× rand, if g>

G

4
and g ≤ 2G

4
(3)

Where X(i,j)(g+1) is the updated position of the reptile. XBest
j (g) is the optimal position

in the jth dimension of the reptile population in the gth iteration number. β is the
parameter that controls the sensitivity of search performance and has a fixed value of
0.005. γ(i,j)(g) represents the hunting operator of reptile, and the value is determined
through the utilization of Equation (4).

γ(i,j)(g) = XBest
j (g)×R(i,j)(g) (4)

Where R(i,j) is the current position’s ratio to the global best position’s jth dimensional
position, and the value is calculated using Equation (5).

R(i,j)(g) = α +
X(i,j)(g)−MXi

(g)

XBest
j (g)× (XUB

j −XLB
j ) + ϵ

(5)

Where α represents the parameter controlling the sensitivity of the exploration perfor-
mance, and its value is fixed to 0.1. Use ϵ as a minimum constant to avoid zero division in
the denominator. MXi

(g) denotes the mean position of the ith reptile in each dimension,
as defined by Equation (6).

MXi
(g) =

1

dim

dim∑
j=1

X(i,j)(g) (6)

P(i,j)(g) reduces reptilian search space. The size is calculated using Equation (7).

P(i,j)(g) =
XBest

j (g)−X(r2,j)(g)

XBest
j (g) + ϵ

(7)

Where X(r2,j)(g) is the position of the random reptile. Exploration parameter ES controls
evolution direction and randomly chooses−2 to 2, which is a probability-based ratio whose
value is calculated by Equation (8).

ES(g) = 2× r3 × (1− 1

G
) (8)

Where r3 is a random number between [−1, 1], 2 makes ES deliver a value between [0,
2], and G is the total number of iterations.

3.3. Hunting phase. After the iterative process of two phases, there is the hunting
phase for reptiles. The hunting coordination strategy is performed in the iteration range
of g>2G

4
and g ≤ 3G

4
, while hunting cooperation is performed in the range of g>3G

4
and

g ≤ G. The equations are given in (9) and (10).

X(i,j)(g + 1) = XBest
j (g)×R(i,j)(g)× rand, if g>

2G

4
and g ≤ 3G

4
(9)

X(i,j)(g + 1) = XBest
j (g)− γ(i,j)(g)× ϵ− P(i,j)(g)× rand, if g>

3G

4
and g ≤ G (10)
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4. Improved Reptile Search Algorithm(IRSA). The RSA demonstrates simplic-
ity and effectiveness in addressing straightforward problems. But when confronted with
complicated problems, the RSA has limited global optimization capabilities and decreases
population variety in search space. During the course of evolution, reptiles tend to move
towards the best positions within a population, leading to the consequent premature con-
vergence of evolutionary processes. Therefore, in order to overcome these problems, RSA
is improved in this paper, and the pseudocode for Algorithm 2 is displayed.

4.1. Improved reptile location update mechanism. In the RSA belly walking equa-
tion, the reptile in question exhibits poor search efficiency, mostly due to an excessively
large search step size during the initial iterations. Consequently, this results in diminished
search accuracy and poses challenges in locating a position superior to the global optimum.
The previous optimal position Xpbest

i (g) and the current position Xi(g) of the reptile are
regarded as the reptile’s own crawling experience, that is, its own cognitive item. The
optimal position XBest(g) updated by all reptiles in the whole group so far is regarded as
the reptile’s peer’s experience, that is, the group cognitive item. The randomly selected
reptile-individual is improved so that its group cognition is controlled by the evolution
operator, which is closer to the global optimum and searches more purposefully and in a
direction in the space around the global optimum individual, as shown in Equation (11).

Xnew
i (g) = XBest(g) + (XBest(g)−Xr1(g))× ES(g), if g >

G

4
and g ≤ 2G

4
(11)

Where Xnew
i (g) is the new position of the reptile after the ith individual moves, XBest(g)

is the global optimal position of all reptiles, and Xr1(g) is the position of a random
reptile. ES in RSA is a normal distributed random number with respect to the maximum
iteration number g, ranging from −2 to 2. It controls the evolution of a random reptile
individual when the reptile is walking and adds the current iteration number g. The
nonlinear dynamic trend of the reptile evolution operator ES is gradually reduced so that
it can perform a fine search near the current global optimal solution. Not only avoid the
evolution operator because it is too large and skips the optimal solution, but also increase
algorithm convergence precision. ES is determined using Equation (12).

ES(g) = 2× rand× (1− g

G
) (12)

In the original algorithm, β is a constant used to control the exploration ability when the
reptile is high. α is a constant to control the exploration accuracy, which is used when
reptiles are walking high, hunting coordination, and hunting cooperation. The values of α
and β are optimized using a linear decreasing strategy in order to enhance the algorithm’s
global search capability during the initial stages of development and to improve its local
exploration capacity in later stages. as shown in Equations (13) and (14).

α(g) = αmax − (g − 1)× αmax − αmin

G− 1
(13)

β(g) = βmax − (g − 1)× βmax − βmin

G− 1
(14)

In the equation, αmax is the maximum value of exploration accuracy; after many exper-
iments, the effect is best when it is 0.1, and αmin is the minimum value of exploration
accuracy, which is 0.01. Equation (13) indicates that α decreases from 0.1 to 0.01, simi-
larly, Equation (14) indicates that β decreases from 0.005 to 0.001. After the RSA location
update, add a strategy to improve the equilibrium between local and global search and
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preserve diversity by learning the most optimal position in the evolutionary history of
each reptile. As shown in Equation (15).

Xnew
i (g) = Xnew

i (g) + (Xpbest
i (g)−XBest(g))× rand (15)

Where Xpbest
i (g) is the historical optimal location of the individual. Then, the inclusion

of the greedy selection strategy involves the comparison of the optimal value between the
newly acquired position and the initial reptile’s position, which promotes reptile popula-
tion and convergence speed, as shown in Equation (16).

Xi(g) =

{
Xnew

i (g), if fnew
Xi

< fXi

Xi(g), else
(16)

In summary, the improved algorithm retains the global optimal position as the guide
when the reptile moves in the original algorithm, effectively screens out the individuals
with higher quality to be developed, and makes them move gradually to the optimal
position with a more flexible step size. The improved algorithm controls the individual
learning information carried on the optimal solution with iteration time by α and β,
so as to ensure the direction of individual progress. The information exchange between
populations is strengthened, the influence of original random factors on the algorithm is
reduced, the pace of convergence is increasing, leading to enhanced algorithmic accuracy.

4.2. Hybrid mutation. The reptile movement process is carried out around the global
optimal XBest(t), at this time, the algorithm after the reptile position update mechanism
is still prone to local optimization, resulting in the stagnation of the update iteration
of the global optimal position of the algorithm. To tackle this issue, the diversity of the
reptile population must be increased, and this paper adds a mutation process to the reptile
population as a means to enhance diversity and mitigate the aforementioned issue. The
roulette wheel selection mechanism employs a calculation to determine the probability of
each individual being chosen, taking into account the fitness of the updated position [7],
as shown in Equation (17).

p(Xi)(g) =
f(Xi(g))∑n
i=1 f(Xi(g))

(17)

According to the fitness value, a new population XL(g) composed of M worse individuals
in the population is selected, and through the test, it is better when M is set to 30. The
mutation operation is performed on the individuals in XL(g). This paper propose a new
hybrid mutation equation, as shown in Equation (18).

Xi(g + 1) =

{
XBest(g) +XStepB

i (g), if fXL
i
> fmin

Xi(g) +XStepB
i (g), else

(18)

In instances where the reptile achieves a more advantageous position compared to the
prevailing global best position, it will climb to a position near itself. The precise distance
is contingent upon the ratio between the disparity in position between the worst position
and its own position and the disparity in quality between the current food and the worst
food. Additionally, it is influenced by the ratio between the disparity in position between
the optimal position and its own position and the disparity in quality between the current
food and the optimal food, in Equation (20). If the reptile is not in the optimal position,

it will crawl near the current optimal position to search. In Equation (18), XStepB
i (g) is

the step size of XStep
i (g) after boundary processing, and the mutated individual step size

obtained from Equation (20) is guaranteed to be within the upper and lower boundaries,
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as shown in Equation (19).

XStepB
i (g) =

{
XUB, if XStep

i > XUB

XLB, if XStep
i < XLB (19)

XStep
i (g) =


rand×(XL

i (g)−XBest
i (g))×C1+rand×(XL

i (g)−Xpbest
i (g))×C2, if fXL

i
> fmin

rand× |XL
i (g)−XWorse(g)|

fi(g)− fmax(g) + ϵ
×C3+

rand× |XL
i (g)−XBest(g)|

fi(g)− fmin(g) + ϵ
×C4, else

(20)

Where XStep
i (g) is the step size of the ith mutated reptile in the mutant population, XL

i (g)
is the original position of the ith reptile in the mutant population, fmax(g) is the fitness
value of the worst position XWorse(g) of the reptile, and fmin(g) is the fitness value of
the reptile XBest(g) in the optimal position. When the fitness value obtained by the ith
reptile is poor, the reptile decides the step size of mutation based on its own individual
experience. Xpbest

i (g) and the group optimal experience XBest(g). The larger C1 is, the
greater the degree of learning from the group optimal position; on the other hand, the
greater the degree of learning from the individual historical optimal experience. But if
the fitness value attained by the ith reptile is superior, it will abandon its current location
and proceed to explore alternative positions. The worst position XWorse(g) searched and
updated by all reptiles in the whole group is also a group cognitive item. At this time,
the two group experiences updated by the algorithm are used to help the reptile climb to
other positions. By varying the value of the weight parameter C, the reptile is capable of
attaining various places. In a similar vein, when the value of C3 is increased, it facilitates a
greater degree of learning from the poorest performing individual within the group, hence
enhancing the overall diversity of the population. Based on extensive experimentation,
setting C1=C2=1, C3=0.6, and C4=0.4 works best.

4.3. Failure restart. To enhance the algorithm’s capacity to escape local convergence
and expand the search space for the best site, a failure restart mechanism is incorporated.
In every iteration of the global optimization process, if the updated optimal position
and solution are not achieved, the count of failures is incremented by one, denoted as
fail = fail + 1. When a position better than the global optimal position has not been
found after S consecutive failures, the restart equation is executed, as shown in Equation
(21).

Xi(g) = XBest(g) + rand× XUB −XLB

2
(21)

The oscillation search is conducted by utilizing the global optimal position XBest(g) as the
central point for updating the positions of the entire reptile population, hence enhancing
the population’s diversity. After testing, it has been determined that the experimental
effect is most optimal when the value of S is increased by a factor of 150.

5. Experimental Results and Analysis. To comprehensively evaluate the efficacy of
IRSA by conducting a comparative analysis of its convergence accuracy and speed. The
evaluation is performed by comparing IRSA with the RSA as well as four other improved
prominent swarm intelligence algorithms known for their superior performance on the
CEC2013 test set [40], including the Arithmetic-Trigonometric Optimization Algorithm
(ATOA) [41], the Chaotic Lichtenberg Algorithm (CLA) [42], the Improved Dung Beetle
Optimizer (IDBO) [43] algorithm, and the improved Crow Search Algorithm (ICSA) [44].
The population number of all algorithms is N=50, and the maximum function evaluation
number is MaxFEs=150000 to assure fairness of comparison. Table 1 shows all the
setting parameters of the algorithms. All algorithms for Windows 10 of the operating
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system, the CPU for i7-8750H computer operation, and MATLAB R2021a programming.

Table 1. Parameter Settings related to each algorithm.

Algorithm Parameter

IRSA αmax=0.1; αmin=0.01; βmax=0.005; βmin=0.001; C1=C2=1; C3=0.6; C4=0.4

RSA α = 0.1; β = 0.005
ATOA MOPmax = 1; MOPmin = 0.2; α = 5; µ = 0.499
CLA c = 0.6
IDBO Ppercen = 0.1
ICSA AP = 0.3; FL = 1.2; βmax = 0.9; βmin = 0.4

Table 2. Results of IRSA and other comparison algorithms on the 30-
dimensional CEC2013 test set

ATOA CLA IDBO ICSA RSA IRSA

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

F1 1.79E+04 4.09E+03 2.23E+00 6.50E-01 3.31E+01 3.22E+01 4.46E+03 9.88E+02 4.95E+04 8.66E+03 0.00E+00 0.00E+00
F2 9.16E+07 4.50E+07 2.73E+07 6.81E+06 7.25E+07 3.16E+07 8.24E+07 1.93E+07 7.17E+08 4.34E+08 4.07E+06 2.18E+06
F3 3.63E+09 1.41E+10 0.00E+00 0.00E+00 2.62E+07 1.03E+08 4.84E+05 2.65E+06 1.14E+18 4.31E+18 0.00E+00 0.00E+00
F4 5.43E+04 7.96E+03 3.22E+04 8.88E+03 5.54E+04 8.20E+03 4.91E+04 6.15E+03 6.46E+04 3.45E+03 1.69E+04 4.03E+03
F5 1.88E+03 4.93E+02 3.81E+01 1.86E+01 1.82E+02 5.43E+01 3.09E+03 8.13E+02 9.66E+04 2.70E+04 0.00E+00 0.00E+00
F6 8.05E+02 3.94E+02 9.10E+01 4.14E+01 1.09E+02 3.96E+01 3.62E+02 6.98E+01 8.46E+03 3.75E+03 1.41E+02 3.26E+02
F7 3.37E+02 8.11E+02 8.79E+01 3.88E+02 9.42E+00 4.25E+01 1.27E-01 6.94E-01 2.76E+05 5.42E+05 0.00E+00 0.00E+00
F8 2.10E+01 5.09E-02 2.10E+01 5.59E-02 2.10E+01 5.22E-02 2.10E+01 4.36E-02 2.10E+01 5.81E-02 2.13E+01 8.11E-02
F9 1.90E+01 1.24E+01 2.11E+01 1.48E+01 6.36E+00 1.12E+01 9.33E-01 5.11E+00 3.42E+01 4.04E+00 0.00E+00 0.00E+00
F10 1.30E+03 4.13E+02 3.95E+01 1.56E+01 2.69E+02 1.20E+02 7.50E+02 1.79E+02 6.24E+03 1.81E+03 1.41E+00 4.36E+00
F11 9.07E+01 6.33E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.63E+02 7.92E+01 0.00E+00 0.00E+00
F12 1.96E+02 6.06E+01 1.86E+02 6.59E+01 9.45E+01 8.04E+01 1.28E+02 7.71E+01 3.44E+02 9.36E+01 0.00E+00 0.00E+00
F13 1.97E+02 5.77E+01 1.88E+02 4.80E+01 1.00E+02 8.57E+01 1.25E+02 9.03E+01 3.37E+02 8.19E+01 0.00E+00 0.00E+00
F14 3.41E+03 4.66E+02 4.34E+03 6.64E+02 4.55E+03 9.46E+02 6.89E+03 4.58E+02 7.62E+03 2.96E+02 2.71E+03 6.03E+02
F15 7.37E+03 3.64E+02 5.41E+03 8.62E+02 6.83E+03 9.35E+02 6.37E+03 4.42E+02 7.39E+03 2.94E+02 6.07E+03 1.47E+03
F16 2.50E+00 3.88E-01 1.73E+00 3.87E-01 2.08E+00 6.85E-01 2.60E+00 2.94E-01 2.62E+00 3.58E-01 5.98E+00 1.17E+00
F17 1.06E+03 2.60E+02 4.73E+02 9.98E+01 2.62E+02 5.83E+01 4.56E+02 4.89E+01 2.31E+03 3.03E+02 3.91E+02 1.66E+02
F18 1.11E+03 2.55E+02 4.61E+02 1.12E+02 3.18E+02 3.58E+01 4.49E+02 4.19E+01 2.10E+03 3.37E+02 5.97E+02 4.09E+02
F19 6.95E+03 5.01E+03 3.61E+01 9.91E+00 4.25E+01 9.13E+01 2.47E+02 1.67E+02 9.96E+05 1.17E+06 7.05E+01 2.06E+02
F20 1.49E+01 1.76E-01 1.46E+01 2.02E-01 9.91E+00 4.49E+00 9.95E+00 3.90E+00 1.49E+01 1.86E-01 0.00E+00 0.00E+00
F21 9.13E+02 1.61E+02 4.34E+02 1.47E+02 5.73E+02 4.38E+02 7.67E+02 7.09E+01 2.06E+03 1.91E+02 4.24E+02 1.11E+02
F22 4.28E+03 6.38E+02 5.74E+03 1.26E+03 4.62E+03 9.14E+02 7.57E+03 3.14E+02 8.78E+03 5.04E+02 3.85E+03 7.57E+02
F23 7.91E+03 3.79E+02 6.30E+03 1.01E+03 6.49E+03 1.03E+03 7.62E+03 3.68E+02 8.43E+03 4.73E+02 5.95E+03 1.61E+03
F24 2.77E+02 4.52E+01 2.50E+02 4.36E+01 2.34E+02 3.42E+01 2.08E+02 1.57E+01 4.00E+02 1.09E+02 2.19E+02 2.74E+01
F25 3.23E+02 3.12E+01 3.27E+02 2.04E+01 2.99E+02 2.00E+01 3.06E+02 1.81E+01 3.39E+02 3.01E+01 2.64E+02 3.30E+01
F26 3.61E+02 5.58E+01 3.65E+02 4.63E+01 3.08E+02 8.97E+01 2.31E+02 3.90E+01 3.81E+02 3.26E+01 3.03E+02 4.65E+01
F27 2.53E+03 1.49E+02 2.36E+03 2.93E+02 2.27E+03 2.88E+02 1.93E+03 2.24E+02 2.95E+03 4.78E+02 9.24E+02 2.88E+02
F28 3.89E+03 5.08E+02 1.98E+03 1.11E+03 1.17E+03 3.65E+02 2.22E+03 2.65E+02 5.71E+03 1.28E+03 1.28E+03 3.48E+02

Table 2 and Table 3 present the average and standard deviation of 30 separate trials
conducted on each algorithm using the CEC2013 test set in dimensions of 30 and 50,
respectively. Additionally, the algorithm that yielded the most optimal results for the
given function is highlighted in black. The results of the Friedman test and the Wilcoxon
rank sum test for each algorithm compared to the IRSA, with a significance threshold of
5%, are presented in Table 4.

As shown from Table 2, the 30-dimensional optimization problem has been subjected to
IRSA on nine test functions, resulting in the attainment of global optimal values for F1,
F3, F5, F7, F9, F11, F12, F13, and F20. RSA did not attain the globally optimal value for
any of the test functions. RSA is not on any one test function that has reached the global
optimal value, and only in F8 and F16 are the results of RSA better than those of IRSA,
but in the rest of the 26 test functions, IRSA has achieved a better average. ATOA failed
to achieve the theoretical ideal value for any given test function. CLA obtained theoreti-
cally optimal results only on F3 and F11. Both IDBO and ICSA achieve the theoretical
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Table 3. Results of IRSA and other comparison algorithms on the 50-
dimensional CEC2013 test set

ATOA CLA IDBO ICSA RSA IRSA

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

F1 3.60E+04 6.79E+03 1.79E+01 3.96E+00 1.33E+03 1.06E+03 1.67E+04 2.46E+03 7.23E+04 5.53E+03 4.33E-24 1.25E-23
F2 2.63E+08 7.83E+07 7.52E+07 2.34E+07 2.13E+08 1.15E+08 2.37E+08 5.31E+07 1.46E+09 9.05E+08 1.52E+07 1.44E+07
F3 2.96E+09 6.04E+09 0.00E+00 0.00E+00 6.34E+08 3.47E+09 1.85E+07 5.90E+07 3.37E+14 5.05E+14 0.00E+00 0.00E+00
F4 9.92E+04 1.91E+04 5.79E+04 1.35E+04 8.78E+04 6.52E+03 7.69E+04 3.98E+03 8.67E+04 4.83E+03 4.07E+04 5.86E+03
F5 3.58E+03 6.97E+02 2.11E+02 6.20E+01 6.91E+02 1.95E+02 6.87E+03 1.17E+03 4.94E+04 1.19E+04 3.98E-16 1.40E-15
F6 1.89E+03 6.05E+02 1.75E+02 6.12E+01 7.39E+02 5.82E+02 1.07E+03 1.92E+02 7.51E+03 1.87E+03 7.11E+01 4.95E+01
F7 5.56E+01 1.07E+02 2.10E+02 4.07E+02 2.86E+00 1.12E+01 3.25E+00 5.06E+00 7.93E+03 1.07E+04 0.00E+00 0.00E+00
F8 2.12E+01 4.33E-02 2.12E+01 3.45E-02 2.12E+01 3.92E-02 2.12E+01 3.60E-02 2.12E+01 4.61E-02 2.14E+01 6.01E-02
F9 2.27E+01 2.31E+01 2.46E+01 2.57E+01 9.77E-01 5.35E+00 0.00E+00 0.00E+00 4.48E+01 7.02E+00 0.00E+00 0.00E+00
F10 3.39E+03 7.84E+02 2.01E+02 5.12E+01 3.26E+03 1.21E+03 2.26E+03 3.18E+02 1.04E+04 2.30E+03 3.03E+01 9.86E+01
F11 1.82E+02 8.31E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.66E+00 9.02E+00 3.50E+02 1.15E+02 0.00E+00 0.00E+00
F12 3.70E+02 1.04E+02 4.00E+02 8.06E+01 8.70E+01 1.36E+02 3.65E+02 3.67E+01 4.70E+02 4.13E+01 0.00E+00 0.00E+00
F13 3.80E+02 7.84E+01 3.90E+02 6.12E+01 5.86E+01 1.29E+02 3.12E+02 1.26E+02 4.75E+02 4.14E+01 0.00E+00 0.00E+00
F14 8.52E+03 7.86E+02 1.77E+03 3.61E+03 8.83E+03 1.54E+03 1.32E+04 5.66E+02 1.41E+04 5.91E+02 3.90E+03 7.32E+02
F15 1.44E+04 4.42E+02 1.03E+04 1.27E+03 1.39E+04 1.31E+03 1.38E+04 5.26E+02 1.48E+04 2.82E+02 1.13E+04 2.07E+03
F16 3.56E+00 3.49E-01 2.47E+00 3.61E-01 3.07E+00 6.87E-01 3.72E+00 3.19E-01 3.72E+00 2.80E-01 7.09E+00 9.90E-01
F17 1.87E+03 2.78E+02 1.12E+03 2.15E+02 7.96E+02 4.10E+02 1.17E+03 1.18E+02 3.33E+03 2.25E+02 9.69E+02 2.90E+02
F18 2.15E+03 3.22E+02 1.12E+03 2.45E+02 8.08E+02 3.73E+02 1.15E+03 1.09E+02 3.32E+03 2.44E+02 1.01E+03 2.30E+02
F19 1.73E+04 1.14E+04 1.05E+02 3.21E+01 6.85E+03 1.02E+04 4.08E+03 2.73E+03 4.69E+05 1.88E+05 4.28E+02 8.98E+02
F20 2.47E+01 5.74E-01 2.46E+01 2.09E-01 1.77E+01 7.56E+00 2.35E+01 1.08E+00 2.49E+01 1.45E-01 8.16E+00 1.17E+01
F21 2.46E+03 2.48E+02 4.02E+02 5.66E+00 5.21E+02 4.78E+02 1.75E+03 1.29E+02 3.30E+03 1.38E+02 7.20E+02 1.39E+03
F22 1.02E+04 9.44E+02 1.11E+04 2.18E+03 9.95E+03 1.02E+03 1.45E+04 4.29E+02 1.58E+04 6.82E+02 8.42E+03 1.67E+03
F23 1.51E+04 6.32E+02 1.23E+04 1.38E+03 1.35E+04 1.79E+03 1.47E+04 5.25E+02 1.59E+04 3.60E+02 1.31E+04 2.28E+03
F24 3.84E+02 3.85E+01 3.89E+02 7.19E+01 3.31E+02 4.02E+01 2.55E+02 3.21E+01 6.74E+02 2.59E+02 2.41E+02 4.17E+01
F25 4.07E+02 1.39E+01 4.14E+02 1.13E+01 3.70E+02 1.41E+01 3.84E+02 2.31E+01 4.78E+02 5.65E+01 3.07E+02 6.41E+01
F26 4.50E+02 7.15E+01 4.51E+02 7.05E+01 4.25E+02 4.72E+01 3.81E+02 3.88E+01 4.89E+02 1.32E+01 3.26E+02 5.23E+01
F27 3.47E+03 2.14E+02 3.30E+03 2.81E+02 3.13E+03 2.29E+02 2.58E+03 3.09E+02 4.73E+03 1.01E+03 1.67E+03 2.77E+02
F28 7.05E+03 9.61E+02 7.43E+03 1.72E+03 4.61E+03 1.40E+03 5.42E+03 3.58E+02 8.32E+03 5.85E+02 4.65E+03 7.24E+02

optimum only when applied to the F11 function. As Table 4 shows, compared with IRSA,
RSA only performed significantly better on F8 and F16, but performance on the other
26 test functions is significantly worse. ATOA performed better on the F8 and F16 test
functions but worse on the other 26 functions. CLA exhibits comparable performance to
IRSA across seven test functions and demonstrates notably superior performance on the
F8, F15, and F16 test functions, but performs poorly on the remaining 18 test functions.
IDBO is comparable to IRSA on 9 test functions, and IDBO on F8, F16, F17, and F18 test
functions exhibits much superior performance, but the IDBO demonstrates significantly
poorer performance on the other 15 test functions. ICSA is comparable to IRSA on 5
test functions, exhibiting similar levels of effectiveness and demonstrating notably supe-
rior performance on four test functions, surpassing the performance of other algorithms,
but ICSA performs weakly on the remaining nineteen test functions. In conclusion, with
RSA and the other four improved optimization techniques, IRSA shows clear convergence
accuracy gains.

The dimensions of each algorithm in the CEC2013 random run on test set are shown
in Figure 1. These are the test function curve of convergence, the abscissa number for
computing function evaluation, and the y coordinate for the number of computational
evaluations under the fitness value of logarithmic. This makes it easier to compare the
speeds at which different algorithms converge.

The analysis of Figure 1 reveals that IRSA demonstrates superior performance in
achieving the global optimal value for single modular functions F1–F5. It exhibits optimal
convergence accuracy and convergence speed when compared to an alternative algorithm.
When employed in F2 and F4, IRSA offers the highest convergence accuracy and speed
of the five algorithms. IRSA has been shown to possess the capability to acquire global
optimal solutions for multimodal functions F6–F20. The algorithm attains the theoret-
ical maximum performance on the test functions F7, F9, F11, F12, F13, and F20. The
findings derived from the IRSA exhibit greater levels of convergence accuracy and the
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Table 4. Wilcoxon rank sum test and Friedman test between IRSA and
other algorithms

D=30 D=50

ATOA CLA IDBO ICSA RSA ATOA CLA IDBO ICSA RSA

F1 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F2 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F3 0.000(−) 1.000(=) 0.082(=) 0.334(=) 0.000(−) 0.000(−) 1.000(=) 0.042(−) 0.001(−) 0.000(−)
F4 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F5 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F6 0.000(−) 0.096(=) 0.005(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F7 0.000(−) 0.006(−) 0.042(−) 0.334(=) 0.000(−) 0.000(−) 0.000(−) 0.082(=) 0.000(−) 0.000(−)
F8 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)
F9 0.000(−) 0.000(−) 0.001(−) 0.334(−) 0.000(−) 0.000(−) 0.000(−) 0.334(=) 1.000(=) 0.000(−)
F10 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F11 0.000(−) 1.000(=) 1.000(=) 1.000(=) 0.000(−) 0.000(−) 1.000(=) 1.000(=) 0.000(−) 0.000(−)
F12 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.001(−) 0.000(−) 0.000(−)
F13 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.003(−) 0.000(−) 0.000(−)
F14 0.001(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F15 0.000(−) 0.019(+) 0.075(=) 0.483(=) 0.000(−) 0.000(+) 0.000(+) 0.145(=) 0.610(=) 0.000(+)
F16 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)
F17 0.000(−) 0.004(−) 0.001(+) 0.006(−) 0.000(−) 0.000(−) 0.002(−) 0.001(+) 0.000(−) 0.000(−)
F18 0.000(−) 0.340(=) 0.000(+) 0.234(=) 0.000(−) 0.000(−) 0.048(−) 0.000(+) 0.001(−) 0.000(−)
F19 0.000(−) 0.530(=) 0.196(=) 0.000(−) 0.000(−) 0.000(−) 0.001(−) 0.010(−) 0.000(−) 0.000(−)
F20 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.007(−) 0.000(−) 0.019(-) 0.000(−) 0.007(−)
F21 0.000(−) 0.031(−) 0.807(=) 0.000(−) 0.000(−) 0.000(−) 0.009(+) 0.620(=) 0.000(−) 0.000(−)
F22 0.015(−) 0.000(−) 0.001(−) 0.000(−) 0.000(−) 0.042(−) 0.000(−) 0.000(−) 0.000(−) 0.042(−)
F23 0.000(−) 0.559(=) 0.340(=) 0.000(−) 0.000(−) 0.000(+) 0.009(+) 0.464(=) 0.001(−) 0.000(+)
F24 0.000(−) 0.387(=) 0.935(=) 0.000(+) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.099(=) 0.000(−)
F25 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.042(−) 0.000(−) 0.000(−) 0.000(−) 0.042(−)
F26 0.000(−) 0.000(−) 0.119(=) 0.000(+) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F27 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F28 0.000(−) 0.003(−) 0.149(=) 0.000(−) 0.000(−) 0.001(−) 0.000(−) 0.589(=) 0.000(−) 0.001(−)

+/=/− 2/0/26 3/7/18 4/9/15 4/5/19 2/0/26 4/0/24 5/2/21 4/7/17 2/3/23 4/0/24

Avg.rank 4.48 2.89 2.70 3.23 5.84 4.43 2.95 2.71 3.39 5.77

sort 5 3 2 4 6 5 3 2 4 6

highest rate of convergence when compared to the other five algorithms across the F6,
F10, F14, F17, F18, and F19 test functions. The results obtained from iterative IRSA
indicate a slightly lower level of convergence accuracy compared to other algorithms, such
as F8, F15, and F16 test functions, but the convergence time of IRSA remains comparable
to these algorithms. While the initial convergence rate of IRSA may be slightly slower
compared to other algorithms, it demonstrates a distinct advantage in the latter stages of
evolution. Unlike other algorithms, IRSA maintains its search performance and continues
to explore and identify superior solutions. The composite functions F21–F28 have been
subject to analysis, revealing that the IRSA algorithm demonstrates greater convergence
accuracy and the highest convergence speed in comparison, specifically when applied to
the F21, F22, and F27 test functions. The results obtained from the IRSA demonstrate
superior convergence accuracy and faster convergence speed when applied to problems
F23 and F25. According to the findings, the convergence time of the IRSA on F24 is
comparable to that of the IDBO and the ICSA. The convergence accuracy of the IRSA
is ranked second, behind the ICSA. The convergence speed and accuracy of the IRSA
exhibit similarities to those of the ICSA on the F26. The convergence accuracy of the
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IRSA is ranked second only to that of the ICSA. IRSA demonstrates superior conver-
gence speed on F28, and in terms of convergence accuracy, it ranks second only to IDBO.
In summary, when compared to RSA and the other four notable enhanced optimization
methods, IRSA has specific advantages in terms of convergence speed.

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

-70

-60

-50

-40

-30

-20

-10

0

10

20

F
itn

e
ss

 V
a

lu
e

(l
o

g
)

F1

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F1

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

15

16

17

18

19

20

21

22

F
itn

e
ss

 V
a

lu
e

(l
o

g
)

F2

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F2

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

10

15

20

25

30

35

40

45

50

F
itn

e
ss

 V
a
lu

e
(l
o
g
)

F3

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F3

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

10

11

12

13

14

15

16

F
itn

e
ss

 V
a
lu

e
(l
o
g
)

F4

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F4

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

-100

-80

-60

-40

-20

0

20

F
itn

e
ss

 V
a
lu

e
(l
o
g
)

F5

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F5

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

2

3

4

5

6

7

8

9

10

11

F
itn

e
ss

 V
a
lu

e
(l
o
g
)

F6

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F6

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

-5

0

5

10

15

20

F
itn

e
ss

 V
a
lu

e
(l
o
g
)

F7

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F7

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

3.035

3.04

3.045

3.05

3.055

3.06

3.065

F
itn

e
ss

 V
a

lu
e

(l
o

g
)

F8

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F8

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

F
itn

e
ss

 V
a
lu

e
(l
o
g
)

F9

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F9

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

-2

0

2

4

6

8

10

F
itn

e
ss

 V
a
lu

e
(l
o
g
)

F10

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F10

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

-6

-4

-2

0

2

4

6

8

F
itn

e
ss

 V
a

lu
e

(l
o

g
)

F11

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F11

0 0.3 0.6 0.9 1.2 1.5

FEs( 105)

3.5

4

4.5

5

5.5

6

6.5

7

F
itn

e
ss

 V
a

lu
e

(l
o

g
)

F12

IRSA
RSA
ATOA
CLA
IDBO
ICSA

Convergence curves on F12

Figure 1. Convergence curve of each function
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Algorithm 2 IRSA

Input: N , dim, αmax, αmin, βmax, βmin, M , G, C1, C2, C3, C4, S.
Output: The optimal solution and its fitness value
1: Initialize population (X1, X2, . . . ,Xi, . . . , XN)
2: Calculate the fitness value of each individual in the initialized population
3: Find the global optimum, the global worst, and the individual optimum
4: while g<G do
5: if fail > S then
6: for i=1 to N do
7: Update the position using the shock Equation (21) in section 4.3
8: end for
9: Calculate each individual’s fitness value for the population

10: Find the global optimum, the global worst, and the individual optimum so far
11: else
12: Using Equation (12) to update ES
13: for i=1 to N do
14: Using Equation (4, 5 and 7) to update parameters γ, R, and P .
15: if g > G

4
then

16: Xnew
i (g) = XBest(g)− γi(g)× β(t)− Pi(g)× rand

17: else if g > G
4
and g < 2G

4
then

18: Xnew
i (g) = XBest(g) + (XBest(g)−Xrand(g))× ES(g)

19: else if g > 2G
4
and g < 3G

4
then

20: Xnew
i (g) = XBest(g)×Ri(g)× rand

21: else g > 3G
4
and g < G

22: Xnew
i (g) = XBest(g)− γi(g)× ϵ− Pi(g)× rand

23: end if
24: Using Equation (15) each individual learns from its individual optimum
25: Calculate each individual’s fitness value for the population
26: Using Equation (16) to make greedy choices
27: Find the global optimum, the global worst, and the individual optimum so

far
28: if fXi(g) ≥ fmin then
29: fail = fail + 1
30: end if
31: end for
32: end if
33: Use Equation (17) to calculate the probability of selecting individuals in the pop-

ulation
34: Select M individuals to form an XL population
35: for i=1 to M do
36: Using Equations (18, 19, and 20) for mutation operations
37: Calculate each individual’s fitness value for the population
38: Find the global optimum, the global worst, and the individual optimum so far
39: if fXi(g+1) ≥ fmin then
40: fail = fail + 1
41: end if
42: end for
43: g = g + 1
44: end while
45: Return the best solution
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Figure 1. Convergence curve of each function
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Figure 1. Convergence curve of each function

6. Conclusion. To increase the RSA’s convergent performance and ability to jump out
of the local optimum, this paper proposes an improved reptile search algorithm (IRSA).
The update mechanism of reptile belly walking position in the search phase is enhanced,
and reptile learning from individual history is introduced to increase crocodile population
optimization and early iteration convergence speed. Add mutations and create a new in-
dividual position update equation using mixed mutations to improve population diversity
and convergence speed. Add a failure restart mechanism to boost population diversity,
jump out of local optimal, and search accuracy. The CEC2013 test set showed that the
suggested IRSA for unimodal and multi-peak situations is relatively competitive with four
different optimization techniques.
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