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Abstract. The number of majority class samples in unbalanced data far exceeds the
number of minority classes, making the data appear unbalanced. How to improve the
recognition rate of minority classes in unbalanced data has become an urgent problem in
machine learning. The Random Forest model is a machine learning algorithm with good
robustness, but it has the problem of poor recognition rate when classifying unbalanced
data. To solve this problem, this work proposes a weighted Random Forest model based on
population intelligence optimisation. Firstly, each decision tree is multiplied by a weight
proportional to its training accuracy at the time of voting. Secondly, to address the prob-
lem of difficult parameter selection, a whale swarm algorithm is adopted to iteratively
optimise the parameters affecting the new model, so as to select the required parameters
for the model. In addition, the inter-individual distance calculation and body movement
rules of the WOA were improved in order to enhance the local search capability of the
WOA and its convergence speed. The simulation was validated by Python software on
four standard data sets from the UCI database. The simulation results show that the
proposed model has high minority class recognition performance in unbalanced data clas-
sification. Compared with the standard Random Forest, the recall of the proposed model
is improved by 11% at an unbalanced degree of 5%.
Keywords: Big data; Random Forests; Whale swarm algorithm; Decision trees; Imbal-
anced data

1. Introduction. Data mining techniques are becoming an active and important re-
search topic to be addressed today [1,2]. The goal of data mining is to be able to extract
from a large amount of random data the relatively unknown and usable information that
is meaningful to humans. In general, data mining can be seen as an integration of multiple
fields of convergence [3,4,5]. There are many disciplines where data mining will highlight
its strengths. For example, it is used particularly extensively in machine learning [6], in
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the field of artificial intelligence [7], and in database technology [8], and has also yielded
remarkable results.

The main techniques in the field of data mining contain three directions [8]: classi-
fication of data, clustering of data, and association rules for data. The main research
in this work is classification mining. Classification techniques focus on the construction
of classifiers from the dataset being trained. Among the many classification techniques,
the one with a relatively uncomplicated single classifier structure is the decision tree
algorithm [9]. However, big data presents characteristics such as large number and imbal-
ance, i.e. the number of samples of one class is much more than the number of samples
of another class. How to mine valuable data from the data is what we should focus on.
Currently, there are many problems that need to be solved in data mining, such as multi-
class classification problems, dichotomous classification problems, misclassification costs,
class overlap, meaningless disjoint and imbalanced data. Classification mining problems
related to unbalanced data deserve even more attention.

Many real-life applications are filled with a variety of categories of unbalanced data.
In case data for disease diagnosis prediction [10], for example, the number of samples for
important and rare diseases is much smaller than the number of samples for normal and
common diseases. In the Internet sample data for intrusion detection [11], the number
of regular samples is much larger than the number of samples we need for intrusions.
Since the number of majority class samples is much higher than the number of minority
class samples, applying conventional classifiers directly to these sample class imbalance
scenarios would lead to unsatisfactory classification results. Therefore, it is an important
issue how to effectively identify the minority class in category imbalanced data. Various
solutions have been proposed in order to solve the problems related to data imbalance
[12,13]. However, the multi-category imbalance problem is difficult to solve.

To address these issues, two categories can be distinguished according to their treat-
ment: the first is external or data-level methods [14], where the data are pre-processed to
rebalance the class distribution in order to reduce the heterogeneous distribution effect in
the classification process. The second category is internal or algorithm-level approaches.
Machine learning as well as other algorithms, such as association classification algorithms
[15] and K-nearest neighbour algorithms [16], also play an important role in unbalanced
data classification.

There is now a growing awareness of the limitations and drawbacks of single classifiers in
practice. The classification performance of single classifiers is gradually failing to meet the
demanding requirements of today’s data information classification. As a result, a cascade
approach to single classifiers has emerged. Cascading methods use two or more classifiers
to train on data information, and finally combine the outputs of multiple classifiers to
obtain the final output. Random Forests are the product of this environment.

Although Random Forest models [17] have been used on such a large scale in numerous
fields, their voting selection mechanism can lead to some decision trees with lower training
accuracy having the same voting power, thus reducing the voting accuracy. Moreover,
the number of decision trees and other parameters selected in a Random Forest model
usually have a large impact on the final classification results. These problems can seriously
affect the accuracy of unbalanced data classification, therefore, this work makes a series
of improvements to the traditional Random Forest algorithm and achieves good results.

1.1. Related Work. Methods for classifying non-equilibrium data can be divided into
two categories: methods based on pre-processing of the dataset, and methods based on
the algorithm level.
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The data-level approach focuses on equalising the data using resampling techniques,
mainly consisting of oversampling and undersampling. Oversampling balances the cate-
gories by adding a small number of class samples, but does not add any valid new in-
formation. In contrast to oversampling, the undersampling method balances the data by
reducing the number of samples in the majority class, but inevitably loses some valid infor-
mation. In addition to the most basic random undersampling and random oversampling,
the Synthetic Minority Over-Sampling Technique (SMOTE) is a more common method
that reduces the degree of imbalance in a dataset by interpolating between sample points
to generate a minority class of data. Fernández et al. [18] proposed an improved SMOTE
algorithm that removes noisy data and discrete points to obtain higher data classification
performance. Jiang et al. [19] proposed a majority weighted minority oversampling tech-
nique that effectively selects minority classes of samples that are not easily learned and
assigns them appropriate weights. However, the training computation of the classifier will
be greatly increased if the amount of data is large, and important samples are easily lost.
Thus the ability to handle unbalanced data by data-level methods is limited.

Random Forest is an integrated learning algorithm that classifies classes of test samples
by combining the classification results of several single classifiers. The algorithm has
better classification results and generalisation ability compared to individual classifiers.
Currently, researchers have proposed optimisation and improvement methods in different
stages of Random Forests. In the data processing stage, Luo et al. [20] proposed a
probabilistic Random Forest model, which improves the classification accuracy of the
integrated classifier by treating features and labels as probability distribution functions.
In the feature selection phase, Zhou et al. [21] proposed a feature cost-sensitive Random
Forest model, which prefers features with high cost, i.e., features with higher classification
accuracy, when selecting features. In the integrated voting stage, Adnan and Islamet [22]
combined weighted Random Forest and balanced Random Forest, which can improve the
recognition accuracy of a few classes while ensuring the overall recognition accuracy. In
the final sample classification of Random Forests, Charbuty and Abdulazeez [23] proposed
decision trees that make the classification results more inclined towards high classification
accuracy. However, while these methods can have high overall recognition accuracy when
the data is highly unbalanced, the recognition accuracy for the minority classes is not
satisfactory.

1.2. Motivation and contribution. The above analysis shows that the existing im-
proved Random Forest models tend to favour the majority class decision trees in order
to maximise the classification accuracy, thus ignoring the results of the minority class
votes. Moreover, the number of decision trees and other parameters in the Random For-
est model usually have a greater impact on the final classification results. Therefore,
to address the above problems, a weighted Random Forest model based on population
intelligence optimization is proposed in this work.

The main innovations and contributions of this work include:
(1) A new model, the accuracy-weighted Random Forest model, is conceived to address

the drawbacks of traditional Random Forest models in terms of decision tree voting mech-
anisms. The key is to add the concept of weights to the traditional model so that the
decision tree can take full advantage of its own strengths when voting on the classification
results.

(2) As a new type of swarm intelligence optimization algorithm, the Whale-swarm opti-
mization algorithm (WOA) has the features of setting fewer parameters, simple computa-
tional process and easy implementation [24], and has shown better performance in global
and local parameter search and optimization solution tasks. To enhance the recognition
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performance of the Random Forest approach for a few classes, the suggested technique is
then parameter optimized using WOA on top of the weighted model.

(3) The inter-individual distance calculation and body movement rules of WOA were
improved in order to enhance the local search capability of WOA and its convergence
speed.

2. Principles of Random Forests.

2.1. Bagging algorithm. A Random Forest’s primary concept is to create a number of
decision trees that are randomly unconnected and may each be trained separately using
training samples. Each decision tree, which has its own vote, classifies fresh samples as
they are introduced and communicates the results of the classification to the Random
Forest.

The final categorization outcome of the sample is determined by the Random Forest
using the grouping with the most votes. If the same training samples with the same
attributes were used for each decision tree, the results would be identical and the voting
mechanism would be meaningless. Therefore, in order to ensure that each decision tree is
different, we need to obtain different training samples in some way, and the samples cannot
be identical in terms of attributes, so we need to select a random number of attributes
each time to generate the decision tree. All decision trees generated in this way would
then be full of randomness and would allow different voting results for the samples.

In order to ensure that each decision tree can produce different classification results in-
dependently, the training samples and decision attributes used in generating each decision
tree should also be different. The decision characteristics can be generated by choosing a
random subspace algorithm, while the training samples are produced using the Bagging
algorithm [25], which is a component of the Random Forest algorithm.

During the random sampling process, the weak classifier will have some samples that
are not drawn, these samples are out-of-bag samples [26]. Considering that there are N
total training samples, all samples are sampled with the same probability, so that the
probability of each sample being drawn is 1/N . All weak classifiers will be randomly
drawn N times, and the probability that a sample is not drawn in any of the N times is
P .

P =

(
1− 1

N

)n

(1)

When N in the above equation tends to infinity, the probability that a sample is never
drawn is 1/e, which is approximately 0.368, where e denotes the natural logarithm. About
36.8% of the total training samples are out-of-bag samples.

2.2. Stochastic subspace algorithms. Another key to forming a Random Forest model
is the random subspace algorithm.

The randomised subspace algorithm is characterised by randomly selecting a subset of
features to train weak classifiers that are independent of each other. This is followed by
a voting process to determine the final classification result of the samples to be tested.
Similar to the Bagging algorithm, the random subspace algorithm also constructs different
weak classifiers by sampling [27]. and by taking a voting mechanism to constitute a strong
classifier after independent training. The difference between the two, however, is that one
samples the sample space with a put-back to obtain training samples, while the other
samples the features without a put-back. The advantages and disadvantages of the two
will be compared in the following two aspects.
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One of the parameters in the random subspace algorithm that needs to be taken manu-
ally is the number of randomly selected features at a time, m. The value of m has a very
significant impact on the algorithm. If m is chosen too small, the classification accuracy of
the weak classifier may be significantly reduced, thus affecting the classification accuracy
of the strong classifier. However, if m is chosen too large, it will not be able to avoid
the generation of redundant attributes. Although the impact of redundant attributes on
the correct rate of the algorithm is reduced at the time of voting, the prolonged training
time due to redundant attributes is indeed unavoidable. Therefore, it is also important
to choose an appropriate value of m. The m value is chosen based on the total number
of attributes M .

m = ⌊log2(M + 1)⌋ , (2)

where the symbol ⌊·⌋ indicates rounding down.

2.3. Voting strategy. Like the Bagging algorithm and the random subspace algorithm,
the Random Forest algorithm also uses a voting strategy, and its voting process is ex-
pressed as follows:

fRF (x) = arg max
i=1,2,...,c

{I(f tree
i (x) = i)}, (3)

where fRF (x) denotes the classification result of the Random Forest model for the
sample x to be tested, I(·) denotes the number of expressions satisfying the brackets,
f tree
i (x) = i denotes the output category of the l-th decision tree as I, and c denotes the
number of categories in the whole Random Forest.

A decision tree is the fundamental building block of a Random Forest. Let there be a
total of m categories Ci(i = 1, 2, . . . ,m) in the sample set S. si is the number of samples
belonging to Ci, then the sample expectation entropy is calculated as shown as follow:

I(s1, s2, . . . , sm) = −
m∑
i=1

si
s
log2

si
s
, (4)

where s indicates the total number of samples and si indicates the number of samples
belonging to the category Ci.

For a single feature A of the sample, the expected entropy of the sample feature is
calculated as shown as follow:

E(A) =
k∑

j=1

s1j + s2j + · · ·+ smj

s
I(s1j, s2j, . . . , smj), (5)

where k denotes the total number of sample features and sij denotes the features of the
j-th dimension of the samples belonging to the category i.

I(s1j, s2j, . . . , smj) = −
m∑
i=1

sij
sj

log2
sij
sj

(6)

From Equations (4) and (5) the entropy gain of the feature A is calculated as shown as
follow:

Gain(A) = I(s1, s2, . . . , sm)− E(A) (7)

The entropy gain rate Gain′(A) is calculated as shown as follow:
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Gain′(A) =
Gain(A)

splitInfo(s)
(8)

splitInfo(s) =
m∑
i=1

si
|s|

× log2
si
|s|

(9)

The Random Forest consists of several decision tree structures, and the main process
of its classification is shown in Figure 1.
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Figure 1. Flow of the Random Forest Model

Let a Random Forest consist of k decision trees h1(x), h2(x), . . . , hk(x). For any two
features X and Y of the sample, the expression of the edge function is shown as follow:

ma(X, Y ) = avk(I(hk(X) = Y ))−max
j ̸=Y

avk(I(hk(X) = j)), (10)

where avk(·) denotes the mean value. The value of ma(X, Y ) is proportional to the
effect of feature extraction.

3. Weighted Random Forest model based on WOA.

3.1. Whale swarm optimisation algorithm. The WOA treats the optimization iter-
ations similarly to the whale hunting movement process [27], where the WOA hunting
process importantly consists of prey search, envelope predation and bubble attack.

The WOA search path update methodology is shown as follow:

D⃗ =
∣∣∣C⃗X⃗∗(t)− X⃗(t)

∣∣∣ (11)

X⃗(t+ 1) = X⃗∗(t)− A⃗ · D⃗, (12)

where X⃗∗ is the optimal solution coordinate, X⃗ is the current solution coordinate and
|| is the absolute value symbol.

The coefficient vectors A⃗ and C⃗ are calculated as follow:

A⃗ = 2a⃗ · r⃗ − a⃗ (13)

C⃗ = 2r⃗, (14)

where r⃗ is a random vector of [0, 1].
The wrap-around convergence is shown in Figure 2.
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Figure 2. Wrap-around convergence approach

Let the coordinates of a humpback whale be X⃗rand and the mathematical expression
for the search for prey be as follow:

D⃗ =
∣∣∣C⃗ · X⃗rand − X⃗

∣∣∣ (15)

X⃗(t+ 1) = X⃗rand − A⃗ · D⃗, (16)

The spiral attack method is shown as follow:

X⃗(t+ 1) = D⃗ · ebl · cos(2πl) + X⃗∗(t) (17)

When a humpback whale finds its prey, it makes either an enveloping predation or a
spiral attack, as determined by the probability p of selection.

X⃗(t+ 1) =

{
X⃗∗(t)− A⃗ · D⃗ if p < 0.5

D⃗ · ebl · cos(2πl) + X⃗∗(t) if p ≥ 0.5
(18)

By constantly updating X⃗(t + 1), the hunting movement is carried out according to
Equation (15) and the cycle is iterated until the optimal individual is obtained. The spiral
update is shown in Figure 3.

3.2. Weighted voting strategy for Random Forests. The weighted Random Forest
model’s crucial component is the division of the training sample into two portions, one
of which serves as the training sample for the conventional Random Forest model and is
used to train all of the decision trees. After the remainder of the tree has done training
itself, it may be utilised as a prediction sample. The decision trees are then evaluated,
and their proper classification rates are computed.
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Figure 3. The spiral update approach

wl =
Xcorrect

l

XL

, l = 1, 2, . . . , L (19)

where Xcorrect
l is the number of samples correctly classified by the l-th decision tree out

of the L decision trees, XL is the number of pretest samples, and wl is the percentage of
correctly classified by the l-th decision tree.
Each decision tree in the Random Forest has to be multiplied by its associated weight

when it is voted on, with w serving as the appropriate weight of the decision tree. The
decision trees and the output of the Random Forest model are shown below:

f tree
l (x) = i (20)

fWRF (x) = arg max
i=1,2,...,e

{∑
l∈L

wl

}
(21)

3.3. Basic process of the WOA-based weighted Random Forest model. The
main steps taken in this paper to optimize the weighted Random Forest with WOA are
as follows:

Step 1: Determine the initial parameters, randomly set the pruning threshold ε, the
number of decision trees L, the predicted sample rate X and the number of random feature
attributes m;

Step 2: Sampling the data to be classified in the UCI dataset using the Bootstrap algo-
rithm, generating L training sets at random, and selecting a random sample of predicted
trials in each training set;

Step 3: The remaining samples of each training set are used to generate the decision
tree separately. During the generation process, m attributes are selected from all feature
attributes as decision attributes for the current node before each attribute selection;

Step 4: When the number of samples contained within a node is less than the threshold
ε, the node is taken as a leaf node and its target attribute is returned as the classification
result of this decision tree, otherwise return to step;

Step 5: When all decision trees have been generated, pretest each decision tree and
record its correctness;
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Step 6: Calculate the classification results of the weighted Random Forest model using
Equation (21);

Step 7: The classification results were used as accuracy values and the WOA algorithm
was used to iteratively optimize the parameters mentioned in Step 1 above. The Random
Forest model is generated according to the final optimized parameters.

3.4. Calculation of inter-individual whale distances. The calculation of inter-individual
whale distances is used to find the guiding individual for each whale [29], so calculating the
effective distance between whales can greatly improve the effectiveness of the algorithm.

The purpose of this paper is to calculate the number of elements that need to be added
or removed to transform from one individual to another, and to define this number as the
distance between these two individuals. The pseudo-code for calculating this distance is
shown in Algorithm 1.

Algorithm 1 Pseudo-code for calculating the distance between whale individuals

1: Input: individual whales Ω1, Ω2

2: Output: distance between individual whales.
3: begin
4: Dist = 0, uIndex = 1, vIndex = 1.
5: Sort(Ω1), Sort(Ω2) ▷ Sort the individual elements of the whale
6: while uIndex ̸= Ω1.length and vIndex ̸= Ω2.length do
7: if Ω1[uIndex] < Ω2[vIndex] then
8: uIndex++, Dist++
9: else if Ω1[uIndex] = Ω2[vIndex] then

10: uIndex++, vIndex++
11: else
12: vIndex++, Dist++
13: end if
14: end while
15: return Dist
16: end

3.5. Individual whale movement rule. The individual whale movement rule is de-
signed to guide the movement of the whale by the ”nearest and better whale” to achieve
a closer approach to the optimal solution and to obtain the expected next generation of
whales.

However, due to the special discrete encoding of individual whales, the individual itera-
tion of the WOA algorithm is not applicable to the weights in Random Forests. Therefore,
the individual movement rules of the WOA algorithm are improved to ensure that indi-
vidual whales move towards their ”nearest and better whale” in order to address the
individual encoding characteristics of weights in Random Forests. Two parameters are
introduced, the bootstrap probability λr and the variance probability λo. The pseudo-code
for the individual movement rule for whales is shown in Algorithm 2.

4. Experimental results and analysis.

4.1. Experimental platform and dataset. The experimental platform is based on
Windows and uses the Python language to build the original algorithm model of the
Random Forest and incorporates the improved WOA algorithm.

The dataset was selected from the publicly available dataset UC. The UCI database
is a database for machine learning proposed by the University of Califonia Irvine, and
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Algorithm 2 Pseudo-code for calculating the distance between whale individuals

1: Input: individual whale Ω, the nearest and better whale Y
2: Output: expected next generation Whale X
3: begin
4: Generate an empty set O;
5: for Index=1 to Ω.length do
6: if Y does not exist in Ω[Index] then
7: Add Ω[Index] to the set O;
8: end if
9: end for
10: for Index=1 to Y .length do
11: if Ω exists in Y [Index] then
12: X[Index]=Y [Index];
13: else if Rnd (0,1) < λr then
14: X[Index]=Y [Index];
15: else
16: X[Index] → O;
17: Remove X[Index] from O;
18: end if
19: if Rnd (0,1) < λo then
20: Randomly initialize X[Index];
21: end if
22: end for
23: return X
24: end

this database currently has 488 datasets. The UCI dataset is a commonly used stan-
dard test dataset. In this paper, four commonly used datasets were selected from the
UCI, namely Abalone, Cancer, Letter and Yeast, with Abalone and Cancer having higher
feature strength, Letter having average feature strength and Yeast having lower feature
strength. The details of these four datasets are shown in Table 1.

Table 1. The information of UCI data sets.

Data set
name

Sample
size

Number
of features

Number
of classes

Unevenness

Abalone 231 13 3 32.05%
Cancer 593 9 2 35.14%
Letter 406 2 2 25.87%
Yeast 814 8 2 35.02%

The experimental hardware configuration is shown in Table 2. The parameters related
to the algorithm in the experiments are set as shown in Table 3.

4.2. Classification performance of samples with different degrees of imbalance.
To verify the classification performance of the WOA+ Random Forest algorithm for sam-
ples with different degrees of equilibrium.

The number of positive and negative samples were differentially selected from Table 1,
and different subsets of positive and negative sample ratios were constructed for classifica-
tion training to validate the classification accuracy and RMSE performance of the WOA+
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Table 2. Main computer hardware configuration.

Configuration Parameters
Processor Inter(R) Core(TM) i3 M 370 @2.4GHz 2.39GHz
Memory 8 G

Hard disk capacity 1 TB
System type 64-bit operating systems

Operating systems Microsoft Window 10

Table 3. Parameter information.

Configuration Parameters
ntree 100
ω 0.85
λr 0.5
λo 0.005
|Ω| 10

Random Forest algorithm for the 4-class sample set, as shown in Table 4 and Table 5.
The highest classification accuracy was obtained for all four sample sets with a positive

Table 4. Classification accuracy of different samples.

Category
Positive and negative
sample proportions

Classification accuracy
Minimum

value
Average

Maximum
value

Abalone

3:1 0.9186 0.9192 0.9197
4:1 0.9146 0.9149 0.9155
5:1 0.9078 0.9083 0.9088
6:1 0.9025 0.903 0.9038

Cancer

3:1 0.9271 0.928 0.9293
4:1 0.9235 0.9244 0.925
5:1 0.9183 0.9188 0.9192
6:1 0.9134 0.9136 0.914

Letter

3:1 0.9132 0.9135 0.9139
4:1 0.9095 0.9098 0.9104
5:1 0.9054 0.9058 0.906
6:1 0.9012 0.9014 0.9017

Yeast

3:1 0.9356 0.9359 0.9362
4:1 0.9328 0.933 0.9332
5:1 0.9301 0.9304 0.9306
6:1 0.9284 0.9287 0.9289

to negative sample ratio of 3:1, while the lowest classification accuracy was obtained for
a positive to negative sample ratio of 6:1. The cross-sectional comparison revealed that
the WOA+Random Forest algorithm had the highest classification accuracy for the Yeast
sample set and the worst for the Letter sample set.

As can be seen in Table 5, the degree of non-equilibrium of the samples has a significant
impact on the stability of the data classification. When the ratio of positive to negative
samples was 3:1, the RMSE values for classification of all four categories of samples were
small. When the difference between positive and negative samples is larger, the RMSE
values gradually increase. When the ratio of positive to negative samples was 6:1, the
RMSE values increased significantly compared to the 5:1 ratio. This indicates that for 4
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classes of samples, the classification algorithm of WOA+Random Forest has a significant
stability perturbation in its algorithm classification when the ratio of positive to negative
samples is greater than or equal to 6:1.

Table 5. Classification RMSE values of different samples

Category
Positive and negative
sample proportions

RMSE Mean

Abalone

3:1 4.06E-02
4:1 4.09E-02
5:1 5.64E-02
6:1 7.52E-02

Cancer

3:1 4.32E-02
4:1 4.50E-02
5:1 5.92E-02
6:1 7.09E-02

Letter

3:1 4.13E-02
4:1 4.37E-02
5:1 5.63E-02
6:1 6.89E-02

Yeast

3:1 3.26E-02
4:1 3.40E-02
5:1 4.00E-02
6:1 6.10E-02

4.3. Optimization effect of WOA. In order to verify the optimization performance
of WOA for Random Forest classification, the Random Forest algorithm and WOA +
Random Forest algorithm were used for classification simulation respectively, and the
number of samples tested was 200 for each of the four types, with a positive to negative
sample ratio of 4:1. The comparison results are shown in Table 6.

Table 6. Classification recall rate and F1 value of two algorithms

Data sets Models Recall rate F1 value

Abalone
Random Forest 0.7896 0.7844

WOA + Random Forest 0.8311 0.8123

Cancer
Random Forest 0.7564 0.7463

WOA + Random Forest 0.8365 0.8171

Letter
Random Forest 0.7501 0.7219

WOA + Random Forest 0.8321 0.8085

Yeast
Random Forest 0.7911 0.7823

WOA + Random Forest 0.8509 0.8404

A comparison of the 2 algorithms revealed that the recall and F1 values for the clas-
sification of unbalanced data differed significantly between the 2 algorithms, with the
WOA-optimised Random Forest achieving higher performance. a comparison of the 4-
class sample set revealed that both the Random Forest algorithm and the WOA+Random
Forest algorithm achieved the highest recall and F1 values for the classification of the Yeast
sample, and the lowest recall and F1 values for the classification of the Letter sample,
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which indicates that the Random Forest algorithm is most applicable in the classification
of the Yeast unbalanced sample set.

4.4. Comparison of the classification performance of different algorithms. In
order to further verify the effectiveness of the WOA+Random Forest model proposed in
this paper in dealing with unbalanced datasets, the Abalone with high feature strength
and the Yeast dataset with low feature strength were processed so that they presented
five different balance degrees. SVM [30], KNN [31], Random Forest and WOA+ Random
Forest were selected for comparison experiments respectively, and the results are shown
in Figure 4 and Figure 5.

Figure 4. Recall rate of Abalone with different balance degrees

Figure 5. Recall rate of Yeast with different balance degrees

It can be seen that the recognition rates of all four classification models keep decreasing
as the proportion of minority classes decreases. Due to the high robustness of the Random
Forest, the recognition rates of the Random Forest and WOA+ Random Forest for the
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minority classes fluctuated less. The recall rates of both were above 93 % on the Abalone
dataset, significantly higher than those of SVM and KNN, which did not perform as well.
All four classification models showed degradation in recognition rate on the low feature
intensity Yeast dataset compared to the high feature intensity Abalone dataset. However,
the rate of decline in recall was smoother for Random Forest and WOA+Random Forest
than for SVM and KNN, which means that the recognition accuracy for a few classes was
higher.

In addition, for both Abalone with high feature strength and YeastYeast with low
feature strength, the recall rate of WOA+Random Forest was higher than that of standard
Random Forest under the same non-equilibrium degree condition. At a non-equilibrium
degree of 5 %, the recall rate of WOA+ Random Forest improved by 11%, verifying its
effectiveness in classifying sub-equilibrium data.

5. Conclusion. The selection of the number of decision trees and other parameters in
a Random Forest model usually also has a large impact on the final classification re-
sults. Therefore, a WOA +Random Forest model is proposed in this work. An accuracy-
weighted Random Forest model is proposed. The proposed scheme is then parameter
optimised using WOA on the basis of the weighted model, thus improving the accuracy of
the Random Forest model for minority class recognition. In addition, the inter-individual
distance calculation and body movement rules of WOA are improved in order to enhance
the local search capability of WOA and its convergence speed. Simulation results show
that the recall rate of WOA+Random Forest is improved by 11 % at a non-equilibrium
degree of 5 % compared to that of standard Random Forest. The research in this work
belongs to the discrete optimisation problem. For discrete optimisation problems, the use
of a discrete individual coding scheme can greatly reduce the scope of the search space.
Therefore, follow-up research will improve the whale individual coding strategy to narrow
the search field and boost the effectiveness of the algorithmic solution.
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