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Abstract. Piano sheet music difficulty artificial intelligence recognition can be applied
to music software and applications to automatically recommend suitable tunes according
to the user’s level. Therefore, in order to solve the problem that it is difficult to assign
massive piano sheet music difficulty level labels manually, this work proposes an intel-
ligent recognition method of piano sheet music difficulty based on improved Deep Belief
Network. First, in order to find more difficulty-related features to expand the feature
space, eight new difficulty-related features are proposed by analyzing the difficulty classi-
fication guidelines provided by music websites, and the effectiveness of these new features
is verified by comparison experiments and the I-RELIEF weighting algorithm. Then, the
eight new difficulty-related features are input into multiple Restricted Boltzmann Machine
(RBM) layers of Deep Belief Network (DBN) for deep training, so as to extract deep ab-
stract features. Considering that the number of neurons in the hidden layer has a large
impact on the effect of feature extraction, and it is difficult to set the number of neurons
artificially to bring out the best performance of the network, the number of neurons in
each layer of the network is optimized within a specified range using the Artificial Bee
Colony (ABC) algorithm to obtain the optimal stacking structure of the network. Finally,
an extreme learning machine is used to classify and recognize the difficulty level, which
compensates for the time-consuming feature extraction process of the network. Simula-
tion experiments are commonly conducted on the music score dataset. The results show
that the proposed method has 100% accuracy in classifying and recognizing the four dif-
ficulty levels.
Keywords: difficulty level recognition; feature selection; deep belief network; artificial
bee colony algorithm; learning rate

1. Introduction. Artificial intelligence recognition of piano sheet music difficulty can
provide learners with personalized sheet music recommendations to help them choose
the right piece of music with the right level of difficulty, thus improving the efficiency
of practice. It can also be applied to music software and applications to automatically
recommend suitable tunes according to the user’s level.

With the increase of music learning population, learners need personalized sheet music
recommendation. However, traditional piano sheet music difficulty assessment is highly
subjective and cannot accurately fit different needs. Therefore, the development of pi-
ano sheet music difficulty artificial intelligence recognition technology can more accu-
rately assess the difficulty of the sheet music, personalized recommendation, and improve
the learning efficiency [1, 2]. Music teaching requires scientific and reasonable progress
planning. However, the traditional empirical method is difficult to accurately grasp the
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learning ability of students. Intelligent recognition technology can analyze the level of
students, assess the difficulty of piano sheet music, recommend appropriate sheet music,
and plan a scientific learning route. Other music application scenarios also require in-
telligent difficulty recognition. For example, intelligent sorting of sheet music for music
software, designing levels for games, etc. [3]. Intelligent recognition technology can give
products a better user experience and greater commercial value.

Different instruments and different performers may have different perceptions of the
difficulty of the same piece of music, making it difficult to objectively assess the difficulty.
Melody, harmony, rhythm, and technique are all related, so it is difficult to establish
a systematic evaluation system. It is necessary to refine the musical features that can
effectively represent the difficulty, and to adjust the parameters for different instruments
and styles [4]. However, manually labeling a large number of sheet music samples requires
professional knowledge and a lot of manpower, and the scale and quality of labeling are
difficult. It is necessary to select appropriate machine learning or deep learning models,
and to design the structure and hyper-parameter optimization for the music domain [5].
Therefore, establishing a robust and widely applicable piano score difficulty assessment
model requires comprehensive cross-domain research to achieve a breakthrough.

Neural networks have powerful pattern recognition capabilities and can be trained to
learn the visual and semantic features of sheet music, modeling the complex mapping
relationship of the difficulty of piano sheet music. Pre-trained models such as BERT
[6] can extract the semantic information of music scores; Convolutional Neural Networks
(CNN) [7] can learn the visual features of music scores, and Recurrent Neural Networks
(RNN) [8] can learn the time series features of music scores. Neural networks can fuse
heterogeneous music data from multiple sources, such as audio, score images, and symbol
representations, to perform multimodal modeling and improve recognition robustness.
Therefore, the main research objective of this work is to automatically assign difficulty
level labels to a large number of digitized musical scores without difficulty level labels by
using the techniques of deep learning theory and classification to achieve fully automatic
recognition of difficulty levels of digital piano scores.

1.1. Related Work. more and more studies focus on piano sheet music difficulty level
recognition. The main research team comes from the fields of music information retrieval,
music education, and computer vision.

In terms of datasets, some standard datasets have been proposed and used, such as the
Lakh MIDI dataset and the MAESTRO dataset [9, 10, 11], but they are far from being
sufficient. The scale and diversity of data still need to be improved. In terms of model
effect, most of the current studies can achieve 70-85% recognition accuracy. However,
there is still a certain gap, and it is difficult to meet the practical requirements. Overall,
this research field is still in the primary development stage.

From the point of view of recognition methods, the research on piano score difficulty
level recognition includes: methods based on traditional machine learning, methods based
on deep learning, methods based on multi-modality, methods based on augmentation
learning and methods based on transfer learning. The main method studied in this work
is the deep learning based method.

Earlier feature engineering+classifier approaches were used, such as by manually de-
signing musical features such as pitch, rhythm, etc., and inputting them into models such
as Support Vector Machine (SVM), k nearest neighbors (KNN), etc. Phanichraksaphong
and Tsai [12] proposed a method for assessing the difficulty of piano compositions based
on an SVM model. Nearly 12-dimensional musical features such as pitch, melodic inter-
val, and rhythm were extracted, and the classification results of 250 piano songs reached
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about 74% accuracy. This study demonstrated the importance of musical feature design.
Sudarma and Harsemadi [13] used the KNN model to achieve tune prediction by count-
ing the interval characteristics of melody, and achieved an accuracy rate of about 60%.
This study extracted low-level audio features such as beat and rhythm, and music syntax
features such as chord and pitch, resulting in an accuracy rate of about 60%. This type of
approach demonstrates that machine learning models can learn music syntax knowledge,
but the features and models need to be improved, such as manual feature extraction, large
amount of work and poor scalability.

Costa et al. [14] proposed a method to automatically recognize music difficulty using
convolutional neural networks (CNN). A large dataset of music scores was used, and the
CNN model was trained and tested to successfully achieve automatic recognition of music
difficulty. The method can help music educators better assess students’ skill levels in order
to provide them with more appropriate practice repertoire. Dua et al. [15] proposed a
method for music difficulty estimation using recurrent neural networks (RNNs) and long-
short-term memory networks (LSTMs) and utilized large-scale music datasets for model
training. The results show that the method can accurately estimate the difficulty level
of music and achieves good performance in different types of music. Ashraf et al. [16]
used Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for
feature extraction of musical scores and trained the model to predict the difficulty level.
By combining CNN and RNN for feature extraction and temporal modeling of musical
scores, automatic recognition of music difficulty is achieved. Experimental results show
that the method achieves high accuracy on several music datasets and can be applied to
music teaching and music recommendation systems.

Deep Belief Network (DBN) is a neural network model that consists of a multilayer
stacked structure of multiple Restricted Boltzmann Machines (RBMs). DBN can be
used for unsupervised learning and feature extraction. Gao et al. [17] DBN-based math
problem difficulty level prediction method. By constructing a DBN model containing
word embedding layer, hidden layer and output layer, the math problem is described as
a multi-categorization problem, and the DBN model is used to predict the difficulty level
of the problem. The experimental results show that the method has high accuracy and
robustness in predicting the difficulty level. Wang et al. [18] used the DBN model to
predict the programming difficulty level. The researchers performed the prediction of
programming difficulty level by inputting the features of programming problems into the
DBN model. The experimental results show that the method can predict the difficulty
level of programming problems more accurately.

1.2. Motivation and contribution. Compared to CNN and RNN, DBN can effectively
process sequence data in musical scores by analyzing the arrangement of notes in the score
as input. In contrast, CNNs are more suitable for processing image data, while RNNs
are mainly used for processing sequence data [19, 20]. DBN can capture complex musical
patterns in a score by stacking multiple hidden layers for nonlinear feature extraction [21,
22]. This fact allows DBN to better portray the relationships and patterns between notes
in piano score difficulty assessment.

The deep structure of DBN allows it to handle more complex score data, including
longer score sequences and more input features. This makes DBN more scalable and
adaptable in the field of piano score difficulty level evaluation. Therefore, in order to
solve the problem that it is difficult to assign difficulty level labels for massive piano sheet
music manually, this work proposes an intelligent recognition method for piano sheet
music difficulty based on improved DBN. The main innovations and contributions of this
work include:
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(1) In order to find more difficulty-related features to expand the feature space, eight
new difficulty-related features are proposed by analyzing the difficulty classification guide-
lines provided by music websites, and the effectiveness of these new features is verified by
comparison experiments and the I-RELIEF weighting algorithm [23, 24].

(2) Eight new difficulty-related features are input into the DBN for deep training, so
as to extract deep abstract features. Considering that the number of neurons in the
hidden layer has a large impact on the effect of feature extraction, and it is difficult to set
the number of neurons artificially to bring out the best performance of the network, the
number of neurons in each layer of the network is optimized by using the Artificial bee
colony (ABC) algorithm [25] within the specified range to obtain the optimal stacking
structure of the network.

(3) The use of Extreme Learning Machine (ELM) [26] for classification and identifica-
tion of difficulty levels compensates for the time-consuming process of network feature
extraction.

2. Establishment of the feature space.

2.1. The role of feature space. The vectors in the feature space can be directly used
as inputs to machine learning and deep learning models for end-to-end modeling and
training.

Each dimension in the feature space can represent a musical semantic feature such as
pitch, rhythm, and harmony. These features can reflect the difficulty level of the score.
Different lengths and forms of musical scores are uniformly mapped to a fixed dimension
feature space, which is convenient for model input and processing. The high-dimensional
music data can be abstractly represented in the feature space at low latitude, which
reduces the computational burden and highlights the main features. The feature space
can visualize the high-dimensional music data and understand the data distribution more
intuitively. It also facilitates hyper-parameter tuning. Scores with different difficulty
levels can be mapped to different regions of the feature space to achieve differentiated
recognition.

2.2. Difficulty feature extraction. Existing difficulty-related features of piano scores
mainly involve score information such as beat, pitch, time, score length, note alteration
and hand displacement [27].

On the basis of comprehensively analyzing the score information contained in the exist-
ing difficulty features, and referring to the difficulty level classification standards provided
by music websites, this work found some other score information closely related to diffi-
culty. These specific quantitative features can effectively reflect multiple aspects of the
difficulty of piano scores, which can be combined to realize a comprehensive assessment
of difficulty. Overall, the difficulty feature space after this paper is 14(6+8) dimensions,
i.e., there are 14 numerical features. The eight new features adopted in this work which
are related to the assessment of the difficulty level of piano music are as follows.

(1) Pitch Range (PR): Measures the size of the pitch range used in a melody.

PR = max(P )−min(P ) (1)

where P is the set of pitches.
(2) Highest Pitch (HP ): Reflects the pitch of the highest note of the tune.

HR = max(P ) (2)

(3) Largest Pitch Interval (LPI): the largest pitch interval in the melody.

LPI = max {|Pi+1 − Pi|} (3)
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where Pi and Pi+1 are neighboring pitches.
(4) Polyphonic Techniques (PT ): Evaluates the number and complexity of polyphonic

techniques used.

PT =
Npoly

Nnotes

(4)

where Npoly is the number of notes using the polyphony technique and Nnotes is the total
number of notes.

(5) Chord Change Speed (CCS): The frequency of chord change per unit time.

CCS =
Nchord

T
(5)

where Nchord is the total number of chord changes and T is the total time.
(6) Melodic Rhythm Complexity (MRC): Reflects the complexity of rhythmic changes

of notes in the melody [28]. This information entropy index reflects the randomness
and complexity of rhythmic changes in the melody, and the higher the value, the more
complex the melodic rhythm. Let there are n types of notes (e.g., whole notes, quarter
notes, etc.), denoted as R1, R2, . . . , Rn, and the number of times each type of note appears
in the melody is N(Ri), then the probability of occurrence of each type of note is:

P (R1) =
N(R1)

Nnotes

, P (R2) =
N(R2)

Nnotes

, . . . , P (Rn) =
N(Rn)

Nnotes

(6)

Thus, MRC is defined as the information entropy of the probability of occurrence of each
type of note:

MRC = −
∑

P (Ri) logP (Ri) (7)

where
∑

is a summation operation for all note types Ri.
(7) Number of Notes Simultaneously (NNS): Reflects the characteristics of vertical

complexity in the tune.
NNS = max(Nsimult) (8)

where Nsimult is the number of simultaneous notes occurring at any time.
(8) Proportion of Repetition Structures (PRS): Evaluates the proportion of repetition

structures in the structure of the piece.

PRS =
Trepetition

Ttotal

(9)

where Trepetition is the repetition structure time and Ttotal is the total time.

2.3. Data preprocessing. Prior to difficulty recognition, it is necessary to quantify the
collected scores, normalize the extracted feature data as well as pre-processing operations
to resolve data imbalances.

First of all, due to the time resolution of the music file is generally higher, resulting
in some notes do not appear in the correct rhythmic position, so before extracting the
features to quantize the music file, so that the note onset time (onset time) and duration
(duration) can appear in the correct rhythmic position, the specific quantization process
is shown in Figure 1.

After feature extraction, this paper uses the Min-Max normalization algorithm to nor-
malize the feature vector to the interval [0, 1].

x∗
i =

xi −min

max−min
(10)

where min and max denote the minimum and maximum values of the feature xi respec-
tively, and x∗

i denotes the feature xi after normalization.
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Figure 1. Basic flow of filtered feature selection methods

In addition, in order to solve the data imbalance problem, this paper adopts the Thresh-
old Moving (ThM) algorithm. The prediction threshold of the classifier is adjusted so that
the majority class samples are categorized into a minority class, thus balancing the number
of samples in each class.

2.4. Assessing the validity of difficulty-related features. To verify the validity of
the proposed feature space, it was compared with the existing feature space.

For the same MAESTRO dataset, three regression algorithms [29, 30] (Linear Regres-
sion, Decision Tree Regression, Random Forest Regression) were used to fit the data in
the two different feature spaces and the fit was measured by the Root Mean Squared Error
(RMSE). The RMSE was computed as shown below:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (11)

where ŷi is the predicted difficulty level of the i-th score, yi is the actual difficulty level
of the i-th score, and n is the number of score samples.

Three regression algorithms were used to fit the data in the two feature spaces and the
RMSE results are shown in Table 1. It can be seen that all three regression algorithms
have better RMSE values under the expanded feature space, indicating that the regression
algorithms can fit the data better in the expanded feature space. In addition, the newly
proposed difficulty-related features can improve the discrimination between categories.
However, despite the better fit in the expanded feature space, the best RMSE value is
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still not very good, indicating that the fit needs to be further improved or the problem is
not suitable to be solved by the regression algorithms.

Table 1. RMSE for three regression algorithms.

Eigenspace
linear

regression
decision tree
regression

Random Forest
Regression

12-dimensional
feature space

2.68 2.19 1.96

The proposed 14-dimensional
feature space

2.51 1.87 1.62

To further illustrate that the newly proposed features are helpful in achieving the
recognition of the difficulty level of piano scores, the I-RELIEF weighting algorithm is
further utilized to identify the Lakh MIDI dataset and the MAESTRO dataset to obtain
the magnitude of the weights of the individual features and thus measure the effectiveness
of the new features. Table 2 lists the eight features with the highest weights assigned by
the I-RELIEF weighting algorithm and their corresponding weights.

Table 2. The eight most heavily weighted features and their corresponding
weights.

No. Features Lakh MIDI MAESTRO
1 PR 0.0232 0.0223
2 HP 0.0218 0.0209
3 LPI 0.0184 0.0185
4 PT 0.0175 0.0174
5 CCS 0.0168 0.0159
6 MRC 0.0119 0.0115
7 NNS 0.0081 0.0052
8 PRS 0.0065 0.0087

For both datasets, six of the eight features with the largest weights are the same, with
PR having the largest weight in all of them. This also shows that the feature space
proposed in this paper is effective and has a strong ability to discriminate the difficulty
level.

3. Intelligent recognition of piano score difficulty based on ABC-DBN-ELM.

3.1. DBN-based deep abstract feature extraction. . After verifying the validity
of the proposed new feature space, eight new difficulty-related features are input into
multiple RBM layers of DBN for deep training to extract deep abstract features.

The DBN hierarchical structure mainly consists of a visible layer v = (v1, v2, · · · , vm)
and a hidden layer h = (h1, h2, · · · , hn), where the h-layer contains multiple levels of
RBM. The structure of RBM is shown in Figure 2.

Let θ = {w, c, b}, where w is the weight between v and h, c and b are the bias between
v and h, then the effect of a node in the h layer on the v layer is shown below:

P (v,h) =
1

Z
e−E(v,h) (12)

where E(v,h) obeys the Bernoulli distribution.
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Hidden layer

Visible layer

Figure 2. Structure of the RBN

Let the three coefficients of the Bernoulli distribution of the i-th hidden layer and the
j-th visible layer be cj, bj and wj.

E(v,h) = −
m∑
j=1

bjvj −
n∑

i=1

cihi −
n∑

i=1

m∑
j=1

wijvjhi (13)

Then the role of all nodes in layer h on layer v is shown below:

P (v) =
∑
h

P (v,h) =
1

Z

∑
h

e−E(v,h) (14)

In turn, all the nodes in the v-layer act on the h-layer as follows:

P (h) =
∑
v

P (v,h) =
1

Z

∑
v

e−E(v,h) (15)

The effect of all v-layer nodes on the i-th h-layer node is shown below:

P (hi = 1|v) = σ(ci +
m∑
j=1

wijvj) (16)

The effect of all h-tier nodes on the i-th v-tier node is shown below:

P (vj = 1|h) = σ(bj +
n∑

j=1

wjivi) (17)

where σ is σ(x) = 1/(1 + e−x).
If v0, v1, . . . , vm in v obeys an independent homogeneous distribution, then the maxi-

mum likelihood estimate is obtained by taking the natural logarithm of Equation (14).

∧
θ = argmax

θ

m∑
t=0

lnP (vt|θ) (18)

θ∗ = θ + η
∂ lnP (v)

∂θ
(19)
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where η (η > 0) is the learning rate.
The effect of the l-th visual layer on the h-layer is shown below:

lnP (v0) = ln
∑
h

e−E(v0,h) − ln
∑
v,h

e−E(v,h) (20)

In order to obtain the key parameters of DBN, the derivations are performed for wij,
bj, and cj respectively.

∂ lnP (v0)
∂wij

= P (hi = 1|v0)v0j −
∑
v

P (v)P (hi = 1|v)
∂ lnP (v0)

∂bj
= v0j −

∑
v

P (v)

∂ lnP (v0)
∂ci

= P (hi = 1|v0)−
∑
v

P (v)P (hi = 1|v)
(21)

The relationship between the results of the current iteration and the last iteration is
shown below: 

wij
∗ = wij + η ∂ lnP (v0)

∂wij

bj
∗ = bj + η ∂ lnP (v0)

∂bj

ci
∗ = ci + η ∂ lnP (v0)

∂ci

(22)

Finally the v-layer weight parameters of the DBN are solved inversely to determine the
DBN network structure.

3.2. ABC-DBN. Considering that the number of neurons in the hidden layer has a large
impact on the effect of feature extraction, and it is difficult to set the number of neurons
artificially to bring out the best performance of the network, the ABC algorithm is used
to optimize the number of neurons in each layer of the network in a specified range in
order to obtain the optimal stacking structure of the network.

The ABC algorithm mainly takes the honey source as the optimal solution of the
algorithm, and leads the detector bees and the follower bees to complete the search of the
honey source together. Let the nectar source be i and the d-dimensional initial random
position of the detector bee be Xid.

Xid = Ld + rand(0, 1)(Ud − Ld) (23)

where Ud and Ld are the maximum and minimum values of the boundary of the nectar
source in the d-dimensional property, respectively.

The detector bees start the nectar search at Xid and set the new nectar source as Vid.

Vid = Xid + φ(Xid −Xjd) (24)

where φ is a random value in the range [1,1] and Xjd is any position in the d-th dimension
of the search range except Xid.

When a new nectar source is detected by a detector bee, the old and new nectar
sources are compared in terms of fitness. The adaptation fi of the new nectar source
Vi = [Vi1,Vi2, · · · ,Vid] is calculated as shown below:

fiti =

{
1/(1 + fi), fi ≥ 0

1 + abs(fi), otherwise
(25)

If the fitness value of Vi is better than Xi, the original nectar source is replaced with
the new nectar source, otherwise it is not replaced. The detecting bee communicates
the nectar source data to the following bee, and when the following bee finds more than



1368 M. Lin

one nectar source within its search range, it selects the nectar source according to the
probability pi.

pi =
fiti∑S
i=1 fiti

(26)

where S denotes the total number of nectar sources.
During nectar search, when the number of iterations G is less than or equal to the max-

imum number of iterations Gmax, then jump to Equation (23) and re-execute, otherwise
the algorithm stops.

Xt+1
i =

{
Ld + rand(0, 1)(Ud − Ld), G ≥ Gmax

Xt
i, G < Gmax

(27)

In this paper, the ABC algorithm is used to optimally solve the DBN core parameters,
i.e., updating the RBM key parameters in accordance with Equation (24) to Equation
(26), and obtaining the optimally adjusted RBM network structure parameters θ∗ =
(w∗

ij, b
∗
j , c

∗
i ). Finally, the stable DBN structure model is obtained.

3.3. ELM-based difficulty level classification. Compared with traditional neural
network classification methods, ELM has faster learning speed, good generalization per-
formance, and is less likely to fall into local minima, which makes it more suitable for
difficulty level classification [31]. The neural network structure of ELM is shown in Figure
3 The deep abstract features extracted by ABC-DBN are fed into the ELM for final diffi-

Figure 3. Neural Network Architecture for ELMs

culty level classification. For an ELM network with a hidden layer containing L neurons,
the output of the network can be expressed as:

L∑
i=1

βig (Wi ·Xj + bi) = Oj, j = 1, 2, ..., N (28)
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where g(x) is the activation function, W is the weight matrix of the input, β is the
weight of the output, and bi is the bias of the i-th hidden layer neuron.

The learning objective of the ELM network is to minimize the error of the output [32].

N∑
i=1

∥oj − tj∥ = 0 (29)

The process of training the ELM is to find β, W and bi to make the output as close as
possible to the classification label of the sample. Therefore, the structure of ABC-DBN-
ELM is shown in Figure 4.

Feature extraction RBM layer

Input feature

Classification ELM

Figure 4. Structure of ABC-DBN-ELM

4. Experimental results and analysis.

4.1. Data sources and data preprocessing. In order to verify the performance of
ABC-DBN-ELM in the field of intelligent recognition of piano sheet music difficulty, Mat-
lab is used for example simulation. The computer environment used is a 32-bit Windows
10 system with a built-in Intel I5-4200M processor and 8 G of RAM.

The experimental data is the MAESTRO dataset, a large music dataset used for music
information retrieval and related tasks, containing tens of thousands of classical music
works covering multiple musical periods and styles. A random sample of 500 MIDI-
formatted score files containing four difficulty levels were selected from the MAESTRO
dataset as the source of experimental data. After data preprocessing, piano sheet music
difficulty level classification was recognized using ABC-DBN-ELM. Each experiment was
repeated 5 times, each time with 5-fold cross-validation, and the average value was taken
as the final result.
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4.2. Selection of optimal learning rate. In order to verify the effect of the DBN
core parameter learning rate η on the difficulty level classification of piano scores, the
classification accuracy at different η values is verified, as shown in Table 3.

Table 3. Classification Accuracy for Different η Values

Difficulty
level category

learning rate
η

Classification accuracy
Minimum Average Maximum

1

0.02 0.8912 0.8914 0.8935
0.06 0.8998 0.9021 0.9047
0.08 0.9246 0.9255 0.9284
0.10 0.9131 0.9151 0.9172

2

0.02 0.9003 0.9042 0.9067
0.06 0.9111 0.9142 0.9175
0.08 0.9417 0.9442 0.9464
0.10 0.9306 0.9338 0.9361

3

0.02 0.8992 0.9017 0.9045
0.06 0.9092 0.9145 0.9166
0.08 0.9392 0.9408 0.9443
0.10 0.9391 0.9403 0.9432

4

0.02 0.8978 0.9004 0.9028
0.06 0.8992 0.9035 0.9064
0.08 0.9322 0.9346 0.9368
0.10 0.9232 0.9247 0.9261

It can be seen that at different η values, although ABC-DBN-ELM obtains a classifica-
tion accuracy of more than 0.9 in all four difficulty levels, there are still some differences.
This is mainly because under the condition of a certain maximum number of iterations,
the η value determines the rate and range of the search for the optimal value, which
affects the accuracy of ABC-DBN detection. Cross-sectional comparisons revealed that
both ABC-DBN-ELM achieved the highest classification accuracy at η = 0.08. Therefore,
the learning rate of η = 0.08 was chosen as the optimal parameter.

4.3. DBN feature extraction results. After the feature extraction by three layers
of RBM and the inverse fine-tuning of the ABC algorithm, the 14-dimensional features
obtained after DBN feature extraction of the original data of the sheet music file. The
feature extraction results are shown in Table 4.

Table 4. DBN Network Feature Extraction Results

ID
Feature

1
Feature

2
Feature

3
Feature

4
Feature

5
Feature

6
Feature

7
...

Feature
14

1 0.602929 0.570384 0.61914 0.554068 0.526342 0.530688 0.589821 ... 0.565637
2 0.594544 0.556673 0.603014 0.538962 0.524628 0.519579 0.583409 ... 0.554929
3 0.5534 0.509959 0.537609 0.491562 0.514099 0.484331 0.54839 ... 0.514437
4 0.601131 0.565632 0.61453 0.548556 0.52607 0.526847 0.588407 ... 0.562459
5 0.587817 0.540709 0.58423 0.51795 0.523726 0.50403 0.577866 ... 0.54223
6 0.586026 0.537923 0.580529 0.514465 0.523365 0.501547 0.576291 ... 0.53989
7 0.595655 0.55453 0.601728 0.535074 0.525144 0.516961 0.584093 ... 0.553897
8 0.58309 0.529033 0.570751 0.503417 0.523032 0.492806 0.574328 ... 0.33364
9 0.602111 0.571302 0.618996 0.555321 0.526038 0.531526 0.589072 ... 0.565876

In order to further demonstrate the feature extraction effect of the DBN network,
the results extracted in the previous step need to be visualized. Using LLE to reduce
the features to a two-dimensional space and normalize the reduced data, the visualized
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results are shown in Figure 5. F0-F3 represent four piano music score difficulty level
states, respectively. It can be seen that although several states in the original data are also
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Figure 5. 2D Feature Visualization

roughly distributed, there are many overlapping points between different states, which is
not convenient for direct classification. As can be seen in Figure 5, the four state features
automatically extracted by DBN are all clearly distinguished, proving DBN’s very good
feature extraction ability.

4.4. Selection of the number of ELM neurons L. Since L has a large impact on both
the training time and classification accuracy of ELM, in order to determine the optimal
L, the relationship between L and the accuracy of the test set is analyzed in this paper,
as shown in Figure 6.
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Figure 6. Effect of L on test set accuracy

It can be seen that when L = 13, the accuracy of the test set reaches 100% for the
first time. As L continues to increase, the accuracy basically stabilizes between 95% and
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100%, but considering the effect of L on the speed of the ELM, the number of neurons in
the hidden layer of the ELM is finally chosen to be 13.

4.5. Effect of ABC on classification performance. To further verify the improve-
ment effect of ABC on DBN-ELM, the classification accuracy RMSE and classification
time were compared, as shown in Table 5.

Table 5. Performance comparison between DBN-ELM and ABC-DBN-ELM

Algorithm Category RMSE mean Detection time/s

DBN-ELM

1 6.226× 10−2 23.664
2 7.283× 10−2 23.739
3 5.417× 10−2 25.25
4 5.325× 10−2 24.916

ABC-DBN-ELM

1 4.734× 10−2 23.678
2 5.624× 10−2 23.833
3 4.987× 10−2 25.175
4 5.012× 10−2 24.991

It can be seen that the classification RMSE value of DBN-ELM algorithm is significantly
higher than that of ABC-DBN-ELM algorithm, which indicates that the stability of its
classification accuracy is significantly improved after the optimization of DBN using ABC
algorithm, which also reflects that the optimization of the DBN weight parameter solution
using ABC algorithm is able to obtain a more stable value of the weight parameter.

In terms of classification time, the difference between the classification time of the
DBN algorithm and the ABC-DBN algorithm at steady state is small, which is due to
the fact that after adding the ABC optimization, the DBN saves the time of solving
the RBM parameter θ = {w, c, b} one by one inversely. The difference in classification
time between the two is not large because the DBN algorithm is able to obtain a better
parameter θ = {w, c, b} after the introduction of ABC optimization. Under the same
classification accuracy threshold, the ABC algorithm’s own search optimization consumes
about the same amount of time as the DBN’s solution time, but the accuracy is clearly
superior to ABC-DBN.

4.6. Difficulty level classification results. The classification accuracies of the training
and test sets are simulated and analyzed respectively, and the classification results of the
test set are shown in Figure 7. Where the horizontal coordinate represents the number of
samples and the vertical coordinate represents the four difficulty level labels. 80% (400)
of the original samples are taken for each of the training set and 20% (100) for the test
set.

The classification and recognition results of evaluating ABC-DBN-ELM are judged
based on whether the true labels of the data and the labels diagnosed by the model
overlap. The confusion matrix is used to visualize the correct classification rate of each
class, as shown in Figure 8.

It can be seen that the diagnostic accuracy of the four difficulty levels of classification
and recognition is 100%, and the classification results are consistent with the feature vi-
sualization results extracted by DBN.
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Figure 7. Test set classification results
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Figure 8. Heat map of test set classification results

5. Conclusion. In order to find more difficulty-related features to extend the feature
space, this work proposes eight new difficulty-related features by analyzing the difficulty
classification guidelines provided by music websites. Then, the eight new difficulty-related
features are input into DBN for deep training so as to extract deep abstract features.
Next, the ABC algorithm is taken to optimize the number of neurons per layer of the
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network within a specified range to obtain the best stacking structure of the network.
Finally, ELM is used to classify and recognize the difficulty levels, which compensates
for the time-consuming feature extraction process of the network. The results show that
the diagnostic accuracy of the classification recognition for all four difficulty levels is
100%, and the classification results are consistent with the feature visualization results
extracted by DBN. However, the training process of DBN involves two stages: layer-by-
layer pre-training and fine-tuning. These two stages of the training process are relatively
cumbersome, and for large-scale datasets, the training time can be very long. Follow-
up studies will attempt to improve the training speed by using distributed computing
frameworks such as Dask or Spark.
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