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Abstract. Recently, Transformer-based methods for single image super-resolution (SISR)
have achieved better performance advantages than the methods based on convolutional
neural network (CNN). Exploiting self-attention mechanism to model global context def-
initely improves the SR results. However, the neglect of local information will bring
inevitable reduction of the network performance. In this work, we propose an Amalga-
mated CNN-Transformer network for lightweight SR, namely ACTSR. Specifically, an
amalgamated CNN-Transformer block (ACTB) is developed to extract the useful infor-
mation of both local and global features. By employing stacked ACTBs, our ACTSR
extracts more informative deep features beneficially for super-resolution reconstruction
to improve network performance while keeps lightweight and flexible enough. Extensive
experiments on commonly used benchmark datasets validate our ACTSR outperforms the
advanced competitors. Our codes are available at: https://github.com/ginsengf/ACTSR.
Keywords:super-resolution, self-attention, spatial attention, Transformer, lightweight
network

1. Introduction. Single image super-resolution (SISR) is a typical issue that devotes to
rebuilding high-resolution (HR) images from corresponding low-resolution (LR) ones [1, 2].
Recently, the convolutional neural network (CNN) has been demonstrated as a powerful
tool in various fields of computer vision [3, 4, 5]. As for SR task, the incorporation of
CNN-based methods has achieved impressive performance with respect to the traditional
methods [6].

Dong et al. proposed the first convolutional neural network for SR (SRCNN), a sim-
ple yet efficient three-layer network reconstruct high-quality HR image from LR image
[1]. From then on, a large plenty of effective networks, such as very deep convolutional
network (VDSR) [7], enhanced deep residual network (EDSR) [8], residual dense network
(RDN) [9], residual channel attention network (RCAN) [10], are sequentially proposed
to achieve better network performance. These proposed models indicate constructing
a deeper and/or wider network architecture can obtain better SR results. However, as
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the model size of network increases, the parameter and computational cost explode as
well, and it is challenging to apply these methods on resource-limited devices [11, 12].
Moreover, the convolutional kernels used in CNN have limited receptive fields, leading to
information loss on non-local feature information.

To this end, a novel architecture derived from natural language processing, known as
Transformer [13], is proposed to provide a self-attention mechanism to capture long-term
information. Locality vision transformer (LocalViT) [14] introduces CNN to bring local
information into Transformers. Then, Transformer using shifted windows (Swin Trans-
former) [15] is proposed with greater efficiency of self-attention computation and an im-
proved model for SR called SwinIR [16] is proposed thereafter. In SwinIR, a convolutional
layer is added to several Swin Transformer layers to extract more features. Through an
integration of Transformer and CNN, SwinIR outperforms contemporary state-of-the-art
(SOTA) SR methods. However, embedding simple convolutional layers in Transformer-
based models cannot fully extract the local information and more delicate CNN structures
are required to improve the network performance [17].

In this work, we propose a novel Amalgamated CNN-Transformer network (ACTSR)
for lightweight SR, combining CNN with Transformer to simultaneously obtain local and
long-term priors. Our ACTSR is composed of shallow feature extraction (SFE) module,
amalgamated CNN and Transformer blocks (ACTBs), dense feature fusion (DFF) module
and up-sampling module. Specifically, we use a 3×3 convolutional layer in SFE to extract
shallow features that comprises rich low-frequency information. Then, series of ACTBs
are utilized to extract hierarchical features, which are concatenated and fused with the
output of SFE. In the end, SR images are reconstructed with the reconstruction module.
The involving of spatial attention and self-attention enables our ACTSR to extract more
effective features.

Our contributions are summarized below:
1) We propose an Amalgamated CNN-Transformer network for lightweight image SR

(ACTSR), which outperforms other advanced lightweight methods.
2) We design an amalgamated CNN and Transformer block (ACTB) that exploits both

local and long-range information to extract advantageous features for SR. Equipping self-
attention and spatial attention mechanisms improve the efficiency of ACTB to capture
informative features and further improve SR performance.

3) Extensive experiments have shown that our ACTSR outperforms advanced light-
weight methods. Qualitative and quantitative comparisons show that our method gener-
ates more accurate SR results.

2. Related work. Recently, CNN-based methods have made impressive improvements
in image SR research, especially with the introduction of attention mechanism [18, 19],
including self-attention mechanism [13]. Hence, we will make a brief review on some of
the typical CNN-based methods and attention mechanisms.

CNN-based networks. Dong et al. firstly proposes the SRCNN [1] by using a three-
convolutional-layer CNN and obtains satisfying results. Then, VDSR [7] and Deeply-
recursive convolutional network (DRCN) [20] further enhance SR results by building
larger networks with residual scheme and recursive learning, respectively. Deep recur-
sive residual network (DRRN) [21] employs recursive learning strategies and performs
better even with smaller amount of parameters. A persistent memory network (MemNet)
[22] is proposed to dispose the long-term dependency issue by mining persistent mem-
ory. Laplacian pyramid network (LapSRN) [23] reconstructs SR image by progressively
upscaling image resolution and reconstructing sub-band residuals of HR images. Based
on residual network (ResNet) [24], both SRResNet [25] and EDSR [8] stack a number
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of residual blocks to boost network performance. Residual dense network (RDN) [9] in-
troduces dense connection to completely utilize the features produced by each previous
layer.

The performances of these methods commonly base on large model size, which is not
convenient to deploy on mobile platforms. Therefore, lightweight models are proposed
without compromising much of the model performance. A lightweight model cascading
residual network (CARN-M) [26] exploiting group convolution operation has achieved
comparable results with other advanced methods with fewer computation complexity and
parameters. Information distillation network (IDN) [27] gradually extracts features from
different paths and distill more informative features for SR reconstruction. Information
multi-distillation network (IMDN) [28] proposes information multi-distillation strategy
and achieves SOTA (state-of-the-art) performance. Residual feature distillation network
(RFDN) [29] further devises an efficient module with feature distillation connections and
shallow residual block, whose parameters are fewer but obtains better performance than
IMDN.

Attention-based networks. Attention mechanism in deep learning network is to
imitate the visual system of human beings to focus on significant features automatically,
which achieves great success in varieties of vision tasks [30, 31]. RCAN [10] introduces a
channel attention mechanism into simplified residual block to focus on the most important
channels. Residual feature aggregation network (RFANet) proposes an enhanced spatial
attention (ESA) module [29] to efficiently exploit spatial information in larger receptive
field. Non-local recurrent network (NLRN) [32] , residual non-local attention network
(RNAN) [33], and efficient non-local contrastive attention network (ENLCN) [34], in-
troduce non-local attention mechanism to achieve performance improvement. Recently,
Transformer-based SR models like [16, 35] introduce self-attention mechanism, to model
long-range dependencies to further improve SR performance. Specially, SwinIR [16], a
SR model based on Swin Transformer [15] has achieved excellent SR performance and
outperforms the lightweight CNN-based methods. Hence, attention mechanism enables
the deep learning network focusing on important information to improve the performance.

3. Method.

3.1. Overall network architecture. Figure 1(a) shows the proposed Amalgamated
CNN-Transformer network (ACTSR) that consists of shallow feature extraction (SFE),
amalgamated CNN and Transformer blocks (ACTBs), dense feature fusion (DFF) and
up-sampling module. Suppose the input LR is ILR, we then extract shallow features

F0 = HSF (ILR), (1)

where HSF denotes the 3× 3 convolutional layer. F0 is then fed into the stacked ACTBs.
Supposed there are M ACTBs, the output of the m-th ACTB Fm (1 ≤ m ≤ M) is
expressed as

Fm = fm
ACTB(f

m−1
ACTB · · · ((f 1

ACTB(F0)))), (2)

where fm
ACTB and Fm are the function and output of m-th ACTB, respectively. ACTBs

is capable of extracting higher-level features and we will provide more details of ACTB
in Section 3.2.

Then, the output features from ACTBs are concatenated and refined by DFF that
comprises a 1 × 1 convolutional layer to fuse all the features and a 3 × 3 convolutional
layer, and global residual connection is added to help training. Hence, the output of DFF
is expressed as
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(b) Amalgamated CNN and Transformer Block (ACTB) (c) Swin Transformer Layer (STL) 
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(a) Amalgamated CNN-Transformer network for SR (ACTSR) 

Figure 1. The overall framework of the proposed ACTSR. It is worth
noting that An STB contains two STLs.

FDFF = H1 ∗ (H2 ∗ Cat(F1, F2, · · · , FM)) + F0, (3)

where Cat(·) is the concatenation operation. H1 and H2 are the 3× 3 and 1× 1 convolu-
tional layers, respectively.

Finally, SR image ISR is reconstructed with up-sampling block constructed by a 3× 3
convolutional layer and a pixel-shuffle layer [36], which is formulated as follows

ISR = FUP (H3 ∗ FDFF ), (4)

where H3 and FUP denote the convolution layer and pixel-shuffle operation, respectively.
To optimize our ACTSR, l1 loss is employed and formulated as

L(θ) =
1

N

N∑
n=1

∥I iSR − I iHR∥1, (5)

where θ denotes the parameters to be optimized in ACTSR, N is the number of image
patches for training. I iSR and I iHR are the i-th images reconstructed by the network and
the corresponding ground-truth images, respectively.

3.2. Amalgamated CNN and Transformer block. As shown in Figure 1(b), the
ACTB consists of several Swin Transformer blocks (STBs), a 1× 1 convolutional layer, a
3×3 convolutional layer, two enhanced spatial attention (ESA) modules and cross residual
connections. The feature maps of (m− 1)-th ACTB are transferred to the m-th ACTB.
The input features Fm−1, are first processed by the m-th ACTB to extract important
features with an ESA module [29] and further refined by several STBs. The process of
ACTB is formulated as
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Fm = fm
ACTB(Fm−1) = HESA(FSTB(HESA(Fm−1))), (6)

where HESA(·) is the function of ESA. First, supposed there are N STBs in an ACTB,
the output of the n-th STB Fm,n (1 ≤ n ≤ N) in d-th ACTB is formulated as

Fm,n = fm,n
STB(f

m,n−1
STB · · · ((fm,1

STB(Fm−1)))), (7)

where fm,n
STB(·) and Fm,n are the function of n-th STB and the output of n-th STB in m-th

ACTB, respectively. Then, FSTB uses features from all preceding STB layers and the
output can be expressed as

FSTB = H4 ∗ (H5 ∗ Cat(Fd,1, Fd,2, · · · , Fd,N)), (8)

where H4 and H5 are the 3× 3 and 1× 1 convolutional layers, respectively.

3.3. Swin Transformer Block (STB). As shown in Figure 1(c), we adopt the Swin
Transformer layer (STL) proposed in [13], which involves local attention and shifted win-
dow mechanism. In ACTSR, we use two STLs to construct an STB to make a good
trade-off between the network performance and complexity. As for an input image with
size of h×w× c, Swin Transformer computes the matrices of query, key and value Q, K
and V ∈ RM2×c in a given local window feature F swt

in ∈ RM2×c as

Q = F swt
in WQ, K = F swt

in WK , V = F swt
in WV , (9)

where WQ, WK and WV denote shared learnable projection matrices across different
windows, and d is the query dimension. The attention matrix Attn(Q,K, V ) is calculated
from expression (10),

Attn(Q,K, V ) = SoftMax(
QKT

√
d

+ b)V, (10)

where b is the relative positional encoding. The outputs of multi-head self-attention
(MSA) are added with the inputs, which is denoted as F swt

inter. Then, F
swt
inter is processed with

a Layer Normalization (LN) layer and a multi-layer perceptron (MLP), the results of which
is added with F swt

intert to generate the output F swt
out . The whole function of Transformer is

formulated as {
F swt
inter = HMSA(HLN(F

swt
in )) + F swt

in ,
F swt
out = HMLP (HLN(F

swt
inter)) + F swt

inter,
(11)

where HLN , HMSA, and HMLP denote LN, MSA and MLP functions, respectively. Since
the step is of the shifted window is half of the window size, even number of stacked STLs
are usually employed.

4. Experiments. In this section, we conduct a comprehensive analysis on the validation
of our ACTSR. We compare ACTSR with other advanced lightweight models both quan-
titatively and qualitatively. Meanwhile, we conduct ablation studies to better understand
the key components proposed in ACTSR.
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4.1. Experimental Setup. Datasets and Evaluation Metrics. 800 images from
DIV2K [37] dataset are used for training, from which LR-HR image pairs are generated
by employing bicubic down-sampling algorithm. Meanwhile, Set5 [38] is used to validate
our ACTSR during training. We randomly rotate the original dataset by 90°, 180°, 270°
and flipping horizontally to implement data augmentation. Five commonly used pub-
lic benchmark datasets including Set5 [38], Set14 [39], BSD100 [40], Urban100 [41] and
Manga109 [42] are used as the testing datasets. Peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) are the quantitative evaluation metrics, which
are calculated from the following expressions (12-13):

PSNR(x, y) = 10log10(
MAX2

MSE
), (12)

whereMSE is the mean square error between two images (x,y) andMAX is the maxinum
pixel value.

SSIM = (
2uxuy + C1

u2
x + u2

y + C1

)(
2σxσy + C2

σ2
x + σ2

y + C2

), (13)

where C1, and C2 are small constants. ux and uy are the average gray values of the two
input images (x, y), respectively. σx and σy are standard deviations of x,y, respectively.

Training settings. In the training stage, there are 16 patches with size 64 × 64 in a
mini-batch, which are obtained with random cropping from LR images. We exploit Adam
optimizer to train ACTSR with β1=0.9, β2=0.999, and ϵ=1e-8, and the total training
epoch is 1200. The learning rate is initialized to 5e-4, and halved after each 200 epochs
at the first 1000 epochs. The window size, embedding dimension and head number of
multi-head self-attention in STL are set as 8, 55 and 5, respectively. Specifically, the final
architecture of ACTSR consists of four ACTBs and each STB contains two STLs.

4.2. Ablation study. Effectiveness of ACTB. To study the effectiveness of our pro-
posed ACTB, we first replace the ESAs with 3 × 3 vanilla convolutional layers, which is
marked as ACTSR-VC. We then replace the Transformer layers of ACTB with the original
structure proposed in SwinIR [16], which is marked as ACTSR-OS. Table 1 shows that our
ACTSR achieves best results, comparing with ACTSR-VC and ACTSR-OS, indicating
the effectiveness of the structure of ACTB.

Table 1. Studies on the effectiveness of ACTB under Manga109 Ö4
dataset. The best result is highlighted in bold.

Model ACTSR ACTSR-VC ACTSR-OS

PSNR/SSIM 31.17/0.9168 31.17/0.9168 31.13/0.9158

Effectiveness of the number of ESAs in ACTB. We evaluate the effectiveness of
the number of ESAs involved in ACTB on Manga109 dataset under scaling factor of 4,
the results of which is listed in Table 2. For clarity, as shown in Figure 1(b), the first ESA
of ACTB is marked as ESA-1 and the one at the end is ESA-2. The results show that
when none of the ESAs is involved in ACTB, the network performs worst, and ACTB
contains either of the ESA, the network performance is improved. The network achieves
best performance if both ESAs are involved. Hence, the ESAs substantively contribute
to the improvement of the network performance.

Effectiveness of the skip connection and feature concatenation. As shown in
Figure 1(b), ACTB contains a skip connection to transfer the original feature information
to the end of the block so as to avoid vanishing gradient problem, and connections to
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Table 2. Studies on the effectiveness of the ESAs in ACTB under
Manga109 ×4 dataset. The best result is highlighted in bold.

Model ESA-1 ESA-2 PSNR/SSIM

ACTSR ! ! 31.17/0.9168

Model 1 # # 31.02/0.9154

Model 2 # ! 31.07/0.9158

Model 3 ! # 31.10/0.9150

concatenate intermediate features extracted from STBs to keep the rich information for
further excavation. The study results are shown in Table 3. We can observe that the
proposed ACTSR performs best when both skip connection and feature concatenation
are used in ACTB, indicating the effectiveness of these two connections.

Table 3. Studies on the effectiveness of skip connection and feature
concatenation in ACTB under Manga109 ×4 dataset. The best result is
highlighted in bold.

Model Skip Connection Feature Concatenation PSNR/SSIM

ACTSR ! ! 31.17/0.9168

Model 4 # # 31.06/0.9156

Model 5 # ! 31.03/0.9141

Model 6 ! # 31.13/0.9158

Effectiveness of the number of STB in ACTB. To study the effectiveness of the
number of STB on the performance of the network, we vary the number of STB from
1 to 3 and test the performance of the corresponding models. Table 4 shows that the
performance of our ACTSR is improved as the number of STB increases. To better
balance the performance and mode size, we use 3 STBs in ACTB.

Table 4. Studies on the number of STB in ACTB under Manga109 ×4
dataset. The best result is highlighted in bold.

Model Number of STB Parameters PSNR/SSIM

Model 7 1 457K 31.06/0.9156

Model 8 2 677K 31.03/0.9141

ACTSR 3 896K 31.17/0.9168

4.3. Comparison with state-of-the-arts. We compare our ACTSR with several ad-
vanced lightweight SR methods, including traditional Bicubic and deep learning models,
such as SRCNN [1], VDSR [7], MemNet [22], IDN [27], CARN [26], LAPAR-A [43], IMDN
[28], RFDN [29], LatticeNet [44], ELAN [46], ESRGCNN [45] and SwinIR [16]. Table 5
shows the PSNR/SSIM on the five benchmark datasets under scaling factors of 2, 3 and
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Table 5. PSNR/SSIM on five benchmark datasets under scaling factors
of 2, 3 and 4. The best and the second-best results are highlighted in red
and blue, respectively.

Method Scale Params FLOPs
Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic - - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN[1] 8K 52.7G 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
VDSR[7] 666K 612.6G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
MemNet[22] 678K 2662.4G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
IDN[27] ×2

553K 124.6G 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
CARN[26] 1592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IMDN[28] 694K 158.8G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
RFDN[29] 534K 95.0G 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773
LAPAR-A[43] 548k 171.0G 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
LatticeNet[44] 756K 169.5G 38.15/0.9610 33.78/0.9193 32.25/0.9005 32.43/0.9302 38.94/0.9773
SwinIR[16] 878K 195.6G 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783
ESRGCNN[45] 1238K 312G 37.79/0.9589 33.48/0.9166 32.08/0.8978 32.02/0.9222 -/-
ELAN[46] 582K 168.4G 38.17/ 0.9611 33.94/0.9207 32.30/0.9012 32.76/0.9340 39.11/0.9782
ACTSR(Ours) 878K 190.2G 38.21/0.9612 33.92/0.9210 32.32/0.9013 32.75/0.9340 39.27/0.9781

Bicubic - - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN[1] 8K 52.7G 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
VDSR[7] 666K 612.6G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
MemNet[22] 678K 2662.4G 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
IDN[27] ×3

553K 56.3G 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
CARN[26] 1592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
IMDN[28] 703K 71.5G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
RFDN[29] 541K 42.2G 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449
LAPAR-A[43] 544k 114.0G 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/.09441
LatticeNet[44] 765K 76.3G 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538 33.63/0.9441
SwinIR[16] 886K 87.2G 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478
ESRGCNN[45] 1500K 179G 34.24/0.9252 30.29/0.8413 29.05/0.8036 28.14/0.8512 -/-
ELAN[46] 590K 75.7G 34.61/0.9288 30.55/0.8463 29.21/0.8081 28.69/0.8624 34.00/0.9478
ACTSR(Ours) 886K 86.1G 34.67/0.9290 30.58/0.8467 29.23/0.8088 28.66/0.8626 34.21/0.9484

Bicubic - - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN[1] 8K 52.7G 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
VDSR[7] 666K 612.6G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
MemNet[22] 678K 2662.4G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
IDN[27] ×4

553K 32.3G 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
CARN[26] 1592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
IMDN[28] 715K 40.9G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
RFDN[29] 550K 23.9G 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089
LAPAR-A[43] 659K 94.0G 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
LatticeNet[44] 777K 43.6G 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873 30.54/0.9073
SwinIR[16] 897K 49.6G 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151
ESRGCNN[45] 1530K 113G 32.02/0.8920 28.57/0.7801 27.57/0.7348 26.10/0.7850 -/-
ELAN[46] 601K 43.2G 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150
ACTSR(Ours) 896K 49.4G 32.53/0.8988 28.85/0.7865 27.72/0.7410 26.55/0.8001 31.17/0.9168

4. The best and the second-best results are highlighted in red and blue, respectively.
It is worth noting that the results of all the comparison methods are obtained from the
original paper or codes provided by the authors. It shows that our proposed ACTSR per-
forms best under all scaling factors on all datasets, except on Urban100 and Manga109
under scaling factor ×2. The quantitative comparison listed in Table 5 shows that SwinIR
has similar parameters and computational complexity with our ACTSR under all cases,
but its performance is inferior to ours. Hence, benefitting from the combination of CNN
and Transformer, our proposed ACTSR substantially obtains the best results with small-
est model size. Figure 2 shows qualitative visual comparisons between ACTSR and the
other advanced lightweight models on BSD100, Urban100 ×3 and Urban100 ×4 datasets.
From the zoomed-in views, we can observe clear textures and sharp edges reconstructed
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Figure 2. Visual comparisons of ACTSR with other advanced lightweight
methods on Urban100 ×3, Urban100 and BSD100 ×4 datasets.
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by ACTSR, which demonstrates the SR results of our method are more accurate than the
comparison methods.

5. Conclusion. In this work, we have proposed an amalgamated CNN-Transformer net-
work (ACTSR) for lightweight image super-resolution. By integrating CNN and Trans-
former, ACTSR is capable of exploiting both local and long-term priors and extracting
features for image SR reconstruction. Extensive experiments demonstrate that ACTSR
outperforms the lightweight competitors. However, since our ACTSR exploits the self-
attention mechanism, it suffers from the intrinsic issue of heavy computation complexity
as the other Transformer-based methods have confronted. Hence, our future work will
focus on reducing the inference time.

Acknowledgment. This work was partly supported by Natural Science Foundation of
Fujian Province (2021J011005) and Open Project of the Key Laboratory of Plasma and
Magnetic Resonance in Fujian Province, Xiamen University (No.20191201).

REFERENCES

[1] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-
resolution,” in Proceedings of the European Conference on Computer Vision, 2014, pp. 184–199.

[2] Z. Wang, J. Chen, and S. C. Hoi, “Deep learning for image super-resolution: A survey,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3365–3387, 2020.

[3] Y. Ma, Y. Peng, and T.-Y. Wu, “Transfer learning model for false positive reduction in lymph node
detection via sparse coding and deep learning,” Journal of Intelligent & Fuzzy Systems, vol. 43,
no. 2, pp. 2121–2133, 2022.

[4] F. Zhang, T.-Y. Wu, Y. Wang, R. Xiong, G. Ding, P. Mei, and L. Liu, “Application of quantum
genetic optimization of lvq neural network in smart city traffic network prediction,” IEEE Access,
vol. 8, pp. 104 555–104 564, 2020.

[5] T.-Y. Wu, X. Fan, K.-H. Wang, J.-S. Pan, and C.-M. Chen, “Security analysis and improvement on
an image encryption algorithm using chebyshev generator,” Journal of Internet Technology, vol. 20,
no. 1, pp. 13–23, 2019.

[6] R. Wen, Z. Yang, T. Chen, H. Li, and K. Li, “Progressive representation recalibration for lightweight
super-resolution,” Neurocomputing, vol. 504, pp. 240–250, 2022.

[7] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep convolutional
networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 1646–1654.

[8] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single
image super-resolution,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2017, pp. 136–144.

[9] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image super-
resolution,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 2472–2481.

[10] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-resolution using very deep
residual channel networks,” in Proceedings of the European Conference on Computer Vision, 2018,
pp. 286–301.

[11] Y. Qiu, R. Wang, D. Tao, and J. Cheng, “Embedded block residual network: A recursive restoration
model for single-image super-resolution,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 4180–4189.

[12] D. Song, Y. Wang, H. Chen, C. Xu, C. Xu, and D. Tao, “Addersr: Towards energy efficient image
super-resolution,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2021, pp. 15 648–15 657.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Proceedings of the Advances in Neural Information Processing Systems,
vol. 30, 2017, pp. 5998–6008.



1386 J. Fang, H. Lin and K. Zeng

[14] Y. Li, K. Zhang, J. Cao, R. Timofte, and L. Van Gool, “Localvit: Bringing locality to vision
transformers,” arXiv preprint arXiv:2104.05707, 2021.

[15] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical
vision transformer using shifted windows,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2021, pp. 10 012–10 022.

[16] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “Swinir: Image restoration
using swin transformer,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2021, pp. 1833–1844.

[17] J. Fang, H. Lin, X. Chen, and K. Zeng, “A hybrid network of cnn and transformer for lightweight
image super-resolution,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, June 2022, pp. 1103–1112.

[18] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.

[19] X. Zhu, D. Cheng, Z. Zhang, S. Lin, and J. Dai, “An empirical study of spatial attention mecha-
nisms in deep networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 6688–6697.

[20] J. Kim, J. K. Lee, and K. M. Lee, “Deeply-recursive convolutional network for image super-
resolution,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 1637–1645.

[21] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive residual network,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3147–3155.

[22] Y. Tai, J. Yang, X. Liu, and C. Xu, “Memnet: A persistent memory network for image restoration,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.
4539–4547.

[23] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep laplacian pyramid networks for fast and
accurate super-resolution,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 624–632.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[25] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani,
J. Totz, Z. Wang et al., “Photo-realistic single image super-resolution using a generative adversarial
network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 4681–4690.

[26] N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight super-resolution with cascading
residual network,” in Proceedings of the European Conference on Computer Vision, 2018, pp. 252–
268.

[27] Z. Hui, X. Wang, and X. Gao, “Fast and accurate single image super-resolution via information dis-
tillation network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018, pp. 723–731.

[28] Z. Hui, X. Gao, Y. Yang, and X. Wang, “Lightweight image super-resolution with information multi-
distillation network,” in Proceedings of the ACM International Conference on Multimedia, 2019, pp.
2024–2032.

[29] J. Liu, J. Tang, and G. Wu, “Residual feature distillation network for lightweight image super-
resolution,” in Proceedings of the European Conference on Computer Vision, 2020, pp. 41–55.

[30] M. Guo, T. Xu, J. Liu, Z. Liu, P. Jiang, T. Mu, S. Zhang, R. Martin, M. Cheng, and S. Hu,
“Attention mechanisms in computer vision: A survey,” Computational Visual Media, vol. 8, no. 3,
pp. 331–368, 2022.

[31] E. K. Wang, X. Zhang, F. Wang, T.-Y. Wu, and C.-M. Chen, “Multilayer dense attention model for
image caption,” IEEE Access, vol. 7, pp. 66 358–66 368, 2019.

[32] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang, “Non-local recurrent network for image
restoration,” in Proceedings of the Advances in Neural Information Processing Systems, vol. 31,
2018, pp. 1680–1689.

[33] Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, “Residual non-local attention networks for image
restoration,” arXiv preprint arXiv:1903.10082, 2019.

[34] B. Xia, Y. Hang, Y. Tian, W. Yang, Q. Liao, and J. Zhou, “Efficient non-local contrastive attention
for image super-resolution,” arXiv preprint arXiv:2201.03794, 2022.

[35] W. Li, X. Lu, J. Lu, X. Zhang, and J. Jia, “On efficient transformer and image pre-training for
low-level vision,” arXiv preprint arXiv:2112.10175, 2021.



An Amalgamated CNN-Transformer Network for Lightweight Image Super-Resolution 1387

[36] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang,
“Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural
network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 1874–1883.

[37] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, and L. Zhang, “Ntire 2017 challenge on single
image super-resolution: Methods and results,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2017, pp. 114–125.

[38] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-complexity single-image
super-resolution based on nonnegative neighbor embedding,” British Machine Vision Conference,
pp. 1–10, 2012.

[39] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-representations,” in
Proceedings of the International Conference on Curves and Surfaces, 2010, pp. 711–730.

[40] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics,” in
Proceedings of the International Conference on Computer Vision, 2001, pp. 416–423.

[41] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from transformed self-
exemplars,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 5197–5206.

[42] Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki, and K. Aizawa, “Sketch-based
manga retrieval using manga109 dataset,” Multimedia Tools and Applications, vol. 76, no. 20, pp.
21 811–21 838, 2017.

[43] W. Li, K. Zhou, L. Qi, N. Jiang, J. Lu, and J. Jia, “Lapar: Linearly-assembled pixel-adaptive
regression network for single image super-resolution and beyond,” in Proceedings of the Advances in
Neural Information Processing Systems, 2020, pp. 20 343–20 355.

[44] X. Luo, Y. Xie, Y. Zhang, Y. Qu, C. Li, and Y. Fu, “Latticenet: Towards lightweight image super-
resolution with lattice block,” in Proceedings of the European Conference on Computer Vision, 2020,
pp. 272–289.

[45] C. Tian, Y. Yuan, S. Zhang, C.-W. Lin, W. Zuo, and D. Zhang, “Image super-resolution with an
enhanced group convolutional neural network,” Neural Networks, vol. 153, pp. 373–385, 2022.

[46] X. Zhang, H. Zeng, S. Guo, and L. Zhang, “Efficient long-range attention network for image super-
resolution,” in Proceedings of the European Conference on Computer Vision, 2022, pp. 649–667.


	1. Introduction
	2. Related work
	3. Method
	3.1. Overall network architecture
	3.2. Amalgamated CNN and Transformer block
	3.3. Swin Transformer Block (STB)

	4. Experiments
	4.1. Experimental Setup
	4.2. Ablation study
	4.3. Comparison with state-of-the-arts

	5. Conclusion
	Acknowledgment
	REFERENCES

