
Journal of Network Intelligence ©2024 ISSN 2414-8105

Taiwan Ubiquitous Information Volume 9, Number 3, August 2024

Improved PBFT Consensus Algorithm Based on
Threshold Signature and RabbitMQ

Xiang Xu, Chun-Yuan Liu*

School of Computer and Information Engineering
Heilongjiang University of Science and Technology, Heilongjiang Harbin 150022, China

xuxiang6195@163.com, 154539768@qq.com

∗Corresponding author: Chun-Yuan Liu
Received August 15, 2023, revised November 22, 2023, accepted February 7 2024.

Abstract. Due to its decentralized and tamper-proof features, blockchain is frequently
employed in the financial, traceability, and distributed storage industries. The agreement
algorithm, which is a crucial component of the blockchain distributed storage system,
is responsible for maintaining data integrity and ensuring system security. It also has
a significant impact on the blockchain system’s transaction throughput and confirmation
time. Compared with public chain, alliance chain has fewer nodes and access mechanism,
so PBFT consensus algorithm based on voting is generally used. However, there are still
many shortcomings in the practical application of this algorithm. To solve the problem,
an improved Byzantine consensus algorithm (TRPBFT) based on threshold signature
and RabbitMQ is proposed in this paper. The experimental findings demonstrate that the
enhanced consensus algorithm significantly increases both consensus efficiency and data
throughput.
Keywords:blockchain; practical byzantine fault tolerance(PBFT); threshold signatures;
rabbitmq; distributed storage

1. Introduction. The coal industry Internet system architecture usually realizes data
sharing by building a big data platform to alleviate the phenomenon of ”data island”.
This type of data storage typically relies on centralized data storage, which is susceptible
to malicious network assaults or failures brought on by downtime and may result in
security issues including central node failure, data loss, or manipulation [1,2]. Only the
shortcomings in the data storage and sharing procedure in coal mines can be compensated
for by the use of the consensus method, P2P technology, and encryption technology [3,4,5].
All these make the blockchain gradually become the research hotspot of coal mine data
storage and sharing solutions in the coal industry Internet.

The attributes of blockchain include immutability, anonymity, persistence, and decen-
tralization [6]. Being a distributed shared ledger system that links data blocks chrono-
logically in a chain [7], blockchain integrates varieties of computer technologies such as
distributed data storage, cryptography technology, smart contracts and consensus mech-
anism [8]. The previous block’s hash value is included in each block of the blockchain,
forming a linked list of data structures that not only assures that data cannot be modified
simultaneously but also maintains the data’s traceability [9]. In order to ensure that the
data may be treated as being unchangeable once written, any changes to the block’s data
after it has been written require the consent of over 50 percent of the nodes in the system.
This takes significant computer power and difficulties. Each node has a backup of the
complete data in the system. If one node is attacked and the data is lost, the complete

1476

Improved PBFT Consensus Algorithm Based on TS&RMQ 1477

data can be retrieved from other nodes, which provides rapid recovery of the system data.
The blockchain’s autonomy is significantly increased by the use of smart contracts, which
also reduces the need for human intervention and increases the usage of code and comput-
ers for the purpose [10]. Agreement mechanisms, one of the fundamental components of
blockchain technology, are what allow dispersed systems to come to a single, agreed-upon
agreement. Blockchain may be classified into three categories: public chain, private chain,
the alliance chain, depending on the various application situations [11]. The public chain
environment has a variable number of nodes and completely open to the outside world,
and each node competes for the right to package data through consensus mechanisms
such as mining. The private chain is not open to the public and the default nodes are
honest, so the private chain consensus algorithm often has high consensus efficiency but
low security, and can not resist the Byzantine general problem [12]. While the node count
and status of the alliance chain are somewhat within your control, the algorithm security
is stronger than that of the private chain. Compared with the ideal environment of private
chain, alliance chain system is more suitable for information storage and sharing within
or between enterprises in reality. Therefore, how to ensure the security of alliance chain
consensus algorithm and make it have similar consensus efficiency and calculation and
communication cost as private chain consensus algorithm, this problem has been the re-
search focus of many scholars. Numerous better algorithms have been put forth one after
the other in recent years, however there is no systematic improvement plan and the ma-
jority of the algorithms are intended to boost a certain algorithm’s performance. Having
studied blockchain technology in depth, the application scenarios of distributed systems
are becoming more and more diverse, and the research on safe and efficient consensus
algorithms suitable for different application scenarios also shows its necessity.

There are many similarities between alliance chain environment and traditional dis-
tributed system. Many consistency algorithms are applied to alliance chain as consensus
algorithm. In 1990, Lamport [13] published a paper on ”The Part-Time Parliament” and
proposed the Paxos consensus algorithm, which is known as the most effective consistency
algorithm. However, due to the lack of specific implementation details in the Paxos al-
gorithm paper and the difficulty of understanding this algorithm, Not widely used. The
Practical Byzantine Fault Tolerance (PBFT) algorithm was introduced in 1999 by Castro
and Liskov [14]. By reducing the temporal complexity of the procedure to O(n2), this
algorithm enhances the initial Byzantine Fault Tolerance (BFT) algorithm and can be
used in real-world situations. This algorithm can ensure that the system is secure when
there are no more than 1/3 Byzantine nodes in the cluster, but Byzantine nodes may
still act as the primary nodes and affect the consensus process of the system. In 2014,
Ongaro and Ousterhout [15] proposed the Replicated and fault tolerant (Raft) algorithm.
Raft consensus algorithm was proposed to provide better understanding of the consistent
algorithm. In the process, it resolves the issue that the Paxos algorithm is overly complex,
and the author also demonstrates that the method is secure and equally as effective as
Paxos. Leaders candidature as well as logs duplication are the two fundamental stages
of the Raft consensus method. The Raft consensus algorithm’s procedure is very clear
and concise with high understandable, so it is easy to implement in practical application
scenarios. However, the RAFT consensus algorithm cannot be used in a setting with
Byzantine nodes, and consensus cannot be reliably achieved when there are malevolent
nodes present. The PBFT consensus algorithm can be used in a setting with Byzantine
nodes, but it has some drawbacks, including poor consensus efficiency, poor scalability,
and unreliable master node selection. Therefore, this work offers a more efficient useful
Byzantine consensus algorithm TRPBFT based on RabbitMQ and threshold signature in

1478 X. Xu and C.-Y. Liu

order to solve the issues with the current PBFT consensus algorithm. The following are
the primary research topics covered in this essay:

(1) The introduction of RabbitMQ messaging middleware will enhance the consensus
communication process. The original mode of client nodes sending messages directly to the
primary node is changed to the mode of client nodes sending messages to the RabbitMQ
node, and the leader nodes of other groups subscribe messages from the RabbitMQ node.
As a result, the most important node’s communication load is reduced. The main node
now operates more efficiently.

(2) It introduces the idea of grouping, where nodes are categorized into groups according
to how responsive they are to the group leader node. Intra-group consensus is carried out
first. Additionally, the group leader node takes part in the out-group consensus as a
result of the in-group consensus, which can minimize the number of nodes engaging in the
agreement and reduce communication between nodes, hence increasing the consensus’s
effectiveness.

(3) In order to improve the conventional PBFT three-stage consensus procedure, thresh-
old signature is added. Instead of the original mode of net-wide broadcast messages in
the preparation stage and confirmation stage, RabbitMQ nodes collect voting informa-
tion and confirmation information, and perform threshold signature after verification, and
then distribute it to the leader nodes of each group for confirmation. In this way, the
communication times between nodes are reduced.

(4) Introduced the reputation approach and alternative group leader node mechanism,
and classified the nodes into three categories based on their reputation scores: group
leader nodes, candidate nodes, and common nodes. The leader node is chosen during view
switching from the candidate node queue based on the credibility value, which ranges from
high to low. This reduces the resource consumption on the system brought on by frequent
view switching brought on by the Byzantine node being elected as an administrator node
repeatedly.

2. PBFT Consensus Algorithm.

2.1. Consensus Process for The PBFT Algorithm. Castro and Liskov [14] intro-
duced the fault-tolerant PBFT method in 1999 to address the Byzantine general problem
[16,17]. Client, the head node, and slave node are the three primary functions of the al-
gorithm in the agreement phase. The slave node is in charge of receiving and confirming
requests from the master node and other slave nodes. The client is in charge of making
requests, the master node is in charge of accepting requests from the client, allocating
numbers, and placing orders for final packaging transactions. All nodes communicate the
agreed-upon consensus outcome to the client after it has been reached. Figure 1 depicts
the consensus-building procedure.

Three steps make up the PBFT algorithm’s consensus process: pre-prepare, prepare,
and commit. When there are N total nodes, even if f = (N − 1)/3 of them are defective,
the system can still function normally. In Figure 1, the client node is denoted by the
letter C, while the primary and slave nodes are denoted by the numbers 0 and 1-3. Three
of them are faulty nodes. The PBFT consistency protocol process mainly includes:

(1) The primary node receives the message from the client.
(2) The messages are sorted, packaged, and put into fresh blocks by the master node

before being broadcast to all of the network’s slave nodes.
(3) Following receipt of the communication from each slave node, a simulated trans-

action is carried out for verification, and the new block’s hash value is then determined
using the transaction result and broadcast to all of the network’s nodes.

Improved PBFT Consensus Algorithm Based on TS&RMQ 1479

Figure 1. Process flow diagram for PBFT consensus

(4) A node broadcasts a commit message to the entire network if it gets 2f prepare
messages from other nodes.

(5) A node can commit brand-new blocks and transactions to the local blockchain and
database if it gets 2f commit messages from other nodes. And respond to the customer
service end’s ultimate consensus result [18].

2.2. Security of PBFT Algorithm. The PBFTmethod can tolerate less than (N−1)/3
malicious or flawed nodes where N is taken to be the total number of nodes in the system.
The amount of standard nodes must be at least f +1 if you wish to maintain the system
functioning correctly in the presence of f malicious nodes. The system can only establish
a consensus when the overall amount of nodes is no less than 3f+1, even in the worst-case
scenario when there are f malevolent and f malfunctioning nodes in the system.

2.3. Analysis of The PBFT Algorithm’s Problems. The PBFT algorithm still has
a lot of issues even if it improves the BFT method and is commonly utilized in alliance
chains [19]. Without taking into account the node’s inability to achieve a three-stage
consensus, the algorithm’s scalability is weak. Additionally, there are significant overheads
associated with network connection, and the communication difficulty between nodes is
O(n2) in nature. Secondly, the primary nodes are selected sequentially, which has security
risks. This selection method makes no distinction between nodes, making it simple for
malicious or defective nodes to repeatedly act as primary nodes. This will result in
frequent switching of views, which will negatively impact the system’s ability to reach
consensus and lower the system’s stability and performance. Finally, since the client only
communicates with the primary node, sending too many requests would negatively impact
the master node’s ability to handle them, lowering system throughput.

3. TRPBFT Consensus Algorithm. Based on the PBFT algorithm, the TRPBFT
algorithm is a reliable and effective consensus algorithm. It mainly optimizes the PBFT
algorithm’s three-stage consensus procedure by introducing the publish-subscribe mode of
message-oriented middleware nodes and threshold signature to reduce the communication
times. At the same time, through the grouping mechanism, there are fewer nodes who
took part in the consensus, in order to make communication simpler. In addition, the
reputation strategy and alternative group leader node mechanism are introduced, and
the group leader node is chosen as the node with a good reputation. It essentially slows
down the operation of the system cost caused by frequent view switching caused by the
repeated selection of Byzantine nodes as group leader nodes, and improves the system
operation efficiency. In Figure 2, the TRPBFT consensual model is displayed.

1480 X. Xu and C.-Y. Liu

Figure 2. TRPBFT consensus model

3.1. The Publish-Subscribe Model of Message-Oriented Middleware. In the de-
sign of software, a release subscription is the message framework in which the sender of
a message (referred to as a publisher) does not send the message directly to a specific
recipient (referred to as a subscriber), but rather groups the posted messages into various
categories without having to know which subscribers, if any, might exist. Similar to this,
subscribers can indicate curiosity about a few or all topics to just get communications
that they find interesting without knowing whether or not any publishers are available.

Figure 3 depicts the RabbitMQ publish-subscribe paradigm.

Figure 3. The publish-subscribe model in RabbitMQ

Where, P represents the producer, which is the client in the system, EX represents the
switch, C represents the consumer, which is the leader of the group participating in the
consensus, and the red part in the figure is the message queue.

3.2. Threshold Signature. Threshold signature is a kind of group-oriented cryptosys-
tem, only some members of the group cooperate to perform encryption, decryption, sig-
nature and other operations. The (t, n) threshold signature system is one of them; it

Improved PBFT Consensus Algorithm Based on TS&RMQ 1481

makes it more difficult to read the private key such that, even if the key of t− 1 members
is released, the system’s key security can still be ensured and no legitimate threshold
signature can be formed [20]. In addition, the verification of threshold signatures is very
simple. Consequently, the (t, n) threshold signature technique is ideal for assuring the
security of data exchange during each consensus node’s process of reaching consensus in
the blockchain consensus system. There are other implementation strategies for (t, n)
threshold signature, but in this paper, we adopt the (t, n) threshold signature strategy
based on ECDSA [21]. The specific process is as follows:

Let’s assume that p and q are two extremely big prime integers, that E is an elliptic
curve defined over the finite field F (2p), that P is a q basis point over E, and that both
E and P are exposed.

(1) Phase-key distribution: The registry of the federated chain selects the key polyno-
mial. And then calculate ti = f(i), and send the ti key privately to the Xi. Calculate fiP
and Q = dP and expose to all nodes, i = 1 ∼ n. The key polynomial is shown in Formula
(1):

f(x) = f0 + f1x+ · · ·+ ft−1x
t−1 (1)

among them, f0 = d. (2) Key verification stage: The consensus node determines if the
key is a point on the curve of ellipsis E by calculating the value of the verification formula
to validate its validity. The verification formula is shown in Formula (2):

tiP =
t−1∑
j=0

ij(fiP) (2)

(3) Signature phase: Each signature node Xi randomly selects a number ki. Calculate
Ri = kiP . And open to all signatories. After each signature node Xi calculate the
values of (xi, yi), ei, Qi, r and si respectively according to Formula (3)-(7). To the node
that gathered the signature, deliver the result set (r, si, Qi). The node that obtains the
signature then checks to see if the Ri of each node Xi that has been signed is equal to
siP − rQi. The node that gathers the signature determines S’s value using Formula (8)
and furthermore sends the group signature (m, r, S) to the verification node for validation
if the verification is successful.

(xi, yi) =
t−1∑
i=0

Ri (3)

ei = aiti, among

(
ai =

∏
h̸=i h

h− i

)
(4)

Qi = eiP (5)

r = xi − h(m) mod q (6)

si = eir + ki mod q (7)

S =
t−1∑
i=0

si mod q (8)

1482 X. Xu and C.-Y. Liu

(4) Verification stage: Each verification node determines whether SP−rQ is valid when
x = xi by calculating the value of SP − rQ as point (x, y) to verify whether the signature
is valid.

3.3. Grouping Mechanism. This work offers a system on the basis of grouping the
quick response rate of the group leader node in order to reduce communication time and
increase communication efficiency between nodes. The specific steps are as follows:

(1) With the use of the alliance chain’s access mechanism, n nodes are randomly chosen
as the node of leadership when a node joins the alliance chain. The other nodes are then
grouped based on the leader node’s response time, and the nodes are then split into G
consensus groups.

(2) The group leader node j maintains a list of group members L, so that it can
decide whether to allow new nodes to join the group. The captain of the group node can
broadcast a message that enable new members to be received ⟨GROUP, t1, L⟩ > δi when
a particular amount of nodes in a group is less than the maximum number of nodes N .
The group leader node’s signature is represented by δi, and t1 is the timer.
(3) When the authentication is successful, a node sends the group leader a broadcast

message, followed by an application message, using the format ⟨GROUP −ADD, x, t2⟩ >
δx. Where δx is the signature of node x.
(4) The leader node will verify after receiving the application information of other

nodes. Once the check is successful, the node will be included in the member list L of the
group and send the confirmation information to it ⟨GROUP − ACK, t3, L⟩ > δi.
(5) The group leader node transmits its member list to the other group leader nodes

after the group is finished. For the process of consensus, the group leader node delivers
the member list to the group members after confirming the member list.

As the node representing the group at the global consensus, the leader node represents
the group and has among the greatest credits score in the network. A node’s credit value
will vary after a consensus round. As a result, the group leader node should now be chosen
again in accordance with the node’s new credit value, and the previous procedure should
be re-grouped.

3.4. Reputation Strategy and Alternative Group Leader Node Mechanism.
In the PBFT algorithm, when performing view switching, the formula p=(v+1) mod
N is used to determine the order in which the principal node is chosen. This selection
method has certain security risks. It is simple to choose Byzantine nodes as master nodes
repeatedly that causes frequent switching of views and wastes system resources, affecting
the performance and security of the system [22]. To this end, this paper introduces the
reputation strategy and alternative leader node mechanism, through the evaluation of the
credibility value of nodes, it is divided into: leader node, candidate contact and common
node. Therefore, the selection of group leader nodes is optimized, so that nodes with
high reputation have more opportunities to act as group leader nodes. Consequently,
the system’s vulnerability to Byzantine node damage is diminished, and the system’s
overall performance and security are enhanced. This study evaluates the node’s current
reputation value based on past reputation value, other assessment indicators, and if the
node’s voting information is compatible with the consensus outcome [23,24,25].

Definition 3.4.1. The nodes’ performance in the most recent consensus process is
taken into greater consideration when calculating a node’s reputation value thanks to the
time decay mechanism. Its Formula is as follows (9):

Ti = e−|tnow−tbef | (9)

Improved PBFT Consensus Algorithm Based on TS&RMQ 1483

Where, Ti represents the attenuation degree of the consensus performance of node i with
the change of time, tnow represents the time of the current consensus, and tbef represents
the time of the last consensus.

Definition 3.4.2. The reliable value of reaching a transaction consensus refers to
whether the voting information of each node is consistent with the final consensus result
[18]. Its formula is as follows (10):

Ri(X) =

Ti ×Ri(X − 1) + 1, The node successfully participated in a consensus
1
3
×Ri(X − 1), The node timed out and did not respond

0, The node is detected to be doing evil

(10)
Where X is the frequency of consensus participation by node i, Ri(X) represents the

reliable value after node participates in consensus X times, and the initial value of Ri(X)
is 0.

Definition 3.4.3. The node’s previous credit value [19]. Its formula is as follows (11):

C(i)′ = yC(i− 1) (11)

where y stands for the previous state’s influencing element.
Definition 3.4.4. The following formula (12) represents the node’s final credit value:

C(i) =
1

2

(
x× Ri(X)

max(R(X))
× 100 + y × C(i− 1)

)
(12)

where x is the weight of the reliable value to reach the transaction consensus, x+ y = 1.
max(R(X)) is the reliability value of the best performing node in the consensus.

3.5. Consensus Flow of TRPBFT Improved Algorithm. The TRPBFT consensus
algorithm can be divided into in-group and out-of-group consensus. When the leader node
collects enough vote confirmation information, out-of-group consensus will be enabled.
Figure 4 depicts the TRPBFT consensus algorithm’s consensus procedure. Below is a
description of the specific consensus process:

Requesting stage: The client communicates with the RabbitMQ node by sending a
request message.

Pre-Preparation stage: The ⟨pre-prepare, h, n, t, v,Dig(m)⟩δi message is broadcast to
the member nodes of each group by the leader of each group after subscribing to a message
from the RabbitMQ node. Where Dig(m) is the message digest, h is the block height,
n is the number of the serial number of the present request, t is a time stamp, v is the
perspective number, and δi is the group leader node’s signature.

Preparing stage: Each group’s leader node gathered and validated the member nodes’
verification data as part of the preparation process ⟨prepare, h, n, t, v,Dig(m)⟩δx. The
out-of-group consensus is enabled and the outcome of the intra-group consensus is sent to
the RabbitMQ node after a sufficient number of votes have been gathered. The RabbitMQ
node collects and verifies the voting information, and after that, sends each group’s leader
node the threshold signature for verification. δx indicates the signature of the x member
node.

Confirmation stage: The leader of each group sends the confirmation information
⟨commit, h, n, t, v,Dig(m)⟩δi to the RabbitMQ node. The RabbitMQ node collects, veri-
fies and collects statistics. When sufficient confirmation information has been collected,
the RabbitMQ node then issues the consensus message ⟨commit, h, n, t, v,Dig(m)⟩δr to all
group leaders. The consensus message is broadcast to the group’s members by the leader

1484 X. Xu and C.-Y. Liu

of each group after they have received it ⟨commit, h, n, t, v,Dig(m)⟩δi. The RabbitMQ
node’s signature is denoted by δr.

Reply phase: The RabbitMQ node replies with a message that the client nodes have
reached a consensus.

Figure 4. TRPBFT consensus process

4. Examination of Experiments and Results.

4.1. Environment for Experimentation. The revised TRPBFT method is developed
using the high-level programming language Golang, and the experiment of simulation is
carried out using Hyperledger Fabric v1.4, in order to demonstrate the effectiveness of
the approach.

The experiment’s hardware setup is as follows:
(1) CPU Intel(R) Core(TM) i5-11320H @ 3.20GHz 2.50GHz,
(2) Memory 16GB,
(3) Ubuntu 22.04.2(LTS) 64-bit OS,
The software environment is:
(1) GoLand2023.1.2,
(2) Hyperledger Fabric v1.4,
(3) Docker v20.10.9, Go v1.20.3.

Improved PBFT Consensus Algorithm Based on TS&RMQ 1485

In the experiment, communication costs, tolerance for failure, throughput, and con-
sensus time were examined between 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 nodes
using the PBFT consensus method. The client transmitted 150 transaction messages each
time the experiment was run, yielding an average value of 800 runs, which served as the
experiment’s output.

4.2. Cost of Communication. When a system’s nodes communicate with one another
to reach a consensus, this is referred to as communication overhead. Assume that N
nodes make up the entire system. The pre-preparation, the platform, preparation phase,
as well as confirmation state are where nodes communicate the most when using the PBFT
algorithm. The central node will hear from the client while the phase of preparation is
underway. All slave nodes are notified by a network-wide broadcast, with communication
times of N−1. During the drafting stage, all the slave nodes broadcast their voting results
across the network after executing the verification transaction, and there are currently
(N − 1)2 communications. After obtaining consensus, all nodes will publish the last
verification data across the network’s resources during the confirmation stage. There
have been N(N − 1) communications as of right now. In conclusion, the three steps of
the PBFT algorithm’s total communication frequency (T1) are as follows:

T1 = N − 1 + (N − 1)2 +N(N − 1) = 2N(N − 1) (13)

This study proposes an enhanced TRPBFT method and assumes that the system’s N
nodes are organized into M groups. Each group’s leader subscribes to messages from
a RabbitMQ node during the setup phase and broadcasts the messages to every node
in the group. The transmission intervals are M + M(N/M − 1). The intra-group node
conducts and validates the transaction during the intra-group preparation phase, then
sends the validated vote result to the group leader node for collection and counting.
There are M(N/M − 1) communications. The group leader node starts the out-group
consensus and delivers the decision results to the RabbitMQ node once it has accumulated
enough messages to show that it has passed the vote. The vote results are gathered
and verified by the RabbitMQ node. After the verification succeeds, the RabbitMQ
node signs the vote result and sends the signed result to all the group leader nodes
for verification. In this case, there are 2M communications. The terrorist organization
leader delivers the verification result to the RabbitMQ nodes for confirmation at the
conclusion of the verification stage. The RabbitMQ node then communicates the outcome
of the final consensus to each group leader. The group leader communicates the final
consensus decision to the other group leaders after receiving the message. There have
been M +M +M(N/M − 1) communications. In conclusion, the TRPBFT algorithm’s
four phases’ total communication frequency (T2) are as follows:

T2 = M +M

(
N

M
− 1

)
+M

(
N

M
− 1

)
+ 2M + 2M +M

(
N

M
− 1

)
= 3N + 2M (14)

Let us say there are N nodes in the system, and there are four groups. Figure 5
compares the experimental findings of communication times between PBFT and TRPBFT
algorithms for various node totals.

As demonstrated in Figure 5, the PBFT and TRPBFT algorithms both require longer
communication durations to attain consensus as the total number of nodes grows. While
TRPBFT algorithm communication frequency increases slowly, PBFT algorithm commu-
nication frequency rises quickly. Compared to the PBFT method, the TRPBFT algorithm
has a lower communication frequency. Conclusion: When compared to the PBFT method,

1486 X. Xu and C.-Y. Liu

Figure 5. Comparison of communication times of PBFT and TRPBFT

the TRPBFT approach can significantly shorten the amount of time that is spent com-
municating during the consensus process.

4.3. Tolerance for Faults. TRPBFT consensus algorithm is an optimization of PBFT
consensus algorithm, but it changes the communication process. The underlying fault
tolerance system of PBFT is the same as that of this system. Because of this, the fault
tolerance for PBFT and out-of-group consensus is the same. However, the TRPBFT
consensus algorithm introduces a grouping and reputation strategy, so that more malicious
nodes and faulty nodes can be accommodated within the group. When all nodes in
the group are malicious or faulty nodes, the leader node participates in the out-of-group
consensus as a Byzantine node; when less than half of the nodes in the group are malicious
or faulty nodes, the leader node participates in the out-of-group consensus as a non-
Byzantine node. Therefore, 1/3 group is the total of all malicious nodes and defective
nodes, and 2/3 group is the total of less than half of the nodes in the group. These numbers
represent the greatest number of malicious nodes or faulty nodes that the TRPBFT
consensus method can tolerate. Let us assume that there are N total nodes in the system,
separated into M groups. The TRPBFT algorithm may support a maximum of the
following Byzantine nodes E :

E =
N

M
× M

3
+

2M

3
×
(
1

2
× N

M
− 1

)
=

2

3
(N −M) (15)

Assume the system’s N nodes are split into four groups. Figure 6 displays the com-
parison experiment findings for the maximum Byzantine nodes that PBFT and TRPBFT
algorithms can support under various node totals.

Figure 6 shows that as the overall number of nodes rises, the greatest amount of Byzan-
tine nodes that PBFT and TRPBFT algorithms can support likewise rises. The TRPBFT
algorithm can support a greater number of Byzantine nodes than the PBFT method can,
always. It can be concluded that TRPBFT algorithm has higher fault tolerance and
security under the same conditions.

4.4. Throughput. In blockchain systems, throughput is a crucial metric for determining
the system’s capacity for processing transactions. It refers to the quantity of messages
the system processes per unit of time, typically denoted in TPS. The following (16) is the
calculating Formula for it:

TPS =
Transactions

∆t
(16)

Improved PBFT Consensus Algorithm Based on TS&RMQ 1487

Figure 6. The greatest number of Byzantine nodes that PBFT and TRPBFT
can support is compared

Transactions indicates the total number of messages processed in a period of ∆t.
If the system’s N nodes are split into four groups, then Figure 7 compares the exper-

imental findings of the transaction throughput of the PBFT and TRPBFT algorithms
with various node counts. Figure 7 shows that the transaction throughput of the PBFT

Figure 7. Comparison of transaction throughput between PBFT and TRPBFT

and TRPBFT algorithms rapidly declines as the total number of nodes increases. The
TRPBFT algorithm consistently has a higher transaction throughput than the PBFT
method. While the transaction throughput of TRPBFT declines gradually as the number
of nodes rises, the transaction throughput of PBFT drops off quickly. This result is due
to the introduction of RabbitMQ node for asynchronous communication and its publish-
subscribe mode as well as the three-stage PBFT algorithm consensus process’s usage of a
threshold signature to improve it. Conclusion: The TRPBFT algorithm outperforms the
PBFT method in terms of processing volume of transactions simultaneously, significantly
enhancing the system’s ability to reach consensus.

4.5. Consensus Delay. Consensus delay is the amount of time between the start of a
transaction package becoming a block and the moment when all nodes in the system have
reached a consensus and produced a block. The consistent protocol’s running speed can
be determined using this crucial index. The security and operational efficiency of the
system can all be improved along with the practicality of the system by reducing the

1488 X. Xu and C.-Y. Liu

consensus delay. The system can also be made more secure and efficient by reducing the
consensus delay. Its calculation Formula is as follows (17):

Td = Tc − Tg (17)

Among them, Td represents consensus delay, Tc represents transaction confirmation
time, and Tg represents transaction generation time.

Let us say the system’s N nodes are split into four groups. Figure 8 displays the com-
parison experiment findings for the consensus latency between the PBFT and TRPBFT
algorithms under various node totals.

Figure 8. Consensus delay comparison between PBFT and TRPBFT

Figure 8 illustrates how the consensus delay of the PBFT and TRPBFT algorithms
both rise when the system’s overall number of consensus nodes does. With more nodes
in the system, the consensus delay of the PBFT algorithm increases quickly, whereas
the consensus delay of the TRPBFT method increases more slowly. Compared to the
PBFT algorithm, the TRPBFT algorithm has a shorter consensus delay. The TRPBFT
algorithm uses the grouping and reputation mechanism, as well as the threshold signature,
to optimize the three-stage consensus process, which reduces the number of participating
nodes and the communication times between nodes. Conclusion: When compared to the
PBFT method, the TRPBFT approach has superior scalability and stability and is more
appropriate for alliance chain architectures with many nodes being involved in agreement.

5. Conclusion. There are a number of issues with the PBFT consensus algorithm, in-
cluding inadequate scalability, high network transmission costs, and security vulnerabil-
ities in the choice of master nodes. The TRPBFT consensus algorithm, which is based
on RabbitMQ and threshold signature, is presented in this study. The algorithm intro-
duces the grouping mechanism, message-middleware RabbitMQ and threshold signature
to optimize the original three-stage PBFT consensus process, making the original pin-
to-pin-communication between the whole network nodes in the preparation stage and
the confirmation stage. The vote information and confirmation information are collected
by the RabbitMQ nodes for verification, and the threshold signature is then sent to the
group leader for verification. The network’s scalability and communication effectiveness
are significantly increased as its transmission complexities is decreased from the initial
O(n2) to O(n). In order to improve the selection of group leader nodes and reduce the
overhead of frequent view switching brought on by the repeated selection of group leader
nodes by Byzantine nodes, the reputation strategy and alternative group leader node

Improved PBFT Consensus Algorithm Based on TS&RMQ 1489

mechanism are introduced at the same time. According to experimental findings, the
TRPBFT algorithm significantly enhances the performance and dependability of the sys-
tem when compared to the PBFT algorithm in terms of fault tolerance, communication
costs, consensus delay, throughput, and other factors. However, the algorithm still has
some limitations in terms of scalability and security. For example, although the algorithm
makes it possible to accommodate more Byzantine nodes in the system by using a group-
ing strategy, the algorithm does not take into account the dynamic joining and exiting
of nodes during the operation of the system. Also the algorithm reduces the network
traffic and reduces the access pressure on the master node by introducing the publish-
subscribe mechanism and threshold signatures of RabbitMQ nodes, but the algorithm
does not take into account the problem of RabbitMQ nodes that cannot work properly if
they are attacked. In this regard, in the future work, we will further study the problem of
allowing nodes to dynamically join and exit the algorithm as well as how to ensure that
the system can still operate normally when the RabbitMQ nodes are attacked, in order to
further optimize the performance of the algorithm and apply the algorithm in practical
applications to solve the problem of poor scalability of the federation chain.

Acknowledgement. The research is supported by: Heilongjiang Provincial Higher Edu-
cation Institutions Basic Scientific Research Business Fund Project (2022-KYYWF-0532).

REFERENCES

[1] G.-Q. Liang, S.-R. Weller, J.-H. Zhao, F.-J. Luo, and Z.-Y. Dong, “The 2015 Ukraine Blackout:
Implications for False Data Injection Attacks,” IEEE Transactions on Power Systems, vol. 32, no.
99, pp. 3317-3318, 2017.

[2] J. Jiang, and Y. Qian, “Defense Mechanisms against Data Injection Attacks in Smart Grid Net-
works,” IEEE Communications Magazine, vol. 55, no. 10, pp. 76-82, 2017.

[3] R.-R. Jiang, Z.-Q. Weng, and T.-M. Chen, “Development of Industrial Internet platform and its
security technology,” Telecommunications Science, vol. 36, no. 3, pp. 3-10, 2020.

[4] M.S. Ali, M. Vecchio, and M. Pincheira, “Applications of block-chains in the Internet of Things: a
comprehensive survey,” IEEE Communications Surveys and Tutorials, vol. 21, no. 2, pp. 1676-1717,
2019.

[5] J.-Q. Huang, L.-H. Kong, and G.-H. Chen, “Towards secure in-dustrial IoT: blockchain system with
credit-based consensus mechanism,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp.
3680-3689, 2019.

[6] Z. Zheng, S. Xie, and H.-N. Dai, “Blockchain challenges and opportunities: A survey,” International
Journal of Web and Grid Services, vol. 14, no. 4, pp. 352-375, 2018.

[7] J. Wan, J. Li, and M. Imran, “A Blockchain-Based Solution for Enhancing Security and Privacy in
Smart Factory,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3652–3660, 2019.

[8] C.-M. Chen, X.-T. Deng, S. Kumar, S. Kumari, and S.-K. Islam, “Blockchain-based medical data
sharing schedule guaranteeing security of individual entities,” Journal of Ambient Intelligence and
Humanized Computing, 2021. [Online]. Available: https://doi.org/10.1007/s12652-021-03448-7.

[9] J.-H. Chen, H. Xiao, M.-C. Hu, and C.-M. Chen, “A blockchain-based signature exchange protocol
for metaverse,” Future Generation Computer Systems, vol. 142, pp. 237-247, 2023.

[10] C. Sun, “Research on Power grid data security based on blockchain technology,” Nanjing University
of Posts and Telecommunications, 2021.

[11] C.-C. Dai, H.-J. Luan, and X.-Y. Yang, “Research review of blockchain technology,” Computer
Science, vol. 48, no. 11A, pp. 500-508.

[12] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” Concurrency: the Works
of Leslie Lamport, 2019, pp. 203-226.

[13] L. Lamport, “The Part-Time Parliament,” ACM Transactions on Computer Systems, vol. 16, no. 2,
pp. 133-169, 1998.

[14] M. Castro, and B. Liskov, “Practical byzantine fault tolerance,” Proceedings of the 1999 3rd Sym-
posium on Operating Systems Design and Implementation. Berkeley: USENIX Association, 1999,
pp. 173-186.

1490 X. Xu and C.-Y. Liu

[15] D. Ongaro, and J. Ousterhout, “In search of an understandable consensus algorithm,” 2014 USENIX
Annual Technical Conference (Usenix ATC 14). 2014, pp. 305-319.

[16] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,” Journal of
the ACM, vol. 2, no. 4, pp. 228-234, 1980.

[17] J. Bruna, W. Zaremba, and A. Szlam, “Spectral networks and locally connected networks on graphs,”
arXiv preprint, 2014. [Online]. Available: https://arxiv.org/abs/1312.6203.

[18] X.-T. Wei, “Analysis and improvement of PBFT consensus mechanism in Fabric,” Dalian Maritime
University, 2019.

[19] S.-N. Liu, R.-H. Zhang, and C.-Z. Liu, “An improved PBFT consensus algorithm based on grouping
and credit rating,” Computer Engineering, pp. 1-13, 2023.

[20] J. Ning, “Research on (t, n) Threshold digital signature technology based on Elliptic curve,” Guangxi
University, 2006.

[21] J.-R. Han, J.-Q. Lv, and X.-M. Wang, “Verifiable Threshold Signature Scheme Based on Elliptic
Curve,” Journal of Xidian University (Natural Science Edition), vol. 30, no. 1, pp. 26-28, 2003.

[22] G. Xu, H. Bai, and J. Xing, “SG-PBFT: A secure and highly efficient distributed blockchain PBFT
consensus algorithm for intelligent Internet of vehicles,” Journal of Parallel and Distributed Com-
puting, vol. 164, pp. 1-11, 2022.

[23] Y. Chen, M. Li, and X. Zhu, “An improved algorithm for practical byzantine fault tolerance to
large-scale consortium chain,” Information Processing and Management, vol. 59, 102884, 2022.

[24] J.-H. Chen, X. Zhang, and P.-F. Shangguan, “Improved PBFT algorithm based on reputation and
voting mechanism,” IOP Publishing, 2020.

[25] P. Liu, S. Ren, and J. Wang, “A Blockchain Consensus Optimization-Based Algorithm for Food
Traceability,” Mobile Information Systems, 2022.

