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Abstract. The current mainstream target detection models exhibit several issues in-
cluding high complexity and large volume. These models display poor detection speed
and accuracy when it comes to identifying automotive glass defects. To address these
problems, an automotive glass defect detection method based on improved YOLOv5s is
proposed for the process of detecting glass defects in the face of the low accuracy of defect
recognition at multiple scales, as well as the real-time detection requirements. To begin,
the lightweight model ShuffleNetv2 was used to replace the model’s backbone network in
order to increase model performance while lowering model complexity; Second, the model
compression module Ghost is introduced to generate feature maps that match the number
and size of the ordinary convolutional channels at a lower cost, achieving model com-
pression while also ensuring model performance; and finally, the necking network PANet
is replaced by Bifpn, which fully integrates feature information of different scales and
improves the model’s detection accuracy for various types of defects. The experimental
findings demonstrate that the modified YOLOv5s model in this study improves the Map
by 2.8% and decreases the parameter amount calculation and weight size by 79.11% and
71.53%, respectively, when compared to the original YOLOv5s;Furthermore, this paper
incorporates SAHI (Slicing Aided Hyper Inference) technology into the lightweight au-
tomotive glass defect detection model to investigate the full-size automotive glass defect
detection method, which solves the problem of heavy GPU burden caused by the tradi-
tional target detection model directly reasoning about the large resolution images, and
serves as a reference for the large-size image reasoning Program.
Keywords: automotive glass, YOLOv5s, Ghost module, Bifpn, SAHI

1. Introduction. Due to the influence of the production process or operation, automo-
tive glass may form several different types of defects during the production process, and
these defects will not only affect the aesthetics of the automotive glass, interfere with the
driver’s field of vision, but also pose serious safety hazards. In order to pursue better
safety and aesthetics, efficient classification and identification of automotive glass defects
has become a key part of many automobile companies’ quality control of automotive glass,
making automotive glass defect detection [1, 2, 3] one of the focuses of target detection
research.

Traditional manual inspection methods not only have low inspection efficiency and
high work intensity, but also need a significant investment in manpower. Many industries
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employ classical machine vision to identify and recognize glass defects as machine vision
inspection technology advances. Despite this, machine vision-based defects detection
technology has largely replaced manual inspection and has a high detection rate in several
areas. Traditional machine vision approaches, on the other hand, have drawbacks such
as the necessity for specific preprocessing methods to extract features, susceptibility to
ambient light, and high equipment operating and maintenance costs.

Deep learning [4] target detection techniques based on single-stage and two-stage algo-
rithms began to be proposed with the rapid growth of deep learning in the field of target
detection. Girshick et al. [5] introduced a region-based convolutional neural network (R-
CNN) in 2014, breaking the scenario when target identification algorithms were caught
in the bottleneck of development.Following that, deep learning-based target recognition
algorithms were introduced one after the other, a summary of the related work is shown
in Table 1. Moreover, the application field of deep learning object detection and Seg-
mentation [6, 7, 8, 9] technology has been expanding rapidly, thanks to the development
of deep learning technology and the integration of reinforcement learning [10], transfer
learning [11], and other advanced technologies.

The single-stage algorithms have faster detection speeds than the two-stage algorithms,
and in order to meet the real-time need of modern industrial production, the single-stage
method YOLOv5s is chosen as the benchmark model in this study. Due to the broadening
of the network depth through down-sampling, the realization of multi-scale detection at
the same time caused a large amount of feature information to be lost, resulting in the
detection of small and medium-sized target detection on the detection accuracy is not good
for YOLOv5s. Furthermore, using the C3 structure on the backbone network results in
poor detection speeds and limited applications. To solve these issues, this study provides
a lightweight detection algorithm for YOLOv5s automotive glass defects and realizes
automotive glass defect identification based on full-size photos using SAHI technology.
This paper’s primary contributions are as follows:

1. Replace the YOLOv5 backbone network with the lightweight backbone feature
extraction network ShuffleNetv2, and insert the Ghost module into the neck network at
the same time. The replacement backbone network realizes the lightweight model while
reducing the number of times of down-sampling and the loss of feature maps due to
down-sampling, and the neck network replaces the ordinary convolution and bottleneck
layer with the Ghost module to achieve the effect of reducing model computation volume
without losing feature information.

2. To realize the fusion of deep and shallow feature information and increase the model’s
capacity for tiny and medium-sized target identification, the Bifpn feature pyramid struc-
ture is employed to replace the FPN feature fusion network.

3. By incorporating SAHI slicing inference, slicing inference for large-size images is
realized, and the hardware configuration requirements of the deployed detection platform
are not increased.

The rest of the paper is organized as follows: Section 2 introduces the YOLOv5s al-
gorithm; Section 3 presents an improved automotive glass defect detection model incor-
porating SAHI inference; Section 4 describes the preparation of the experiments and the
argumentative metrics of the experiments; Section 5 analyzes the proposed model through
the experimental results and applies the improved model to full-size image inference; and
Section 6 concludes the current work.

2. The YOLOv5 algorithm. YOLOv5s uses CSPDraknet as the backbone network for
feature extraction, and the input image first goes through the Focus network structure
to increase the number of channels, and then goes through down-sampling to deepen the
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Table 1. Major milestones in object detection research based on the single-
stage algorithms and two-stage algorithms since

Researcher Model year Type Observations

Girshick et al. [5] R-CNN 2014 two-stage
ROI-driven candidate frame extrac-
tion,excessive training and testing
time.

Girshick et al. [12] Fast R-CNN 2014 two-stage

Using ROI pooling to extract features,
the training steps are cumbersome and
cannot be adapted to large resolution
images.

Ren et al. [13] Faster R-CNN 2015 two-stage

Integration of feature extraction, Pro-
posal extraction, etc. into one network
and generation of region proposals us-
ing RPN network, the comprehensive
performance has been improved and in-
sensitive to the detection of small tar-
gets.

Redmon et al. [14] YOLO 2016 single-stage

Transforms the detection problem into
a regression problem and utilizes a sep-
arate convolutional neural network for
prediction, with fast detection but low
accuracy.

Redmon and Farhadi [15] YOLO9000 2017 single-stage

Improved and proposed a joint train-
ing algorithm based on YOLO, but the
small target detection capability is in-
sufficient.

Redmon and Farhadi [16] YOLOv3 2018 single-stage

Using multi-scale feature maps for pre-
diction and optimizing the network
structure by residual networks, a good
balance of speed and detection accu-
racy is achieved, but small target de-
tection accuracy is still limited.

Bochkovskiy et al. [17] YOLOv4 2020 single-stage

Improvements to the input,backbone
network, necking network and LOSS
function based on YOLOv3 to improve
detection accuracy and speed.

Liu et al. [18] SSD 2016 single-stage

Utilizing multi-scale feature maps to
improve detection accuracy, capable
of real-time inference,poor detection of
small targets.

Li and Zhou [19] FSSD 2017 single-stage

At the sacrifice of speed, the adoption
of a lightweight feature fusion module
improves SSD recognition of small tar-
gets.

Fu et al. [20] DSSD 2017 single-stage

The addition of an anti-convolution
module on top of SSD has resulted in
a significant improvement in the de-
tection of small targets, although the
detection speed is significantly slower
than that of SSD.
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network depth while generating feature layers at different scales for feature extraction.
By introducing the residual network, both CSPDarknet and Darknet53 effectively deal
with the problem of gradient disappearance that may be caused by network deepening.
CSPDarknet, on the other hand, introduces the CSPnet structure, which divides residual
block stacking into two parts, one of which is the normal process of stacking residual
blocks, and the other part is simply processed and then connected in the form of residual
edges to be merged at the end. The strategy of enhancing gradient information differ-
ence and lowering gradient reuse through partial transition employing split gradient flow
improves model learning ability while reducing model computation [21].

YOLOv5s harvests multi-scale features by building a bidirectional PANet [22] feature
pyramid that feeds into the YOLO head portion to detect targets. In the neck feature fu-
sion network, YOLOv5s is divided into two sections, as opposed to the previous YOLOv3
method. The first component up-samples the semantic information from the deep network
to the shallow network and fuses the position information within. The second compo-
nent improves the feature fusion effect by down-sampling to fully utilize the contextual
information. Finally, YOLOv5s picks the deep three feature layers to undertake a series
of feature fusion operations across the neck network before recognizing the target in the
YOLO head component.

3. Improved YOLOv5s with SAHI inference.

3.1. Improved YOLOv5s structure. Figure 1 shows the enhanced YOLOv5s. In com-
parison to the original YOLOv5s, the model’s backbone is lightened by a lightweight
backbone feature extraction network to reduce model complexity. In addition, to ensure
high detection accuracy, the YOLOv5s SPPF module is preserved following the feature
extraction network based on ShuffleNetV2. This arrangement allows for multi-scale fea-
ture fusion and adaptive size output.The Ghost module is used to modify and replace the
convolution module and bottleneck layer in the neck network. Ghost module generates
feature maps at a lesser cost in order to ensure detection accuracy while compressing the
model further. The Bifpn bi-directional feature pyramid network is inserted into the neck
network, and the Bifpn core idea is borrowed to add a cross-scale feature fusion connecting
line to boost the effect of feature fusion and improve the model’s detection accuracy. The
ShuffleNetV2 network, SPPF module, Ghost module, and Bifpn structure are represented
in Figure 1 by orange, blue, green, and gold modules, respectively.

3.2. Lightweight automotive glass defect detection model.

3.2.1. Lightweight backbone feature extraction network. The YOLOv5 model’s high com-
plexity increases deployment difficulty, and the backbone network is prone to losing minor
target feature information during the down-sampling stage [23]. As a result, this study in-
troduces the lightweight ShuffleNetv2 backbone feature extraction network to replace the
original backbone network in order to achieve lightweight backbone network and reduce
deployment complexity.

ShuffleNetv2 [24] is a lightweight feature extraction network. Unlike most lightweight
networks that use FLOPs to determine network lightness, ShuffleNet fully considers the
impact of other factors on detection speed, such as memory access cost and parallelism.
ShuffleNetv2 is improved on the basis of ShuffleNetv1 based on the principles of minimizing
the memory access cost of channels such as inputs and outputs, careful use of group
convolution, avoiding network fragmentation, and reducing element-level operations, and
proposes the operation of channel shuffling as shown in Figure 2. By allowing information
sharing between two branching feature map channels, the channel shuffling operation
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improves the learning ability of intergroup feature information while also reducing the
network’s computational quantity.

Figure 3 depicts the basic structure of the ShuffleNetV2 network, which consists of
two unit structures. The basic module divides the input channels evenly by channel
split, where one branch is stacked with the other branch that is not operated through
three convolutional operations to maintain the same number of channels before and after.
Finally, channel shuffling facilitates information sharing between the two branches. The
down-sampling module removes the base module’s channel split operation, doubling the
number of generated channels and increasing feature information. The extracted feature
information is made more comprehensive by performing depth-separable convolution and
convolution operations in the blank branch of the base module, further improving the
model’s detection performance.

3.2.2. Ghost module. The designed traditional feature extraction method in the neck net-
work part goes through a large number of convolutions to obtain a large amount of fea-
tured information, resulting in a large number of redundant features and a large number
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Figure 3. ShuffleNetv2 module.

of parameters and calculations required to process these features. Many researchers have
efficiently decreased the number of parameters through parameter clipping and quantiza-
tion of the model to solve this situation. However, there are limitations of complex model
design and training difficulties [25]. To improve real-time detection, this research includes
the Ghostconv and C3Ghost modules in GhostNet [26] in the neck network to effectively
maintain feature map information and reduce model computation.

In comparison to the classic convolution module, Ghostconv, as illustrated in Fig-
ure 4, can produce redundant features at a lower computational cost by executing con-
stant mapping and linear operations on feature maps generated with only a few convolu-
tions.Ghostconv splits the convolution in two. The first phase performs direct constant
mapping on the eigenfeature map to obtain the feature map Y ′, which is generated from
standard convolution and may be written as:

Y ′ = X × f (1)

where X and Y ′ are input and output, respectively, and f is the corresponding convo-
lution kernel

The second component uses a linear procedure to produce the Ghost feature map yij
from the feature map yi of each channel corresponding to Y ′.

yij = ϕij(yi) (2)

where ϕi,j is the convolution kernel is 3×3 or 5×5 deep convolution. Finally, the intrinsic
feature map Y ′ and the Ghost feature map yij obtained in the first and second parts are
spliced to obtain the final feature map.

C3Ghost is obtained by replacing the C3 Bottleneck structure with GhostBottleneck,
which consists primarily of two Ghostconvs, the first of which increases the number of
channels to obtain additional feature information, and the second of which decreases
the number of channels to match the network structure in order to realize the shortcut
operation of the two Ghost modules. Figure 5 depicts the structure of GhostBottleneck
and C3Ghost.
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3.3. Bidirectional Feature Pyramid Network. This research introduces the Bifpn
[27] structure to improve the neck feature network’s ability to extract enough feature
information. The glass defect picture is sent into the ShuffleNetv2 backbone network,
and the feature maps of each network layer are shown in Figure 6. The figure shows
that from layer 0 to the last layer of the backbone’s SPPF module, the image contours of
layers 0-3 are still relatively clear, and the semantic information of the image from layer
4 onwards becomes gradually enriched, and this type of feature information can improve
the effect of classification for the target [28]. As a result, we do not consider adding the
feature layers 0-3 to the Bifpn feature fusion in this paper.

The YOLOv5s model’s neck feature fusion network adds a top-down pathway to the
FPN of the YOLOv3 model [29]. It ensures that the feature map has rich semantic and
spatial information, hence improving the model’s classification and localization perfor-
mance. This paper introduces a weighted bidirectional feature fusion network to replace
the PANet in YOLOv5s, which is particularly effective for shallow features of small tar-
gets through this higher-level multi-scale feature fusion [30]. As illustrated in Figure 7,
Bifpn simplifies the topology of PANet by removing single-input edge nodes that have
little influence on the network; and adding an extra edge at the input and output nodes
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Figure 7. Comparison of two neck network structures.

in the same layer for feature fusion, allowing for more feature information without adding
too many parameters.

Furthermore, because traditional feature fusion only performs operations like concat on
the input feature maps without distinguishing the importance of different feature maps
to the final fused feature maps, simply superimposing all of the involved feature maps
does not produce the best results. As a result, Bifpn employs a fast normalized fusion
approach to discriminate multiple input feature maps to varying degrees of importance,
and the feature map computation formula is indicated in Equation (3).

Out =
∑
i

Wi

ε+
∑
i

Wj

× Ii (3)

where out is the size of the fused feature map, Wi learned parameter used to distinguish
the importance of different feature maps, ε=0.0001, and Ii is the size of each input feature
map.
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3.4. Automotive Glass Defect Detection Combined with SAHI Inference. Be-
cause the resolution of automobile glass images significantly exceeds the standard input
size of the target detection model, training or reasoning directly with the original image
size necessitates a very high level of setup for the detection platform’s deployment. Scaling
the input image will result in significant defect feature loss, affecting the final detection
findings. As a result, in order to realize the inference on the original image of large size,
this paper introduces the SAHI [31] technology, which is a sliding window based on the
slice inference of large-size images. Figure 8 shows how this paper achieved the defect
detection principle with the help of SAHI.

The procedure of detecting defects in automotive glass is described in the first half.
Because the input image resolution is too high and contains too many small defects, the
image is first sliced, and the resulting image containing defects is fed into the enhanced
YOLOv5s model of this study for training. Finally, by incorporating the SAHI technique,
it is possible to detect defects in full-size auto glass photos without losing feature infor-
mation about the defects, provided that only the input is enhanced. Furthermore, this
detection approach requires no additional GPU memory allocation and achieves full-size
detection without increasing deployment costs.

The principle of the SAHI approach is demonstrated in the second part. The SAHI
technique detection findings combine the inference results on the full-size image and the
results after slicing inference using the SAHI approach. In which the slice inference
separates the original image into k sub-images of the same size: P1,P2,P3,. . . ,Pk, and then
these sub-images are scaled while retaining the aspect ratio and input into the model
for prediction. Meanwhile, the addition of inference to the original image allows SAHI
inference to be used for big target detection. Finally, NMS uniformly filters the outcomes
of subgraph prediction and original image prediction, and the results are translated to
the original image to realize big scale image inference.

4. Experimental Preparation and Method Validation.

4.1. Experimental platforms. The experimental platform used in this research is py-
charm2021.1, Anaconda, Core(TM) i7-11700K cpu, 16G RAM, RTX3060Ti graphics card
and python3.7 software platform. The optimizer used in the experiment is Adam, the
Batch size of the model is set to 16, and the number of training rounds is 100.

4.2. Auto Glass Defects Dataset. The research object in this work is the four types
of defects usually discovered in the manufacturing process of automotive glass, which
are bubbles, stains, scratches, and chips. Figure 9 depicts a sample of the four types of
automotive glass faults dataset. This paper uses labelimg annotation software to label the
xml file after conversion to generate txt files in the annotation of the dataset, as shown in
Figure 10, with the software interface and txt label file format. The first number range
is 0-3 corresponds to the four types of defects chip, scratch, stain, bubble, respectively,
after each two numbers for a group, the first group represents the center coordinates of
the target, the second group represents the width and height of the labeling box, the
coordinates are normalized to the ratio of the width and height of the image [32].

4.3. Evaluation index. Deep learning target detection mainly applies metrics such as
Precision, Recall, and mean Average Precision (MAP) for model evaluation.

TP is the samples that are correctly predicted as positive samples, FP is the samples
that are incorrectly predicted as positive samples, Precision is a parameter for calculating
the proportion of TP samples to the overall proportion of samples that are predicted as
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positive samples, and Recall is the proportion of TP samples to the overall proportion of
positive samples, as shown in Equations (4)(5):

Precision =
TP

TP + FP
(4)
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Figure 10. labelimg annotation interface and txt file format.

Recall =
TP

TP + FN
(5)

The MAP is the average of the AP (Average Precision) of all the detected targets, AP
is a measure of how good the model’s performance is in recognizing the current category.
The expressions for the computation of AP and MAP are shown below:

AP =

∫ 1

0

P (R) dR (6)

MAP =
1

n
×

n∑
i=1

APi (7)

5. Model Evaluation and Full-Size Inference.

5.1. Result and analysis. This paper selects a number of backbone feature extraction
networks for comparative experiments to verify the effectiveness of the backbone network
introduced in this paper in the detection of automotive glass defects. Table 2 shows the
detection performance of the model under different backbone networks. When compared
to previous backbone networks, ShuffleNetV2 extracts better characteristics for auto glass
flaws and ensures detection accuracy. It also takes less computation and produces lower
weights. As a result, ShuffleNetV2 is chosen as the backbone network in this article.

Comparative tests using self-constructed datasets are done to demonstrate the depend-
ability of the modified strategy provided in this study in order to verify its efficiency. The
enhanced detection algorithm’s performance is shown in Table 3. ShuffleNetV2, Ghost
module, and Bifpn are chosen as independent variables for ablation tests to validate the
suggested method’s improvement.

As demonstrated in Table3, while using shuffleNetV2 to replace the backbone feature
network can reduce model complexity, it will result in a significant decrease in detec-
tion accuracy due to the decrease in the receptive field of the backbone network after

Table 2. Comparison of backbone networks

Backbone MAP/% FLOPs/G Weight size/MB
CSPDarknet 90.2 15.8 13.7
Resnet18 91.3 35.9 28.7
Resnet34 90.1 66.1 48.0
Resnet50 88.8 77.4 59.5

ShuffleNetV2 91.1 5.8 6.5
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Table 3. Results of ablation experiments

Model MAP/% FLOPs/G Weight size/MB
YOLOv5s 90.2 15.8 13.7

YOLOv5s+ ShuffleNetv2(Without SPPF) 84.4 5.6 5.9
YOLOv5s+ ShuffleNetv2(With SPPF) 91.1 5.8 6.5
YOLOv5s+ ShuffleNetv2(With SPPF)

+Ghost(Neck)
91.7 3.3 3.8

YOLOv5s+ShuffleNetv2(With SPPF)
+Ghost(Neck)+Bifpn

92.3 3.3 3.8

Table 4. Bifpn ablation experiment

Module Position Map/% FLOPs/G Weight size/MB

Bifpn
40×40+20×20 92.3 3.3 3.8

40×40 93.0 3.3 3.9
20×20 91.7 3.3 3.8

lightweighting, resulting in the model’s poor recognition accuracy for large-size defects.
To address this issue, the SPPF module is added to strengthen the effect of feature fu-
sion, and the addition of the SPPF module to the lightweight backbone network increases
the model’s receptive field to some extent, making the model more capable of extracting
multi-scale features. As a result, ShuffleNetv2 (With SPPF) is finally selected as the
backbone network for the next experiments. In the following trials, the neck network
is recreated using the Ghost module to accomplish further model compression without
sacrificing detection accuracy. Finally, cross-scale feature fusion is carried out by incorpo-
rating the Bifpn structure to assist the model in better capturing multi-scale information
and improving the model’s detection accuracy. The experimental results reveal that,
when compared to the original YOLOv5s, the improved model MAP is 2.1% higher, and
the number of model parameters and volume are dramatically decreased to 20.9% and
27.7% of the original, respectively. This can help to increase the model’s computational
efficiency, reduce memory utilization, and speed up model inference.

This paper conducts ablation experiments on the position of Bifpn for weighted fusion
of feature maps in order to further investigate the effect on model detection performance
after the Bifpn structure is added to different positions of the neck network, and the
experimental results are shown in Table 4. Where 40×40 and 20×20 represent the size of
the feature map.

Tables 3 and 4 show the results of the experiments. The detection accuracy of the
model is somewhat enhanced after the introduction of Shufflenetv2, a lightweight back-
bone neural network, due to the efficient structural design and feature reuse, and the
Flops value and weight size are drastically lowered by 63.3% and 52.55%, respectively.
Furthermore, because of the Ghost module’s unique method of producing redundant fea-
ture maps, the model is further compressed without losing detection accuracy, and the
FLOPs value and weight size are decreased by 43.1% and 41.54%, respectively. Finally,
by including the Bifpn structure in the neck network, more feature maps of different sizes
can be feature fused to obtain more feature information and improve the model’s detec-
tion accuracy. And, after further investigating the efficiency of the Bifpn structure, the
ablation experiment determines that the Bifpn structure is introduced at the feature map
size of 40×40. As a result, the improvement strategy of this paper is Shufflenetv2+Ghost
module(Neck)+Bifpn(40×40), and when compared to the original YOLOv5s model, the
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Figure 11. The comparation of MAP.

Table 5. Comparison of the detection results of different models

Model MAP@0.5/% FLOPs/G Weight size/MB
YOLOv3 84.9 66.1 235.1
YOLOv4 75.6 60.3 244.4
YOLOv5s 90.2 155.3 34.3
YOLOv7 90.5 104.8 142.3
Ours 93.0 3.3 3.9

MAP value of the lightweight YOLOv5s model proposed in this paper improves by 2.8%,
while the FLOPs value and weight size decrease by 79.11% and 71.53%, respectively.

Figure 11 compares MAP before and after improvement, based on the average detection
accuracy of all categories when the IOU threshold is 0.5 and 0.5:0.95. The blue line
represents the YOLOv5s curve prior to improvement, and the orange line represents the
curve of the lightweight model proposed in this paper. As seen in the figure, the improved
model in this paper has increased overall detection performance.

Figure 12 depicts the detection of several defects. The figure shows that the improved
YOLOv5s model proposed in this paper has more advantages for both large and small
target detection than the original YOLOv5s model, and it can also detect neighboring
defects better in the case of neighboring detection targets and certain overlapping regions
of the detection frame.

Finally, Table 5 shows a comparison with the current mainstream target detection
approach. The model in this article provides a greater detection accuracy for vehicle
glass faults. Importantly, the model proposed in this paper has significant advantages in
terms of weight size and parameter computation, which can help to reduce the model’s
deployment difficulty, memory and hardware demand, and allow the model to be deployed
on platforms with lower computing power.

In conclusion, the lightweight YOLOv5s model proposed in this paper is better suited
for automotive glass defect detection applications than the original YOLOv5.

5.2. Analysis of full-size image inference results. Since the resolution of the full-
size auto glass image in this paper is around 16384*18000, it is directly fed into the model
for detection, and if the input is 640*640 or scaled down according to the model, a large
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Figure 12. Comparison of detection results.

Table 6. Comparison of the detection results of different models

Model
Time-consuming

(cpu)
Number of slice images under

detect
Single sub-image inference

time
YOLOv5s 89s

336
264.9ms

Ours 53s 157.7ms

amount of feature information is lost and detecting defects on the image becomes dif-
ficult. Direct detection without scaling, on the other hand, is extremely taxing on the
GPU and prohibitively expensive to accomplish. As a result, this study solves this issue
by combining SAHI techniques in order to achieve full-size inference. Figure 13 depicts
the results of full-size image defect identification for automotive glass, with some typi-
cal defects detection results marked, where white denotes proper detection, red denotes
misdetection, and green denotes missing detection. The identification of bubbles, stains,
and chips is good, but there is still a leakage detection phenomena, which is due to the
fact that stains belong to a small target, and extracting defect features is more difficult.
The scratches are misdetected because the model’s detection accuracy is insufficient, as
well as the presence of a large amount of dust on the surface of the automotive glass in
the industrial site, and the characteristics of the dust under coaxial light irradiation are
similar to those of the shallow scratches, affecting the accuracy of the full-size inference.
The enhanced model’s detection speed in executing full-size inference is decreased by more
than 40% when compared to the original YOLOv5s, as shown in Table 6.

6. Conclusion. A lightweight automobile glass defect detection model based on YOLOv5s
is proposed in this study, which is compressed by a lightweight backbone network and
lightweight module, and feature fusion is improved in the neck network to improve the
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Figure 13. Inference on full size image.

model’s detection performance. When compared to the original YOLOv5s, the experi-
mental findings demonstrate that the model provided in this work improves 2.8% in Map,
reduces 79.11% in parameter volume computation, and decrease 71.53% in weight size.
Furthermore, by utilizing SAHI technology to achieve full-size automobile glass inspec-
tion, the solution incurs no additional deployment costs, no excessive GPU burden, and
no increased memory requirement. Overall, the automobile glass inspection described in
this work is a reference solution for use in industrial settings. Future work will concentrate
on improving model accuracy and removing dust interference.
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