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Abstract. Since a large amount of fault text information is accumulated during the
maintenance and overhaul of power communication equipment systems, effective auto-
matic identification and extraction of key entity information can help over haulers dis-
cover fault key information in a timely manner, thus improving fault handling efficiency.
In this paper, we take the fault text of power communication equipment as the research
object and propose a fault entity identification method of Bidirectional Encoder Repre-
sentation from Transformers (BERT) and two-way gated recurrent network for power
communication equipment. Firstly, a corpus construction method for the entity of power
communication equipment fault is proposed to standardize the processing and labeling pro-
cess for the original fault text; secondly, BERT is proposed as a word embedding model to
transform the fault text into word vector, fusing bidirectional gated recurrent network (Bi-
GRU) to semantically encode the vector sequence and Conditional Random Field (CRF)
to label constraints, so as to obtain the global optimal sequence; finally, the globally op-
timal sequence is obtained, a comprehensive comparison is made between this model and
other models by constructing corresponding evaluation indexes. The experimental results
show that the proposed method is significantly better than other entity recognition meth-
ods and can identify the key entity information in the text more accurately.
Keywords: Fault text for power communication equipment, Entity identification, Cor-
pus construction, BERT, BiGRU, CRF

1. Introduction. In recent years, with the deepening of smart grid construction, the
rapid development of power communication system has become an important engine to
promote the modernization of the energy industry. In this process, the rapid increase
of power communication equipment makes fault management a challenge that cannot
be ignored in smart grid operation and maintenance. A large number of fault cases
accumulated in the maintenance and overhaul of power communication systems [1] provide
us with valuable data resources, mostly in the form of text records the fault site points,
fault alarm levels, fault causes and other information, if we can utilize advanced technology
to effectively identify and extract the key information in the text, it will be of great help
to the fault location and disposal of work. However, it is not easy to extract useful
information from these cases and utilize it.

Past studies have highlighted the heterogeneity in the quality of fault texts for power
communication equipment and the difficulty of effectively utilizing unstructured texts
[2,3,4,5]. These challenges make traditional entity recognition models unable to fully sat-
isfy our need for critical entity information. Therefore, we urgently need to conduct more
in-depth research to deeply analyze the faulty texts of power communication equipment
through advanced technological means, with a view to mining more detailed and useful
information from them.

The main objective of this study is to utilize entity recognition techniques to accu-
rately and efficiently extract key information from the fault text of power communication
equipment, including but not limited to fault site points, fault alarm levels, and fault
generation causes. With the help of advanced natural language processing and machine
learning methods, we will aim to improve the efficiency and accuracy of fault management
in power communication systems. By deeply analyzing the fault texts of power commu-
nication equipment, we expect to provide smarter and faster support for the maintenance
and overhaul of power communication systems.

1.1. Motivation and contribution. In order to solve the problems of difficulty in ef-
fectively processing fault texts in power communication equipment and the inability of
traditional models to fully integrate the contextual information of fault texts for entity
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recognition, this paper proposes a power communication equipment fault entity recogni-
tion method based on BERT and bidirectional gated recurrent network, which solves the
problems of fuzzy word boundaries and semantic diversity in power fault data samples.
By using recognition accuracy (P), recall (R), and F1 value (F) as evaluation indicators, a
comprehensive comparative analysis was conducted with other recognition models, prov-
ing that the method proposed in this paper is more effective in identifying faulty entities
in power communication equipment.

1.2. Layout of the paper. The following is the rest of the paper’s layout: The second
section introduces the construction of the power communication equipment fault entity
corpus. The BERT fault text word vectorization module is mentioned in the third section,
the fourth section describes the BiGRU fault text semantic encoding process, and the
fifth section is the CRF global optimal sequence acquisition module. The experiment and
analysis will be presented in the sixth section. Finally, we’ll go over the conclusion.

Figure 1 shows the general framework diagram of the model proposed in this paper,
which mainly consists of three main parts. Firstly, we build a corpus of power com-
munication equipment fault entities, and carry out text normalization, word separation,
deactivation and text annotation on the original fault text data to standardize the fault
text processing and entity annotation process; secondly, we pass the obtained fault corpus
data into BERT to obtain fault text vector sequences, pass the obtained vector sequences
into BiGRU for semantic encoding, and pass the output of BiGRU into CRF for label
constraint, so as to obtain the global optimal sequence and complete the fault entity cor-
pus of power communication equipment. The output of BiGRU is passed into CRF for
label constraint to obtain the global optimal sequence and complete the construction of
the fault entity recognition model for power communication equipment; finally, the entity
recognition model is obtained and the corresponding evaluation index is constructed to
complete the evaluation of the model performance.

Figure 1. The overall framework of the fault entity identification method for
power communication equipment

2. Related work. The following is a summary of the literature review for the suggested
procedure as presented in this portion of the paper. Due to the rise of intelligent al-
gorithms such as deep learning and important advances in natural language processing
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techniques [5], scholars at home and abroad have made some progress in extracting tex-
tual entity information in the electric power domain [6]. The literature [7, 8] provides
an overview of the concepts and methods of text entity extraction in the electric power
domain and summarizes the importance of entity extraction. The literature [9, 10] applied
machine learning algorithms to different areas of the electricity system respectively, but
simple text classification efforts were unable to fully exploit the value embedded in electric
power texts. Literature [11] constructed a dependency syntax tree for power equipment
defect text and defect classification criteria text based on the dependency syntax analysis
technique, which accomplished the accurate identification of defect information from the
text, but the migration capability of this model is weak. The literature [12] achieved
the mining of transformer operation and maintenance text information by constructing a
deep semantic learning framework, but the learning performance of the model was poor.
The literature [13, 14, 15] proposed a convolutional neural network-based model for min-
ing power-related textual information and performing whole-life state evaluation of circuit
breakers, but measures to improve the generalization capability of the network model were
not considered. Literature [16] provides formal and informal analysis by improving the
PAuth scheme thus enabling secure transmission of information between different entities.
Literature [17] proposes a two-phase training strategy for grouped sparse connections to
improve the efficiency of model training. Literature [18] combines QGA and LVQ neural
networks and uses quantum bit coding for text update evolution. Literature [19] uses
an improved VDERSc scheme to achieve forward privacy protection of data. Literature
[20] Providing more reliable information through blockchain technology. Literature [21]
adopts ASP as access ASP is used as the access structure to effectively realize revocable
and fine-grained information access control. The literature [22] uses G-ABEET scheme
to realize one-to-many data sharing. The literature [23] uses the G-ABEET scheme to
realize one-to-many data sharing, and the literature proposes the FABRIC scheme, which
are both helpful for the access of power fault information. The literature [24] used a bidi-
rectional long- and short-term memory network for grid text mining, but the model could
not fully incorporate contextual information for text information mining. The literature
[25] used BiLSTM-CRF to extract entity information from power defect texts, but the
word separation process still brought error accumulation to the model.

In summary, in order to solve the problems that the fault text of electric power com-
munication equipment is difficult to be processed effectively and the traditional model
cannot fully combine the fault text context information for entity recognition, this pa-
per proposes a BERT and two-way gated recurrent network for the entity recognition
of power communication equipment faults. Firstly, the entity corpus of electric power
communication equipment faults is constructed, and the processing process of fault text
and entity labeling are normalized; secondly, BERT is used as a vector embedding layer
to obtain vector sequences of fault text, and the obtained vector sequences are input
to BiGRU for semantic encoding, combined with CRF for labeling constraints, so as to
complete the construction work of entity recognition model; finally, the Through experi-
mental validation, the recognition accuracy (P), recall (R), and Fl value (F) are used as
evaluation indexes, and a comprehensive comparative analysis is conducted with other
recognition models to prove that the method proposed in this paper is more effective for
the recognition of faulty entities in power communication equipment.

3. Corpus Construction of Faulty Entities for Power Communication Equip-
ment.
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3.1. Power communication equipment fault text characteristics. Compared to
ordinary Chinese text messages, faulty text contains the following main features.

(1) Some of the words in the fault text have a high degree of similarity, such as ”half-
duplex”, ”full-duplex”, so they need to be analyzed in conjunction with the semantic
information in the context.

(2) The fault text contains a large number of specialized terms, such as ”optical mod-
ule”, ”laser”, ”clock board”, etc. Traditional natural language techniques, such as lexical
annotation, text separation, etc. cannot be directly applied to the fault text.

(3) The structure of the entity words of the fault site in the fault text is also relatively
diverse such as ”STM16 optical physical interface”, ”Ethernet OTH system port”, etc.
The entity words are mixed with alphabetic and numeric information, which is more
difficult to identify.

3.2. Corpus construction process. With full consideration of the fault text charac-
teristics of power communication equipment, the entities in the corpus are mainly divided
into four major categories, namely fault information entities (FAULT), fault site point en-
tities at the hardware level (PART), fault equipment entities (DEV), and fault site point
entities at the network level (TERMINOLOGY), with the following main operational
processes:

(1) Text content normalization. Through data pre-processing to standardize the fault
text, such as the alarm severity level there is ”Minor”. ”minor” case format is not uniform.
Therefore, data pre-processing is used to improve the quality of fault text, reduce the noise
data of fault text, and improve the accuracy of NER.

(2) Word separation processing. Since Chinese words are not separated by spaces, it
is necessary to separate words from the text. In this paper, we build a fault dictionary
for electric communication equipment and use HMM model and the Viterbi algorithm to
separate words from the text.

(3) Removal of deactivated words. In order to improve the accuracy of text annotation
and reduce the noise data in the text, this paper carries out the deactivation word removal
work. In this paper, a special deactivation dictionary for power communication equipment
faults is constructed by adding the corpus data of power communication equipment faults
on top of the general Chinese deactivation word list.

(4) Faulty text annotation. In this paper, the corpus annotation process adopts the
”BIO” annotation mechanism, where B represents the first word of the entity, I represents
the middle and last word of the entity, and O represents the non-entity elements. The
label definitions of the entity objects in the fault text are shown in Table 1. The labeling
samples are shown in Table 2.

Table 1. Definition of labels for entity objects

Marking style Meaning
B-FAULT Fault message initials
I-FAULT Fault message first remaining word
B-PART Fault area braille initials
B-DEV Power communication equipment initials
I-DEV Remaining words for power communication equipment

B-TERMINOLOGY First words of technical terms
I-TERMINOLOGY Terminology remaining words

O Other entities
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Table 2. Sample markers

Text Marking Text Marking
交 B-DEV 物 B-FAULT
叉 I-DEV 理 I-FAULT
板 I-DEV 故 I-FAULT
出 O 障 I-FAULT
现 O 。 O

4. BERT fault text word vectorization module. BERT is an advanced pre-trained
word vector model proposed by Devlin et al. [26], a Google team, which is a Transformer-
based deep bidirectional language representation model, characterized by its ability to
fully integrate the fault context for pre-training. The pre-training process of the BERT
model consists of two main tasks: Masked Language Model (MLM) and Next Sentence
Prediction (NSP).

4.1. BERT pre-training process. The mask language model is used to predict the
vocabulary of Mask by randomly Masking certain words of the sentence in the faulty
text, generally defaulting to 15% of the vocabulary in the Mask sentence, thus allowing
the Transformer to be used to predict the vocabulary of the Mask in combination with the
information of the faulty context, as shown in Figure 2. For the input fault information,
the algorithm randomly masks the characters in the sentence so that the masking result
is predicted in conjunction with the context, thus allowing the BERT model to more fully
understand the specific meaning of a character in the sentence.

Figure 2. Mask language model

In the entity recognition task for faulty text, it is not only the contextual information
between words needs to be analyzed, but also the relationship between sentences needs to
be understood and reasoned, so the BERT model constructs a binary classification for the
next sentence prediction task, and the specific steps are that before each training, sentence
A and sentence B are randomly selected from the faulty text, 50% are the correct adjacent
sentences, 50% are a randomly selected sentence, by extracting the semantic features of
both sentences to make a prediction whether it is the next sentence or not. As shown in
Figure 3, a ”CLS” identifier is added to the first part of the sentence, and ”SEP” is used
to separate the sentences. There is a relationship between ”temperature control system
is damaged” and ”BERT”, so the result of BERT is 1.

4.2. Vector coding process. The most important component of BERT is the bi-directional
Transformer coding structure, and the specific structure of the Transformer coding unit is
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Figure 3. Next sentence prediction task

shown in Figure 4. The core module in the encoding unit is the Self-Attention mechanism,
as shown in Equation (1):

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

Among the Q,K and V are the input word vector matrices and dk is the input vector
dimension. The interrelationships of each word in the sentence for all words in the sentence
are first calculated, and then using these interrelationships to adjust the importance
(weights) of each word one can obtain a new representation of the semantic features
of each word. This new representation implies not only the word itself, but also the
relationship of other words to this word [27], so that the transformer semantic encoding
has more global semantic representation information than a simple word vector.

Figure 4. Transformer coding unit

In order to extend the ability of the model to focus on different locations and to increase
the representation subspace of the attention unit, the Transformer uses a ”multi-head”
model, as shown in Equations (2) and (3):
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MultHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (2)

headi = Attention(QWQ
i , KWK

i , V W V
i ) (3)

In the processing of the fault text, the meaning of the words in different positions in
the sentence will be different, such as ”the backup clock board can not lock the main
clock board clock”, so the Transformer module uses the location embedding method to
add location features, as shown in Equation (4), Equation (5):

PE(pos, 2i) = sin

(
pos

10000
2i

dmodel

)
(4)

PE(pos, 2i+ 1) = cos

(
pos

10000
2i

dmodel

)
(5)

5. BiGRU Faulty Text Semantic Encoding. Since in the process of entity recogni-
tion for faulty text, there is a certain semantic correlation between words in faulty text,
this paper introduces a Gate Recurrent Unit (GRU) model with a gating mechanism to
perform deep feature extraction work on the input faulty text vector. The gate-controlled
recurrent unit is simplified from the long-short memory neural network, i.e., the forgetting
gate and the input gate are combined into one update gate, which has a simpler struc-
ture, fewer parameters, and more efficient training compared with the Long Short-Term
Memory (LSTM) ]28, 29], and can complete the semantic coding work for faulty text
more effectively. The structure of the GRU model is shown in Figure 5, and xt which
represents the input at the moment, the zt represents the update gate, and rt is a reset
gate for controlling information loss, and ht is the implicit state, where xt contains the
BERT word embedding and the corresponding word feature embedding.

Figure 5. GRU coding unit

The update gate is used to control how much of the previous state information is
brought into the current state. The larger the value of the update gate, the more the
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previous state information is brought in. The reset gate is used to control the degree of
ignoring the state information of the previous moment, and the smaller the value of the
reset gate, the more the ignoring. In the calculation of GRU, Equation (6)-Equation (9)
is usually used to calculate the information controlled by each gate.

zt = σ (Wi ∗ [ht−1, xt]) (6)

rt = σ (Wr ∗ [ht−1, xt]) (7)

ht = tanh (Wc ∗ [rt · ht−1, xt]) (8)

ht = (1− zt) · ct−1 + zt · ht (9)

Where xt refers to the input at the current moment, the σ is usually a sigmoid function
that adds or multiplies vectors, · is the dot product of the two vectors corresponding to
Wi, Wr, and Wc represents the weight matrix, and ∗ denotes the product of matrices.
The standard GRU receives input as a sequence of faulty text, which can only process

the forward information and ignore the backward information. BiGRU contains a GRU
network of forward and backward for each input faulty sequence, as shown in Figure 6. The
output of the BiGRU network is obtained by the joint action of these two GRU networks,
which can be used for the input faulty word vector xt. Extracting bidirectional semantic

information
−→
ht and

←−
ht , and finally splice the vector operation results in both directions

to obtain the final operation results ht, which ensures that the model can capture feature
information from two different directions and improve the recognition effect of the model.

Figure 6. BiGRU fault text semantic encoding

6. CRF global optimal sequence acquisition module. Conditional random fields
can be used for named entity recognition, syntactic analysis, lexical annotation, etc [29],
as BiGRU cannot fully consider the dependencies between faulty entity labels. Therefore,
in this paper, CRF is used to fully consider the connected relationships among faulty
entities, so as to obtain the global optimal sequence and improve the accuracy of entity
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recognition. Specifically, given X = (x1, x2, · · · , xn) is the input sequence, the predicted
output sequence result of the probability score is calculated as shown in Equation (10):

S(X, y) =
n∑

i=0

Ayiyi+1
+

n∑
i=1

Piyi (10)

Where the transfer matrix element Ayiyi+1
represents the probability of transfer between

the semantic encoding of the yi character of the input to the tag yi+1. The transfer
probability between Piyi represents the probability that the first i word tagged as yi.
The probability of the total score of correct labeling is quoted with the sum of all possible
labeling scores, and the sequence path is normalized to produce the probability of labeling
sequence y conditional on the input sequence X. The probability is shown in Equation
(11).

P (y|X) =
eS(X,y)∑

ŷ∈Yx
eS(X,ŷ)

(11)

In the training process, the loss function is obtained by using the log-maximum likeli-
hood estimation method to obtain the correct label sequence about y∗ of log probability
as shown in Equation (12).

log(P (y∗|X)) = S(X, y∗)− log

(∑
ỹ∈Yx

eS(X,ỹ)

)
(12)

Finally, the highest score result is output according to Equation (13) as the final label-
ing result of the faulty entity of power communication equipment, thus completing the
construction of the faulty entity identification model of power communication equipment.

y∗ = argmax
y∈Yx

S(X, ỹ) (13)

7. Experiment and analysis.

7.1. Experimental data and indexes. The experimental data used in this paper are
mainly from a state network ICT company, which mainly records the information of power
communication equipment faults and fault disposal measures in the company, with a total
of 3115 fault records, and the specific fault text structure is shown in Table 3.

Table 3. Description of fault text content

Properties
Content

Description
Properties

Alarm number
Alarm number
of the fault

Alarm severity level

Fault site point
The specific area where

the fault occurred
Causes

Fault information
Specific information

about the fault
Treatment

Properties Content Description Properties

Alarm number
Alarm number
of the fault

Alarm severity level

In this paper, the accuracy (P ), recall (R) and F1 value (F1), which are commonly
used evaluation metrics in entity recognition, are used as the evaluation criteria for model
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performance. They are defined as the following Equation (14) to Equation (16). Where
Tp is the number of correct entities identified by the model, and Fp is the number of
irrelevant entities identified by the model, and Fn is the number of entities that are not
detected by the model.

P =
Tp

Tp + Fp

× 100% (14)

R =
Tp

Tp + Fn

× 100% (15)

F1 =
2PR

P +R
× 100% (16)

7.2. Experimental environment and parameters. The computer configurations and
parameter configurations used in the implementation are shown in Table 4.

Table 4. Computer configuration and experimental environment

computer configuration Experimental environment
Windows 10 operating system seq length=128

Intel(R) Xeon(R) CPU E5-2650 v3 @2.30GHz 2.30GHz batch size=64
64GB RAM learning rate=default value
python 3.8 epoch=50

Tensorflow 2.5.0
gensim 3.8.3

7.3. Experimental results and analysis. The computer configurations and parameter
configurations used in the implementation are shown in Table 5.

7.3.1. Comparative analysis of model performance. In order to verify the superiority of
the proposed method in this paper, four sets of experiments were conducted to identify
the four types of entities in the faulty text, and the specific comparison results are shown
in Table 5.

From the experimental comparison results in Table 5 and Figure 7, we can obtain
the following content. In terms of comprehensive evaluation metrics, for accuracy, recall
and F1 values, the BERT-BiGRU-CRF model improves 12.07%, 13.89% and 12.99% for
each metric compared with the BiLSTM-CRF model, respectively. The improvement of
11.48%, 7.37% and 9.62% for each metric compared with the BiGRU-CRF model indicates
that the feature extraction capability is stronger using the BERT model, which can more
fully fuse the contextual information of the faulty text for feature extraction. Compared
with the BERT-BiLSTM-CRF model, the improvement of each index is 10.6%, 4.62% and
7.62%, respectively, which indicates that the semantic coding of faulty text using BiGRU
can capture the features in the whole sentence at a deeper level.

Table 5. Comparison of experimental effects of models

Models P R F1 Time
BiLSTM-CRF 74.34 75.00 74.45 38
BiGRU-CRF 74.93 81.52 77.82 33

BERT-BiLSTM-CRF 75.81 84.27 79.82 25
BERT-BiGRU-CRF 86.41 88.89 87.44 20
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Figure 7. Comparison of various indicators of the model

From Table 6 and Figure 8 for different entity type recognition effects, comparing the
Fl values of each model of BiLSTM-CRF, BiGRU-CRF, and BERT-BiLSTM-CRF can be
obtained. In the recognition of fault information entities, the improvement is 9.8%, 3.66%
and 5.44%, respectively; in the recognition of fault site point entities, the improvement
is 7.14%, 13.56% and -0.88%, respectively; in the recognition of power communication
equipment entities, the improvement is 20%, 17.73% and 16.32%, respectively; in the
recognition of specialized terminology entities, the improvement is 16.69%, 13.38% and
11.61% respectively. By comparing the recognition effects of different entities, it can be
seen that the advantages of this method are greater in the recognition of power communi-
cation equipment entities and professional terminology entities, but the recognition effect
of the fault site entity is relatively poor, mainly because of the complex structure of the
entity information composition, there are combinations of Chinese, English and numbers.
In conclusion, the entity recognition model proposed in this paper has a good recognition
effect, which fully proves the effectiveness of this paper’s method.

In our experiments, we not only focus on the recognition performance of the models,
but also analyze the computational overhead and communication cost of the models in
detail. In the inference phase, we measured the average time required for each model
to process one sample and observed the performance of the models in different hardware
environments. First, we note that the BERT-BiGRU-CRFmodel performs more efficiently
compared to the other models. Specifically, the average processing time of BiLSTM-
CRF, BiGRU-CRF, and BERT-BiLSTM-CRF is 38 minutes, 33 minutes, and 25 minutes,
respectively, while BERT-BiGRU-CRF is only 20 minutes. This shows the significant
advantage of BERT-BiGRU-CRF in inference speed, which is suitable for application
scenarios with high real-time requirements. Second, we analyze the hardware resources
required by each model in the inference phase. The results show that BERT-BiGRU-
CRF has lower GPU memory occupation compared to other models, further confirming
its superiority in computational efficiency. Finally, we examine the scalability of the
model on large-scale data. We find that the computational overhead of BiLSTM-CRF and
BiGRU-CRF increases rapidly as the data size increases, while the BERT-BiGRU-CRF
model still maintains a low computational overhead under large-scale data, demonstrating
its superior scalability.
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Table 6. Comparison of experimental effects of models

Entity name BiLSTM-CRF BiGRU-CRF BERT-BiLSTM-CRF BERT-BiGRU-CRF
FAULT 78.57 84.71 82.93 88.37
PART 76.19 69.77 84.21 83.33
DEV 70.00 72.73 73.68 90.00

TERMINOLOGY 71.11 74.42 76.19 87.80

Figure 8. Comparison of F1 values for entity recognition of each model

In summary, the BERT-BiGRU-CRF model not only excels in recognition performance,
but also has significant advantages in computational efficiency and communication cost,
making it an ideal choice for processing large-scale data and real-time applications.

7.3.2. Entity recognition effect demonstration. The method proposed in this paper can
effectively identify the key entity information in the fault text, and specific recognition
examples are shown in Table 6. The fault text information in the table displays the
entity information in the fault text (represented in bold). By comparing the contents
of the recognition results, it can be seen that the proposed method can efficiently and
accurately identify the various types of entity information in the fault text.

8. Conclusion. In conclusion, our study proposes a fusion of BERT and a BiGRU for
identifying faulty entities in electric power communication equipment text. We initiate
the process by constructing a dedicated entity corpus for power communication equipment
faults. BERT is employed for word embedding to vectorize the fault text. The resultant
word vectors are then inputted into the BiGRU layer for semantic encoding. The CRF
layer, in conjunction with a state transfer matrix, outputs the optimal sequence for con-
structing the entity recognition model, enabling the recognition of power communication
equipment faults. The identified entity information, coupled with relationship extraction
techniques, is utilized to construct a knowledge map for power communication equipment
faults, thereby augmenting the intelligence of fault diagnosis and maintenance.
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Table 7. Example of fault text entity identification

Fault text message Recognition results display

Physical failure of cross-board
FAULT:{Physical faults}

DEV:{cross-board}
High bias currents occur in lasers in

optical modules
PART:{optical modules}

FAULT:{High bias current} DEV:{lasers}

Faulty external cable, faulty associated
circuitry at the transceiver, mismatch
of rate formats at the transceiver

PART:{the transceiver}
FAULT:{Faulty external cable,
faulty associated circuitry,
mismatch of rate formats}

Single board circuit failure, high
operating temperature of the unit

PART:{Single board}
FAULT:{circuit failure,

high operating temperature}

While our research has made significant strides, there are still several avenues for fur-
ther exploration in future studies. Firstly, a deeper investigation into capturing complex
relationships between entities could enhance the accuracy of the knowledge map. Sec-
ondly, addressing challenges related to processing multi-modal data and real-time fault
detection remains an outstanding issue, warranting in-depth exploration in subsequent
research. As the fields of natural language processing and neural networks continue to
evolve, we will closely monitor the latest advancements to ensure our research remains at
the forefront of fault diagnosis and maintenance studies.
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