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Abstract. The lawn plant identification system can be combined with automatic weed-
ing robots and other equipment to achieve fully automated lawn maintenance and greatly
reduce labour costs. Through automatic recognition of lawn vegetation, the health con-
dition of lawn can be judged more accurately and the presence of noxious weeds can be
detected in a timely manner, thus guiding a more scientific and reasonable weeding and
fertilising work and reducing unnecessary waste of resources. Therefore, this work pro-
poses to use the advantages of Convolutional Neural Network (CNN) to extract image
features and combine with Support Vector Machine (SVM) to reduce the time of image
training and complete the classification and recognition of lawn plant knowledge. Firstly,
the images of common lawn plants are collected through the methods of downloading the
data set publicly available on the Internet and taking photos in the field, and the images
are enhanced and preprocessed to establish the lawn plant image data set. Then, the ad-
vantages of different convolutional neural networks, such as LeNet, AlexNet, and VGG,
are compared, and the AlexNet network model is selected to extract image features. Fi-
nally, a new activation function is proposed and the parameters of the CNN network are
optimised using the Atomic Search Optimisation (ASO) algorithm to further improve the
accuracy and efficiency of image recognition. The optimised CNN-SVM model is trained
and tested, and comparison experiments are done with the original CNN-SVM model.
The experimental results show that the optimised CNN-SVM model has faster conver-
gence speed and higher recognition accuracy and efficiency, which helps to improve lawn
management and reduce maintenance cost.
Keywords: convolutional neural network; lawn plants; image recognition; support vec-
tor machine; activation function; heuristic optimisation algorithm

1. Introduction. Research on lawn plant identification can help to improve lawn man-
agement and reduce maintenance costs, and is also conducive to the development of in-
telligent lawn systems and computer vision technology, which has important application
and academic values [1, 2].

Computer vision includes many aspects and image classification is one of the hot top-
ics. Image classification can be understood as the process of using computers and using
algorithms to find out the category labels of images and distinguish the categories of dif-
ferent images. Image classification has the following steps: image preprocessing, feature
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extraction, and classifier classification. Among these steps, feature extraction is partic-
ularly important and determines the accuracy of image classification. In the traditional
image classification task, the texture and colour of the image are often extracted to make
judgments, this method has a more satisfactory effect on the classification of simple im-
ages, but for the classification of complex images can not be achieved. Therefore, image
classification algorithms based on convolutional neural nets, which are more effective in
classifying complex images, have gradually become a hot spot.

Early classification of plant images is firstly to segment the image region of plants in-
dividually [3], to eliminate the irrelevant background information, leaving only the plant
information region which is valuable for classification, and then extract the feature in-
formation of the plant information region with artificially designed feature extraction
algorithms, and finally send the information extracted with feature extraction algorithms
to the classifier to get the classification results, to complete the whole plant image classi-
fication and recognition work [4, 5]. This widely used plant classification and recognition
technology requires human segmentation of plant images, and the feature extraction of
plant images also requires human intervention, such as designing algorithms to extract
the colour and outline of plants, which is more complicated. Traditional plant image
segmentation methods are based on image segmentation techniques, which is the process
of dividing a complete image into smaller pieces, each of which should represent some
meaningful part of the image. Although a certain degree of classification can be achieved
by using artificially designed feature extraction methods to classify plant images, their
classification effectiveness and efficiency are greatly limited. This is because the extraction
of features from plant images relies on the segmentation of plant images, and the quality
of segmentation depends on human control, with uncertainty, which directly affects the
accuracy of feature extraction, and thus the final classification accuracy [6]. In addition,
feature extraction of plant images requires human design, which requires experience and
lacks strong generalisation ability.

Currently, with the explosive development of machine learning technology, machine
learning-based feature methods have become mainstream [7, 8, 9]. Using machine learning
algorithms, feature rules are learnt based on the training dataset and then the learnt rules
are applied to new images. The method requires a large number of training datasets and
computational resources, but it is more effective and can be adapted to different fields of
image classification. Image classification algorithms based on convolutional neural nets
are more effective in classifying complex images and have gradually become a hot spot
in related fields [10]. Therefore, the research objective of this work is to extract image
features using convolutional neural net technique and to design a new hybrid model for
automatic identification of lawn plant species by combining with support vector machine.

1.1. Related Work. Convolutional neural networks in deep learning have been devel-
oping rapidly in the image field in recent years and are undergoing unprecedented tech-
nological changes. Compared with traditional image extraction algorithms, convolutional
neural networks have the unique advantage of being able to extract deep information from
images.

Convolutional neural networks generally consist of an input layer to input the image, a
convolutional layer to extract features from the image, a pooling layer to downscale the
data extracted from the previous convolutional layer to prevent overfitting of the results
obtained, a fully connected layer to spread and selectively classify the final extracted data,
and a final output layer to output the results. Convolutional neural networks use local
connectivity and weight sharing, which helps to reduce the number of weights and improve
computational efficiency, as well as reduce model complexity and avoid overfitting. As
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a result, it can directly take the image as input, thus avoiding the feature extraction
process, which is both complex and time-consuming in traditional recognition algorithms,
thus simplifying the whole algorithmic process. Currently, the structure of convolutional
neural networks is divided into three main types [11]: the LeNet, AlexNet and VGG.

LeNet consists of two convolutional layers, two pooling layers and three fully connected
layers. Its advantage lies in the fact that it adopts convolutional layers and pooling
layers to extract the features of the image, which can effectively reduce the number of
parameters in the network to avoid the problem of overfitting. Ma et al. [12] proposes
a 1D-LeNet model for hyperspectral image classification. By using 1D convolutions, the
model can better capture spectral features. Experiments on two datasets show 1D-LeNet
outperforms the baseline LeNet and achieves state-of-the-art results. The study provides
a good reference for adapting LeNet to hyperspectral data. Zaibi et al. [13] proposes
a lightweight CNN based on LeNet for traffic sign recognition. By reducing parameters
and depth, the model achieves real-time performance on an embedded device with only
1.5% drop in accuracy compared to the original LeNet. This demonstrates the potential
of applying a compact LeNet model for automated driving systems.

The AlexNet model structure consists of 5 convolutional layers and 3 fully connected
layers.AlexNet uses ReLU activation function to speed up the training process and im-
prove the accuracy. In addition, AlexNet uses Dropout technique and Softmax classifier
for classification. Lee et al. [14] fuses LeNet and AlexNet models for classifying digestive
organs from endoscopic images. The hybrid model inherits simple structure from LeNet
and deeper features from AlexNet. On a capsule endoscopy dataset, it delivers 96.3% ac-
curacy for four-class classification, showing advantages over both individual models. Kaur
and Gandhi [15] provides an empirical analysis of image recognition and classification us-
ing machine learning and transfer learning approaches, focusing on the accuracy rates
of three architectures in Convolutional Neural Networks (CNNs): AlexNet, GoogleNet,
and ResNet. The study evaluates the accuracy rates of these architectures trained with
a specific number of resources and compares their accuracy after each training day. The
research employs regression analysis to identify how one-day training improves the ac-
curacy of these architectures. The findings suggest that AlexNet is more accurate in
machine learning image recognition and classification and requires less time for training
than GoogleNet and ResNet. However, due to having fewer layers, AlexNet is less accu-
rate in transfer learning. This analysis provides valuable insights into the performance
of AlexNet compared to other CNN architectures in image recognition and classification
tasks. Ye et al. [16] proposes a lightweight model that combines VGG-16 and U-Net
networks for remote sensing image classification. The study focuses on improving model
accuracy while reducing memory size. The authors report an improved model accuracy of
98% with a reduced memory size of 3.4 MB. The proposed model demonstrates enhanced
classification and convergence speed, making it suitable for remote sensing images with
few target feature points and low accuracy. The study highlights the potential application
of the model in remote sensing image classification, particularly for images with limited
target feature points and low pixels. Saju and Rajesh [17] focuses on classifying cataracts
into two categories: normal cataracts and cataracts. The authors process retinal fundus
image data and employ VGG-19, ResNet-50, and ResNet-101 for classification. The re-
sults indicate average accuracies of 91.06% for VGG19, 93.50% for ResNet-50, and 93.50%
for ResNet-101 across all retinal classes. The study demonstrates the potential of deep
learning models, particularly VGG-19 and ResNet, in cataract detection, highlighting
their application in medical image analysis.

Meta-inspired optimization algorithms are a class of optimization algorithms that mimic
natural phenomena or human intelligence [18,19,20], which can find globally optimal or



1592 X.-N. Tao and Y. Huan

near-optimal solutions in a large search space, such as Particle Swarm Optimization (PSO)
algorithms [21], Ant Colony Optimization (ACO) algorithms [22], and Bee Colony Op-
timization (ABC) algorithms [23]. Meta-inspired optimisation algorithms can be used
to optimise the structure and parameters of the convolutional neural network, such as
the size, number, and shape of the convolutional kernel, the type and step size of the
pooling layer, the number of nodes in the fully-connected layer, the choice of activation
function, and the adjustment of the learning rate. This can improve the generalisation
ability and accuracy of the convolutional neural network, and at the same time reduce
the risk of overfitting and underfitting. Sun et al. [24] proposed a method to optimise
the CNN architecture with a genetic algorithm, called GA-CNN.This method encodes the
number of layers, convolutional kernel sizes, activation functions, etc., and then selects,
crossovers, and mutates them with a genetic algorithm, so as to obtain the optimal CNN
architecture.

1.2. Motivation and contribution. The appearance characteristics of lawn plants are
often affected by environmental factors, such as light, temperature, moisture, soil, pests
and diseases, etc., resulting in the same kind of lawn plants may show different colours,
shapes, sizes, densities, etc. under different conditions, which increases the difficulty
of identification. There may be crossbreeding, mutation, hybrids and other phenomena
among lawn plants, resulting in certain lawn plant characteristics not meeting the original
classification standards or the emergence of new characteristics, making identification
more complex and difficult.

Therefore, in order to improve the accuracy and recognition efficiency of lawn plant
classification, this work implements the extraction of plant image features through con-
volutional neural networks and feeds the features into a support vector machine (SVM)
to achieve classification and recognition of lawn plants. The main innovations and con-
tributions of this work include:

(1) Images of common lawn plants were collected by methods such as downloading
publicly available datasets from the Internet and taking photographs in the field, and the
images were enhanced and pre-processed to create a lawn plant image dataset.

(2) The advantages of different convolutional neural networks such as LeNet, AlexNet,
and VGG are compared and the AlexNet network model is selected to extract image
features.

(3) A new activation function is proposed and an atomic search optimisation (ASO)
algorithm is used to optimise the parameters of the CNN network to further improve the
accuracy and efficiency of image recognition. The ASO-CNN-SVM model is trained and
tested, and comparison experiments with the original CNN-SVM model are done.

2. Establishment of a lawn plant image data set.

2.1. Plant species selection. There are many kinds of common lawn plants, and differ-
ent lawn plants have different characteristics and adaptability. In this work, four common
lawn plant species and their related information [25] were selected as shown in Table 1.

Looking at the shape and colour of the blades, Zoysia has flat or slightly involute
blades that are dark green or grey-green; Axonopus compressus has opposite, ovate or
heart-shaped blades that are light green or purplish-red; Golf green has elongated, linear
blades that are dark green or blue-green; and Bermudagrass has flat, lance-shaped blades
that are light green or grey-green. In terms of stem morphology and length, the stems of
Zoysia and Bermudagrass have creeping rhizomes that can extend above ground to form
dense turf; the stems of Axonopus compressus also have creeping stems but are shorter
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Table 1. Types of common lawn plants and their related information.

Lawn plant
Genus

(taxonomy)
Morphological
characteristic

Use

Zoysia Gramineae Knotweed
Cross-travelling rhizomes, flattened

or slightly involute leaf blades, spikelike inflorescences
Sports grounds and
waterfront lawns

Axonopus compressus Carpetweed, Labiatae
Creeping stems, opposite ovate or

heart-shaped leaves, purple, white or pink spikes
Groundcover or border plants for

flower beds

Golf green Ryegrass, family Gramineae
Erect stems, slender linear leaf

blades, conical inflorescences, ovate caryopsis
Golf course greens or
premium turf grasses

Bermudagrass Bermuda, family Graminae
Creeping stems, flattened lanceolate

leaf blades, conical inflorescences, ovate caryopsis
Lawns in parks, courtyards

or sports grounds

and less likely to form turf; and the stems of Bermudagrass are upright and longer, forming
loose turf. Examples of the four common lawn plants are shown in Figure 1.

(a) Zoysia

(b) Axonopus compressus

(c) Golf green

(d) Bermudagrass

Figure 1. Examples of 4 common lawn plants
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2.2. Image data acquisition. For the four common lawn plants, the method used was
on-site field photography. This method is time-consuming, labour-intensive and less re-
warding. Since taking photographs may suffer from the problem of under-representation
and broadness of the collected data samples, which makes the model overfitting during
the training process, the use of data enhancement techniques is needed to improve this
problem.

A search engine can be used to find information about the four common lawn plants
on the Internet, download the relevant images, and screen and organise them to create a
dataset, a method that ensures that the dataset comes from a wide range of sources and
saves time.

This paper focuses on collecting images of four common lawn plants using web search
and manual photography. The collection methods include (1) using a smartphone to take
images of lawn plants from multiple angles in different backgrounds, and (2) selecting
images of lawn plants from a variety of venues and different seasons through a search
engine, and then downloading the images using a download tool.

After the above steps, we need to classify these 4 lawn plants obtained by proper
manual screening, this is to avoid image duplication and misclassification which leads to
unsatisfactory training results. Through our screening, about 1000 images of the original
plant dataset were obtained. After the classification and screening process, we obtained
four image categories, each containing 50 to 200 images. However, the distribution of
these data samples is uneven. Therefore, during the training process of classifying and
recognising the images, it is necessary to ensure that the number of samples per sample
tends to be the same, which is referred to as balancing the data. The main purpose of this
is to avoid the model training effect being affected by a larger number of samples and to
prevent the model from over-fitting one of the classifications during the training process of
performing image classification. In addition, due to the overall small size of the collected
image dataset, the desired training effect may not be achieved and model underfitting
may occur. All these problems can lead to inaccurate parameters of the trained model,
which in turn affects the classification ability and effectiveness of the model. To solve
these problems, the dataset needs to be balanced and expanded. We can choose to add
a smaller number of sample images while deleting a larger number of sample images to
ensure that the number of samples in the dataset for each category reaches a certain
balance.

In this study, image enhancement techniques were used to expand the dataset by select-
ing 6 image enhancement methods: random rotation, random distortion, Gaussian noise,
motion blur, random brightness, and random saturation. These 6 methods were grouped
into 3 categories: graphic change, image blur, and colour change. Each image has several
more copies of different types because of image enhancement, the sample size of a single
class of image is increased dramatically, which improves the generalisation of the model,
and can effectively avoid the model from model training underfitting. The robustness
and size of the dataset are effectively improved by the image enhancement technique.
The number of images of each lawn plant is increased and the size of the image dataset
becomes about 5000 images.

The dataset of 5000 lawn plant images obtained after image enhancement is named
Lawn Plants DataBase (LPDB). In this study, the LPDB dataset was managed with
the method of image sequence tag and file type tag management, which facilitates the
judgement of image training right and wrong.

2.3. Dataset preprocessing. After getting the LPDB dataset the images need to be
preprocessed for training. The preprocessing of the dataset has two main purposes. On
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the one hand, it can unify the format of the images so as to improve the success rate of
model training. On the other hand, it can make the size of the original images uniform
to conform to the standards of the model training and testing input sets, thus improving
the effectiveness of image feature extraction. Now, the following preprocessing is done on
the images in the dataset.

(1) Training and testing datasets: two kinds of non-repeating datasets, LPDB train
training set and LPDB test testing set, are obtained using the random allocation method.
Ninety per cent of the number of images of each category was randomly selected as the
LPDB train training set (4500), and ten per cent of it was selected as the LPDB test test
set (500).

(2) Image geometric transformation: Convert all the dataset image formats to RGB
three-channel format uniformly. The size of the dataset was changed to 128Ö128Ö3.
This adjustment reduces the computation of the computer during training.

(3) Image data feature scaling: when we read the image format as input during training
data, we need to transform the image data into machine learning input data format Tensor
(tensor) format for feature extraction. In this study a normalisation method is used to
scale the input of training data in the interval [-1, 1].

O =
I − E(I)

S(I)
(1)

where I is the input pixel value, E(I) denotes the pixel mean of the input image and
S(I) denotes the standard deviation of the input pixels.

E(I) =
1

n

n∑
i=1

Ii (2)

S(I) =

√√√√ 1

n

n∑
i=1

(Ii − E(I))2 (3)

3. Comparison of CNN models. In this work, a simple comparison of three network
models, LeNet [26], AlexNet [27], and VGG-16 [28], is shown in Table 2.

Table 2. Comparison of CNN Models

Input image
Convolution

kernel
Pooling

Activation
function

Network
depth

LeNet 32 x 32 x 1 5 x 5 x 1
2Ö2

Maximum Pooling
Sigmoid 2+2+2+1

AlexNet 224 x 224 x 3
11 x 11 x 3
5 x 5 x 3
3Ö3Ö3

3Ö3
Maximum Pooling

ReLU 5+3+2+1

VGG-16 224 x 224 x 3 2Ö2Ö3
3Ö3

Maximum Pooling
ReLU 13+5+3+1

In this paper, three network models, LeNet, AlexNet, and VGG, are compared and
experimented, and the output categories are uniformly changed to the names of four
lawn plants, and other network parameters remain unchanged. The network is built
according to the structure of LeNet, AlexNet, and VGG-16 models, and the empirical
parameters other than network parameters are determined, i.e., learning rate, sample
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size, and training batch. The pre-processed LPDB train training set is input into the pre-
training model for training, and the training results are iterated. The LPDB test test set
is put into the trained model for testing and analysing the results. The LeNet network
model, AlexNet network model, and VGG-16 network model are built using Python’s
Pytorch framework.

After several experiments, it is found that the training process and test results tend
to be optimal when the empirical parameters of the three networks are set as shown in
Table 3, Table 4 and Table 5, respectively. A comparison of the test results of the three
networks is shown in Figure 2. The combined training time and recognition accuracy can
be initially found that using AlexNet network for training our dataset is the best choice,
so in this work, AlexNet network is used as an image feature extractor for LPDB dataset.

Table 3. Empirical parameter settings for LeNet network models

Parameters Numerical value
learning-rate 0.004
batch-size 24
epochs 30

Table 4. Empirical parameter settings for the AlexNet network model

Parameters Numerical value
learning-rate 0.0004
batch-size 24
epochs 30

Table 5. Empirical parameter settings for the VGG-16 network model

Parameters Numerical value
learning-rate 0.0002
batch-size 24
epochs 30

The convolutional layer in AlexNet network performs feature extraction of the input
image using the convolution operation, which is computed as shown below:

Ci = σ

(
m∑
j=1

Wij ∗ Ij + bi

)
(4)

where Ci denotes the i-th convolutional layer activation value, Ij denotes the j-th input
image, Wij denotes the convolutional kernel parameters and bi denotes the bias term.
A non-linear mapping of the output of the convolutional layer to increase the expressive

power of the network is often used with the ReLU (Rectified Linear Unit) activation
function.

f(x) = max(0, x) (5)

A Local Response Normalisation (LRN) technique is used between the convolutional
and pooling layers, which is used to suppress the response of neighbouring neurons, en-
hancing the larger response of the neurons and improving the generalisation ability of the
network.
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Figure 2. Comparison of the results of 3 network model training tests

bix,y =
aix,y

(k + α
min(N−1,i+n/2)∑
j=max(0,i−n/2)

(ajx,y)
2
)

β
(6)

where bix,y denotes the normalised value of the i-th feature map at position (x, y),

aix,y denotes the original value of the i-th feature map at position (x, y), n denotes the
neighbourhood size, and N denotes the number of feature maps. k, α, and β are hyper-
parameters which are usually taken as k = 2, α = 10−4 and β = 0.75.
The feature map output from the pooling layer is spread as a one-dimensional vector,

connected to a fully connected layer, and the high-level semantic features of the image
are extracted through multiple fully connected layers. The structure of AlexNet network
is shown in Figure 3.

Figure 3. AlexNet network structure
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4. ASO-CNN-SVM model construction.

4.1. Optimisation of activation function. In order to improve the robustness and
generalisation of convolutional neural networks, the activation function used in CNNs is
improved in this work. The earlier activation function used is the Sigmoid function whose
function image is shown in Figure 4.

f (x) =
1

1 + e−x
(7)

From the image of the Sigmoid function, it can be seen that after the input values are

- 1 0 - 5 0 5 1 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 S i g m o i d

Figure 4. Sigmoid function

input to the Sigmoid function, the output values will be compressed in the range of 0 to 1.
When the Sigmoid function is back-propagating the gradient update during the training
process, because the output values are compressed in the range of 0 to 1, it results in the
gradient seeking when some of the gradient parameters will be close to 0, which slows
down the updating of the network’s weighting parameters, and makes it difficult for the
network to be training.

The present study is inspired by the ReLU function and the Tanh function, using the
sparse non-saturation property of the positive half-axis of the ReLU [29] and the saturation
property of the negative half-axis of the Tanh function [30, 31], which are combined into a
new activation function named R-Tanh activation function, which is computed as shown
in Equation (8), and its image is shown in Figure 5.

f (x) =

{
1−e−2x

1+e−2x x < 0
x x ≥ 0

(8)

The proposed R-Tanh activation function mitigates the vanishing gradient. When the
input value is greater than 0, the derivative of the R-Tanh activation function is 1, which
is both incompressible and sparse. The R-Tanh activation function solves the problem
by suppressing the gradient decay when the input value is less than 0. The R-Tanh
activation function can still obtain activation values even when the value falls on the
negative semiaxis, thus maintaining a part of the feature information of the image to be
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used and trained by the later network structure. The R-Tanh activation function has a
soft saturation in the negative semiaxis interval, which provides a non-zero input for the
next layer of neuron computation, and therefore the output image features are robust to
data noise, thus improving the network’s ability to recognise images.

4.2. Validation of the activation function. In the experiment to validate the clas-
sification effect of the improved activation function, the improved activation function is
validated using the FWDB dataset with a two-layer convolutional neural network with
four experimental control groups.

The classification accuracy can be obtained by training the convolutional neural network
on using different activation functions as shown in Table 6.

Table 6. Performance Comparison of Activation Functions

Activation function Accuracy/%
R-Tanh 81.9
ReLU 80.3
Tanh 78.6

Sigmoid 77.7

Sigmoid accuracy is lower than all other types of activation functions, which indicates
that the saturated nature of the Sigmoid function affects its effectiveness. Tanh results
are better than Sigmoid because it maintains neuron activity in the negative intervals,
which makes the backward weighted features trained more accurately. The experimental
accuracy of the R-Tanh function proposed in this paper is 81.9%, which is higher than
the other three sets of activation functions. The main reason for the higher performance
of the R-Tanh function is the negative semi-axis which does not lose features like ReLU
(retains some negative features), and at the same time utilises the linear mapping non-
compression property of the positive interval of the ReLU function, thus improving the
recognition ability of the network.
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4.3. Construction of CNN-SVM model. CNNs learn abstract features with a hier-
archical structure in an image, and SVMs can benefit from the learning of these high-level
features. By using the features extracted by the CNN as input to the SVM, the key in-
formation in the image can be better captured and the performance of image recognition
can be improved.

The features generated by CNN are usually high-dimensional, and SVM is relatively
good at handling high-dimensional data. Using CNN extracted feature vectors as input to
SVM can reduce the dimensionality of the data, making SVM more effective in processing
complex lawn plant image data.SVM is robust to noise to a certain extent. By feeding
the CNN extracted features into SVM, the robustness of the model to image noise can be
improved to some extent. Therefore, in this work, the multidimensional feature vectors
extracted from the convolutional layer are used as the input data for SVM, so as to achieve
the combination of CNN model and SVM model, as shown in Figure 6.

Max-Pool Convolution Max-Pool Dense

8@128x128

8@64x64

24@48x48 24@48x48 28@24x24

SVM

Output

Figure 6. CNN-SVM Models

Let n samples of lawn plant images containingm-dimensional features beX = (x1, x2, . . . , xn).
The jth node of the lth hidden layer is xl,j, which is represented as:

xl,j = f

∑
j∈Mj

xl−1 ∗ kl,j + bl,j

 (9)

where kl,j and bl,j are the weight and bias of node j in layer l, ∗ is the convolution, and
f() is the R-Tanh function proposed in this paper.
Let the convolution size be h× w, then the pooling is done as shown below:

g(x) =

∑h×w
k=1 xk

h× w
(10)

Let M = n/h×w, then the sample X = (x1, x2, . . . , xn) becomes X ′ = (x1, x2, . . . , xM)
by convolution and pooling.

x′
j = f

(
M∑
i=1

aij(x
l−1
i ∗ kl,j) + bl,j

)
,
∑

aij = 1, 0 ≤ aij ≤ 1 (11)

In using CNN as classification, assume that the CNN output of input sample xk is yk,
and the error between yk and its actual category dk is δk.

δk = (dk − yk)yk(1− yk) (12)

The error sum E for all samples is:

E =
1

2

M∑
k=1

(dk − yk)
2 (13)



Lawn Plant Identification on Meta-Heuristic Neural Network 1601

Taking the minimum value of E as the objective function, the deep CNN layer-by-layer
weights and thresholds are continuously solved to finally obtain a stable deep CNN model.

4.4. Parameter optimisation of CNN. As mentioned in the previous section, by using
the features extracted by CNN as inputs to SVM, the key information in the image can
be better captured and the performance of image recognition can be improved. However,
combining CNN and SVM may increase the computational complexity of the model,
especially on large-scale datasets. This may lead to an increase in training and inference
time.

The main reason for the increase in training and inference time is that hyperparameter
tuning is more difficult. Combining two different models requires careful tuning of the
hyperparameters to ensure that they work well together. This may require more tuning
work.

In order to solve this problem, the Atomic Search Optimisation (ASO) algorithm [31]
is used to optimise the CNN network parameters to further improve the accuracy and
efficiency of image recognition. The ASO algorithm is essentially a search process that
determines the optimal solution based on the motion state of the atoms, the state of mo-
tion of the atoms themselves, and the combined gravitational and repulsive relationships
between the atoms to determine their motion state.

In the ASO process, the motion of atoms is always a spatial traversal search around
atoms with large mass, and the mass of atoms is closely related to the fitness of atoms.
Fitmin(t) and Fitmax(t) denote the minimum and maximum values of fitness after t iter-
ations, respectively. Assume that the atom size is N , the mass of the ith atom is mi(t),
and the estimated mass is Mi(t).

mi(t) =
Mi(t)∑N
j=1Mj(t)

(14)

Mi(t) = e

(
− Fiti(t)−Fitmin(t)

Fitmax(t)−Fitmin(t)

)
(15)

where Fiti(t) is the fitness value of individual i after the tth iteration.
At the t-th iteration, the force of atom j on atom i in one dimension is Fij(t), which is

expressed as:

Fij(t) = −η(t)
[
2(hij(t))

13 − (hij(t))
7
]

(16)

η(t) = α

(
1− t− 1

T

)3

e(−
20t
T ) (17)

where T is the total number of iterations and α is a constant.

hij(t) =


hmin,

rij(t)

σ(t)
< hmin

rij(t)

σ(t)
, hmin ≤ rij(t)

σ(t)
≤ hmax

hmax,
rij(t)

σ(t)
> hmax

(18)

hmin = g0 + 0.1× sin

(
πt

2T

)
(19)

where rij(t) denotes the Euclidean distance between atom j and atom i, and σ(t)
denotes the sum of the radii of the two atoms.

Let the total dimension of the space of atoms involved in the operation in ASO be K.
The combined force generated in atom j on atom i pair in all dimensions is:
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F d
i (t) =

∑
d∈K

F d
ij(t) (20)

Let the coordinates of atom i in the dth dimension be xd
i (t):

Gd
i (t) = βe(−

20t
T ) (xd

best(t)− xd
i (t)
)

(21)

where β is a constant and xd
best(t) are the coordinates of the optimal atom in the d-th

dimension.
Then the acceleration of atom i in the d-th dimension is:

adi (t) =
F d
i (t) +Gd

i (t)

md
i (t)

(22)

where md
i (t) denotes the mass of an atom in the d-th dimension.

In the iterative process, the velocity and position are updated by the methods respec-
tively:

vdi (t+ 1) = vdi (t) + adi (t) (23)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (24)

Continuously iterating, updating atom velocities and positions, and updating the fitness
values of the atoms, preserving the individual atoms with the best fitness.

5. Experimental results and analyses.

5.1. Experimental environment. The experiments for this work were carried out in
a Lenovo laptop environment with the following configurations: Windows 10 operating
system, 8 GB memory capacity, and 2 T hard disc capacity. CPU frequency is 2.30 GHz
and GPU model is Ge Force GTX 960M. programming software is Python version 3.10.0.

5.2. Training of ASO-CNN-SVM model. The ASO-CNN-SVM model, CNN-SVM
model are trained with the LPDB train training dataset respectively and the training
results are compared.

Orthogonal tests were chosen to be used to determine the values of the empirical pa-
rameters learning-rate, sample size, and number of training rounds in order to obtain the
best learning results. The final choice of learning-rate is set to 0.0004, epochs is set to 40,
and batch-size is set to 32. 4500 training samples from LPDB train are used to train the
ASO-CNN-SVM model constructed, and the same dataset is used to train the CNN-SVM,
to obtain the overall training image recognition accuracy is shown in Figure 7 and the
loss function values are shown in Figure 8.

The training results show that the ASO-CNN-SVM model converges around 50 times
when training the LPDB train dataset, which is faster than the CNN-SVM model and
has higher training efficiency; the recognition accuracy of the ASO-CNN-SVM is higher
than the CNN-SVM model throughout the training process, indicating that the ASO-
CNN-SVM model has a better training effect than the original model has better training
effect.
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Figure 7. Comparison of Accuracy of Model Training
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Figure 8. Comparison of loss values for model training

5.3. Testing of ASO-CNN-SVM model. Each class of lawn plants is now tested sep-
arately. The trained ASO-CNN-SVM model and CNN-SVM model are tested separately
using 500 test sample images from LPDB test.

The recognition results of ASO-CNN-SVM model and CNN-SVM model on the test set
are now shown in Table 7 respectively.

It can be seen that during the recognition test, the highest recognition accuracy was
achieved for Golf green and lower for Bermudagrass for both the ASO-CNN-SVM model
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ASO-CNN-SVM CNN-SVM
Number of
pictures

Number of
correct identifications

Recognition
accuracy

Number of
correct identifications

Recognition
accuracy

Zoysia 100 94 0.9400 92 0.9200
Axonopus
compressus

150 143 0.9533 141 0.9400

Golf green 150 146 0.9733 142 0.9467
Bermudagrass 100 89 0.8900 88 0.8800
Average value 0.9392 0.9217

and the CNN-SVM model. Compared to the CNN-SVM model, the ASO-CNN-SVM
model recognition method improved on every lawn plant species tested, with an average
increase in correctness of 1.75%.

6. Conclusion. In order to improve the accuracy and recognition efficiency of lawn plant
classification, this work implements the extraction of plant image features by CNN and
feeds the features into SVM to achieve classification and recognition of lawn plants. The
advantages of different convolutional neural networks such as LeNet, AlexNet, and VGG
are compared, and the AlexNet network model is selected to extract image features. A
new activation function is proposed and the parameters of the CNN network are opti-
mised using the ASO algorithm to further improve the accuracy and efficiency of image
recognition. The ASO-CNN-SVM model was trained and tested, and comparison ex-
periments were done with the original CNN-SVM model. The results showed that the
ASO-CNN-SVM model recognition method improved on every lawn plant species tested
with an average correctness increase of 1.75% compared to the CNN-SVM model. How-
ever, end-to-end training that combines CNN and SVM can be challenging because the
training processes for both are typically separate. Effective end-to-end training strategies
may require additional work. Further research will follow to address this issue.
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