
Journal of Network Intelligence ©2024 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 9, Number 3, August 2024

Secure Sharing Data Integrity Audit Scheme with
Dynamic User Groups in Cloud Storage

Jia-Xian Liu, Hui Huang∗, Qun-Shan Chen

School of Computer Science
Minnan Normal University, Zhangzhou 363000, China

jia1598149973@163.com, hhui323@163.com, xianmensam@163.com

Zhen-Jie Huang

Fujian Key Laboratory of Granular Computing and Application
Minnan Normal University, Zhangzhou 363000, China

zjhuang@mnnu.edu.cn

∗Corresponding author: Hui Huang

Received September 1, 2023, revised December 15, 2023, accepted February 20, 2024.

Abstract. With the wide application of cloud storage, users with limited resources send
outsourced data to the cloud service provider. Shared data storage has become a vital
application form in some cloud storage scenarios. Many existing shared data integrity
audit schemes don’t consider the user’s access rights. The revoked user can still access
the data in the group. Moreover, they cannot support the dynamism of the data, nor can
they support data privacy and user identity protection from infringement by the validator.
We propose a safe and feasible shared data audit scheme to solve several of the problems
above. In our scheme, once the group user is revoked, he has no permission to access
and download data. We also design a dynamic multi-tree data storage structure to realize
the increase, deletion, and search of dynamic user groups and data. Not only that, but
our scheme also supports identity privacy protection for group users and data privacy
protection. Experimental data show that our scheme is more efficient and safer than
previous schemes. Especially in calculating tag generation, we reduces the computing
overhead by 50 %.
Keywords: Sharing data integrity audit, Data privacy protection, Identity privacy
protection, Dynamic user groups

1. Introduction. As one of the most popular modes of online storage, cloud storage
provides users with massive storage space and robust computing power [1–3]. Users with
limited resources upload data to the Cloud Service Provider (CSP) for storage. Still,
it means that the user needs to hand over its data management rights to the CSP, an
untrusted entity in real life [4]. Since the CSP may corrupt data for personal gain,
verifying the integrity of the data stored on the CSP is important.

In recent years, personal data integrity audit does not meet the needs of real life,
and shared data integrity audit has become a new hotspot [5–7]. Unlike personal data
audit schemes, group users can share their data in the cloud through data-sharing services,
reducing the burden on users for local data storage. In the shared data scenario, the group
user uploads data to the CSP, and other users within the group can access and download
the data. When the data is shared with multiple users in the group, some issues must
be addressed. For example, group users need to perform joining and exiting operations

1673

1674 J.-X. Liu, H.Huang, Q.-S.Chen and Z.-J. Huang

in shared data, how to achieve group user dynamics is an essential problem. Once the
group user is revoked, he cannot access and download data, and his identity information
becomes invalid. Many researchers have proposed different schemes to solve the above
problems. Some schemes only support data privacy protection but do not support other
attributes [8–17]. Some schemes do not support dynamic shared data updates [18–20],
which is crucial when users frequently update data to meet various application needs. In
addition, validators may be curious about data identity information [21, 22], and we also
need to consider identity privacy protection. So, building a secure and feasible shared
data integrity audit scheme that supports data privacy, identity privacy, data dynamics,
and the group user dynamic update remains an important challenge.

Contribution. In this paper, we propose a new integrity audit scheme for cloud storage
shared data with dynamic user updates, supporting data privacy and user identity privacy
protection. The contribution of our paper can be summed up as the following three points:

(1) We propose a new dynamic multi-tree storage structure, which the CSP maintains
to achieve dynamic data and dynamic group management, effectively improving data
space utilization.

(2) The group administrator maintains an anonymous identity table named IAT in our
scheme. Only the group administrator knows the real identity information of group users,
effectively improving the user’s identity privacy protection.

(3) To protect user data privacy, we encrypt the data-proof information generated
by the CSP to prevent the verifier from obtaining valid user information in the audit
stage. Our scheme has stronger security than constructing linearly correlated data-proof
information.

1.1. Realted work. How to achieve data integrity auditing has always been a hot is-
sue [23]. The most primitive auditing scheme is that the data owner (DO) downloads the
complete data from the CSP and verifies the integrity of the blocks in turn, which brings
enormous communication costs to the DO. The Provable Data Possession (PDP) [24]
scheme only needs to perform sampling verification on blocks, decreasing the computa-
tional overhead of the DO. In the PDP scheme, the DO first divides the data file that
needs to be uploaded into blocks, generates data block tags for each, and stores the data
blocks and data block tags together in the CSP. To verify data integrity, the DO usu-
ally entrustes the third-party auditor (TPA) for validation. The TPA randomly selects
some data block indices to challenge the CSP, and the CSP generates the correct proof
information and sends it to the TPA. The TPA returns the verification result to the DO.
Subsequently, many effective schemes are proposed based on the PDP. Due to the low
computational power of the DO, entrusting a reliable TPA to perform verification tasks
is commonly used in most audit schemes [25–30].

In the group data shared scenarios, group users preprocess and upload their data to the
CSP. Other users in the group can also download and access data from the CSP. However,
the data file for shared data is composed of data from each group of users, and different
block tags are generated by other group users, which makes data integrity verification
under shared data more complex. The existing schemes are focused on verifying per-
sonal data’s integrity and are unsuitable for auditing user-group shared data. Recently,
researchers have designed many new schemes for shared data scenarios. However, there
are still some security issues.

Since the DO does not allow their private data to be leaked to the TPA, the privacy
protection attribute requires them not to obtain user data information. Many schemes
for data privacy protection have been proposed. Initially, Wang et al. [8] selected a
random number as a masking factor to encrypt data-proof information to protect data

Secure Sharing Data Integrity Audit Scheme with Dynamic User Groups in Cloud Storage 1675

privacy, preventing the TPA from being curious about and obtaining the data. Ji et al. [9]
proposed a secure and efficient identity-based cloud storage scheme. The scheme supports
data privacy protection. Shen et al. [10] designed a remote shared data integrity audit
model, which uses a purification program to conceal sensitive data in the shared data.
Still, it requires establishing a safe passage between the user and the purification program.
Xu et al. [11] proposed a privacy-protected shared data integrity audit scheme (PP-CSA)
to address the issue of potential data leakage. Only authorized users can access data.
Although these schemes solve the problem of data privacy protection, they are not well
taken into account in data dynamics schemes.

Yang et al. [18] proposed designing a new cloud data-sharing framework that supports
data privacy protection, dynamic revocation, and user identity traceability but cannot
achieve dynamic data management. Yan et al. [19] proposed an identity-based shared
data integrity audit scheme to realize user identity traceability and prevent group users
from maliciously tampering with data. They add a rights distribution center for effective
user identity management and use data blinding technology to upload encrypted data.
The shared audit scheme proposed by Yan and Gui [20] considers anonymous protection
of the user’s identity, preventing auditors from accessing the relationship between the data
and the user and ensuring the privacy of user identities. However, this scheme cannot
support dynamic operations of data and user groups. In addition, all three of the above
schemes have security issues. Even if the CSP does not store data, it can still respond to
the verification of the TPA.

Although some shared data integrity audit schemes have been proposed to achieve data
privacy protection, they cannot achieve identity privacy protection. Since different users
within the group generate the tags of shared data blocks, validators can determine the
importance of data by looking at how often the data block is modified. Rao et al. [21]
proposed a certificateless shared data audit scheme (CLPPPA), which can realize the data
update and group user revocation. However, it cannot achieve identity privacy protec-
tion. Yang et al. [17] proposed a shared data scheme based on certificateless encryption.
Although this scheme claims to protect user identity, the TPA can obtain the relationship
between data and the user’s public key during the audit process. Therefore, it has yet to
achieve user privacy protection. Using the idea of proxy re-encryption for reference, Yu et
al. [22] proposed to use key sharing among group users to realize dynamic user revocation.
In this way, the auditor can verify the integrity and correctness of the data without know-
ing the user’s identity information. However, this scheme requires users to have a strong
computing power. It also does not support dynamic auditing of the data. Hu et al. [31]
proposed a new network authentication scheme in the Internet of Things environment,
which supports data privacy protection and significantly reduces the damage caused by
key exposure. They also introduced a secure and efficient encryption technology to enable
secure communication over insecure channels. To protect the communication security be-
tween the user and the server, Wu et al. [32] proposed a new enhanced authentication
protocol and proved its security given the shortcomings of previous schemes. Thakur et
al. [33] designed a secure identity authentication scheme, which uses a fuzzy extractor to
protect the user’s identity information, realizes the interaction between the user and the
server, and reduces the calculation and communication overhead of the system.

Users may join or exit shared groups anytime in real life, so supporting dynamic user
operations is crucial. For security reasons, once a group user is revoked or leaves, they can
no longer have rights to access shared data. However, most shared data audit schemes [34,
35] do not involve user revocation. Wang et al. [34] used group signatures to generate block
tags, which prevented verifiers from obtaining user data information and achieved data
privacy protection. However, this scheme does not support user revocation. Subsequently,

1676 J.-X. Liu, H.Huang, Q.-S.Chen and Z.-J. Huang

they proposed using a ring signature to protect data privacy, but this scheme still does not
support group user revocation. Li et al. [35] proposed a secure data integrity audit scheme
for dynamic group users to support truly effective user revocation. This scheme supports
updating data files and revocation of group users, and it can also resist the collusion of
malicious attackers and revocation users. In the scheme proposed by Yu et al. [36], only
authorized personnel can obtain user identity information, and the public audit can be
realized based on protecting privacy. On this basis, the scheme also uses an idea called
asymmetric group key protocol to implement the challenge-audit mechanism. However,
the scheme only discussed this point, and in-depth research on data privacy protection
needs to be conducted. Zhang et al. [37] proposed a new key generation strategy that
can achieve efficient user revocation. When a user is retracted from a group, all the users
who have not been retracted can update their private keys through private key update
technology without reorganizing the user’s identity information, and the audit is still valid.
Although the scheme designed by Zhang et al. achieved user revocation, their proposed
shared data scheme cannot support dynamic data updates. Huang et al. [38] used the
Arithmetic Span Program as the access policy to add indirect undo and ciphertext update
to the scheme and proposed a revocation storage ciphertext policy attribute encryption
algorithm, which can prevent the revoked users from accessing data without authorization.
These schemes support dynamic groups, allowing users to join and leave the user group
at any time, but some problems remain.

1.2. Organization. The rest of this paper is structured as follows. We describe prepa-
rations in section 2. In section 3, we introduce the system model, threat model, and
security objectives. In section 4, we present the notations, the overview, and the specific
scheme. The feasibility and safety of the scheme are analyzed in section 5. In section 6,
we design experiments to evaluate the scheme’s efficiency, and in section 7, we summarize
this paper.

2. Preliminaries.

2.1. Bilinear map. Set G1 and G2 be two multiplicative cyclic groups with the same
big prime order q. g1 and g2 are generators of the group G1, defining e : G1 × G1 → G2

is a bilinear map with the following three properties:
(1) Computability: For any g1, g2 ∈ G1, there is an efficient algorithm that calculates the
value of e(g1, g2).
(2) Bilinearity: For all g1, g2 ∈ G1 and a, b ∈R Z∗

q , e(g1
a, g2

b) = e(g1, g2)
ab.

(3) Nondegeneray: The existence of g1, g2 ∈ G1, e(g1, g2) ̸= 1.

2.2. Difficult problem assumptions. Discrete Logarithm problem(DL): Set G1 is a
multiplicative cyclic group, g as the generator of G1. Given (g, ga), If we don’t know
the value of a ∈ Z∗

q , it’s hard to calculate the specific value of a. For any adversary A,
the probability of A solving the DL problem is negligible and can be expressed by the
following equation (1):

Pr
[
ADL(g, g

a) = a : a
R→ Z∗

q

]
≤ ϵ (1)

2.3. A new dynamic multi-tree storage structure. The binary tree is an essential
type of tree structure. Each non-leaf node can have at most two child nodes. Child nodes
are divided into left and right nodes in a binary tree form. The complete binary tree is a
special kind of binary tree. Researchers use linked lists and tree structures to store data,
and binary tree is one of the storage modes. In data integrity audit schemes, we usually
use the Merkle tree [39] as data storage structures, a complete binary tree type. However,

Secure Sharing Data Integrity Audit Scheme with Dynamic User Groups in Cloud Storage 1677

constructing binary trees does not maximize the use of storage space. In our research, we
use multiple fork trees to store data. Not only that, but we also design the upgrade and
downgrade strategy of multi-tree to improve the efficiency of data queries.

Assuming the stored data has reached 2k, k refers to the number of tree layers. If we
want to add another leaf node to the group, it means that the number of layers of the tree
is increased by one, leading to binary tree storage space being wasted. The emergence of
multi-trees solves the problems of low storage space utilization of binary trees. However, if
the amount of data stored by the multi-tree reaches a certain amount, the query efficiency
decreases.

We design a dynamic multi-tree storage structure to use storage space more and achieve
efficient search. Its leaf nodes store the user’s data, connecting the anonymous identifier
UID of the group of users, and the non-leaf node stores the number of leaf nodes under this
node. In addition, we propose a multi-tree upgrade and demotion strategy to achieve the
dynamic data update. The revoked user changes the corresponding leaf node value, which
will not affect other users’ data distribution in the multi-tree. The following introduces
inserting, querying, and deleting data in dynamic multi-trees.

Data insertion: We use the dynamic multi-tree to achieve data insertion. For example,
in Figure 1, we insert new data n5 into the multi-tree. The parent node corresponding to
the leaf node value increases by 1, from 2 to 3, and the root node value from 4 to 5.
Upgrade strategy: When the data number reaches 2k, where k denotes the number of

Figure 1. Data insertion structure diagram

layers in the dynamic multi-tree, the multi-tree needs to be upgraded, and the number of
layers will increase accordingly. The specific structure is shown in Figure 2. For example,
if the number of data is 8 and the number of layers of the multi-tree is 3, we need to
upgrade the multi-tree, and the number of layers increases by 1 to become the 4-layer
tree.

Figure 2. Upgrade strategy structure diagram

Data queries: When inserting, deleting, and modifying data, we need to find the
location of the data. First, we need to determine whether the value of nodes in layer 2

1678 J.-X. Liu, H.Huang, Q.-S.Chen and Z.-J. Huang

is less than 4. The new data can be inserted if the value is less than 4. We can divide it
into two cases when looking up data. If the data index i ≤ 2k−1, we need to find the ⌈i/2⌉
(Roundup) node in layer 2. For example, if we want to find n3 in Figure 1, we query the
second node in layer 2 and then the leaf node. If the data index i > 2k−1, we only need to
find the

⌈
(i− 2k−1)/2

⌉
(Roundup) node in layer 2 and then the leaf node. For example,

if we want to find n5 in Figure 1, we query the first node in layer 2 and then sequentially
from the leaf nodes.

Data deletion: We use the dynamic multi-tree to delete data. For example, in Figure
3, we delete the data n2 in the multi-tree, and the parent node value corresponding to
the leaf node decreases by 1, from 2 to 1, and the root node’s value from 4 to 3.

Figure 3. Data deletion structure diagram

Demotion strategy: When the data number is reduced to 2k−2 − 1, the dynamic
multi-tree needs to be downgraded, and the number of layers is reduced accordingly. The
specific structure is shown in Figure 4. For example, if the number of data is 8, and the
number of layers of the multi-tree is 4, we want to delete the data n1, n3, n6, n7, n8, the
number of layers is reduced to 3.

Figure 4. Demotion strategy structure diagram

2.4. Identity anonymity table. To realize the privacy protection of group user identity,
the group administrator stores the real user identifier RID and the anonymous user
identifier UID for each authorized group user in the Identity Anonymity Table (IAT),
where UID = H(RID). The RID is used to apply for user private keys from the KGC.
The CSP uses the UID to store user information related to data, which can prevent
the CSP and the TPA from obtaining valid user information in the audit process. In
addition, the group administrator also stores the private key sk of group users in IAT,
which is convenient for later computing data tags. The specific structure of IAT is shown
in Table 1.

3. System model and security goals.

Secure Sharing Data Integrity Audit Scheme with Dynamic User Groups in Cloud Storage 1679

Table 1. Identity anonymity table

No Real user identifier Anonymous user identifier The private key of the group user
1 RID1 UID1 sk1
2 RID2 UID2 sk2
3 RID3 UID3 sk3
· · · · · · · · · · · ·
j RIDj UIDj skj

3.1. System model. The system comprises five entities: Key Generation Center, Cloud
Service Provider, Group Administrator, Group User, and Third-Party Auditor. The
system model diagram is shown in Figure 5.

• Key Generation Center (KGC): The KGC is a trusted authority responsible for
generating security parameters and the user’s private key for the system. The user’s
private key is distributed to the corresponding group user and administrator through
the secure channel.

• Cloud Service Provider (CSP): The CSP is untrusted. He is responsible for storing
data uploaded by group users. He has vast data storage space and computing power
to generate proof information. However, he may have needed to store complete data
and be curious about users’ identities.

• Group Administrator (GM): The GM is a trusted entity that manages access rights
for group users and maintains the anonymous table of group user identities.

• Group User: Group users are all users who share data within a group. They are
trusted entities. Each group user can be a data uploader. They are responsible for
uploading the data information to the CSP for storage, and they also are authorized
to download the data information of other group users from the CSP.

• Third-Party Auditor (TPA): The TPA is a semi-trusted entity. It may be an in-
stitution or an independent individual. The GM commissions him to conduct an
audit task, and he honestly verifies the correctness of the data-proof information.
However, he may be curious about the identity information of the group users. In
addition, he may attempt to obtain valid information about the data from the proof
information.

3.2. Threat model. The CSP is not credible, and he may lose or damage data, which
human operations or natural disasters cause. Infection of a system or device with a virus
may also cause data corruption. To conceal the fact that the user’s data is corrupted, the
CSP can launch the following attacks:

• Forgery attacks. The CSP may use other data blocks and tags to forge proof infor-
mation to pass the verifier’s verification.

• Replace attacks. The CSP may use previously generated proof information to pass
the verification.

• Collusive attacks. The CSP may attempt to collude with the TPA to pass the
verification. The CSP may also attempt to obtain user identity information.

The TPA is not trustworthy. During the integrity audit process of third-party audits,
the TPA may obtain valid information from the proof information and infer the identity
information of the group users.

1680 J.-X. Liu, H.Huang, Q.-S.Chen and Z.-J. Huang

Figure 5. System model diagram

In cloud data sharing, unauthorized users may illegally obtain or obtain data beyond
their authority.

3.3. Security goals.

• Data integrity: If the CSP does not store correct and complete data, the proof
information he generates cannot pass the audit of the verifier.

• Data privacy protection: Unauthorized users and the TPA cannot obtain outsourced
data from the CSP.

• Group user dynamics: Both group user registration and revocation should be imple-
mented securely and effectively.

• Identity privacy protection: Except for the GM, nobody can obtain the real identity
information of group users.

• Non-interactivity: Non-interactivity reduces the communication overhead between
the TPA and the CSP. The CSP can autonomously generate proof information based
on public information and the number of challenge blocks.

• Dynamic shared data: The shared data can be added, deleted, modified, and checked
efficiently.

4. The proposed scheme.

4.1. Notation. The notation description of this paper is detailed in Table 2.

4.2. Overview. The system process diagram is shown in Figure 6. In the setup phase,
group users first send an application to the GM to join the group, which generates the real
user identifier RID and anonymous user identifier UID for authorized group users. The

Secure Sharing Data Integrity Audit Scheme with Dynamic User Groups in Cloud Storage 1681

Table 2. Notations description

Notation Description
λ A security parameter
q A big prime order

G1 and G2 Two multiplicative cycilc groups of same order q
g The generating element of group G1

e A bilinear mapping
H and h Two different hash functions

ϕ A pseudo-random function
RID Real user identifier
UID Anonymous user identifier
Fj Group user uj uploads the file
mji One of the data blocks that make up the file Fj

σ
′
ji The GM generates the partial block tag of the data block mji

σji The group user generates the entire block tag of the data block mji

θj Aggregation of data tags for data file Fj

c The number of challenge blocks
τ Public information for generating challenge information
P Proof information

GM sends the RID and UID to group users and sends the UID to the CSP for storage.
Then, the group user sends the RID to the KGC for registration. The KGC generates the
corresponding private key according to the RID and sends it to the corresponding group
user and the GM through the secret passage. In addition, the KGC generates system
public parameters params and master private key msk and sends msk to the GM for
saving. When group users want to upload data, they first send the RID and data file
Fj to the GM. The GM first checks the validity of the RID in the IAT, and the GM
generates partial tags based on data block mji and sends them to the group user. Next,
the group user uses the private key to generate a complete block tag and then sends the
anonymous user identifier, the data, and the block tags to the CSP for storage.

In the tag verification stage, the CSP first checks whether the Block-Id tree has the
UID. If so, he further verifies the correctness of the data block tags. Otherwise, he
refuses to receive the data and returns it to the user.

In the audit stage, when other users want to download outsourced data from the CSP,
they first apply to the GM. After the application is approved, the GM entrusts the TPA
to conduct an audit. The CSP generates proof information based on public information
and the number of blocks sent by the GM and sends it to the TPA for verification. After
verification, the TPA informs the GM of the audit results. If the data is complete, the
user applies to the CSP to download the data. The CSP checks whether the Block-Id tree
has the user’s identity information, and if so, the CSP sends the data to the user.

During the group users’ registration and revocation phase, new users apply to the GM
to join the group. They obtain the real user identifier RID and the anonymous user
identifier UID from the GM, and the GM sends the UID to the CSP for saving. Next,
the new user registers in the KGC using RID, and the KGC generates the private key
to send to the authorized user. Suppose a user wants to exit the group. Firstly, the GM
deletes the user’s identity information in the IAT and entrusts the group user who has
yet to be revoked to generate a new tag for the data block and send the new tag and the
UID to the CSP. After receiving the information, the CSP generates a tag aggregation

1682 J.-X. Liu, H.Huang, Q.-S.Chen and Z.-J. Huang

for data files based on block tags. Then, the CSP modifies the block tag aggregation
and the user’s anonymous identifier in the Block-Id tree. Therefore, revoked users cannot
access shared data.

Figure 6. System process diagram

4.3. The specific scheme. Setup phase: The setup phase includes the key generation
algorithm, the tag generation algorithm, and the tag verification algorithm. Suppose there
are U users in the shared user group. Each group user is represented by uj (1 ≤ j ≤ U),
the group user that is also the data uploader. The real identifier of the group user is
RIDj, and the anonymous identifier is UIDj, where UIDj = H(RIDj). At this stage,
the KGC initializes the system parameters params and the master private key msk. Then
the KGC generates their private keys skj based on the group users’ real identifiers RIDj.
The KGC transmits the group user’s private key skj to the corresponding group user and
the GM over a secure channel. Group users send data insert requests {RIDj, Fj} to the
GM. The GM splits the file Fj into data blocks mji and generates partial tags σ

′
ji based

on the data blocks. Group users use their private keys skj to generate entire data block
tags σji, then send {mji, σji, UIDj} to the CSP for storage. The CSP verifies the user’s
identifier UIDj and block tags σji. After the verification is passed, the CSP calculates
the tag aggregation θj for data files based on block tags. Then the CSP stores mji and
σji, and he stores {θj, UIDj} in the Block-Id tree. Otherwise, he returns the data to the
user.

• KeyGen(1λ) → (params,msk). The KGC runs the key generation algorithm. The
KGC selects two multiplicative cyclic groups G1 and G2 with the same big prime
order q, a bilinear map e : G1 × G1 → G2, two safe hash functions H : {0, 1} →
G1, h : {0, 1} → Zq, a pseudo-random function ϕ : {0, 1}∗ → [1, n]. Then the
KGC randomly selects x, x ∈ Zq, and sets the primary private key msk = x and

Secure Sharing Data Integrity Audit Scheme with Dynamic User Groups in Cloud Storage 1683

the primary public key mpk = gx. Finally, the KGC sets the system parameters
params = (q, g,G1, G2, e,H, h, ϕ,mpk) to the public and sends the master key msk
to the GM.

• Extract(RIDj,msk) → skj. The KGC runs the user’s private key generation algo-
rithm. Upon receiving the real identifier RIDj from the group user uj(1 ≤ j ≤ U),
the KGC calculates the private key skj = H(RIDj)

x and sends it to the group user
and the GM through a secure passage.

• TagGen (Fj, skj) → Φj. The group users run the algorithm. Fj refers to the data
file composed of n data blocks mji, Fj = {mji}1≤i≤n, where mji ∈ G1. If the

group user uj wants to upload a data file Fj, he needs to send {RIDj, Fj} to
the GM. The GM first looks for the corresponding private key in IAT and then
calculates sk

′
j = x − skj. Then the GM divides the data file Fj into n blocks

mji, where 1 ≤ i ≤ n, generates partial data tags σ
′
ji = (H (RIDj) · mji)

sk
′
j and

sends them to the group user. The group user first generates an entire data tag
σji = σ

′
ji · (H (RIDj) · mji)

skj = (H (RIDj) · mji)
x based on partial tags gener-

ated by the GM, and the block tag set is Φj = {σji}1≤i≤n. The group user sends

{Fj,Φj, UIDj} to the CSP for storage.

• TagV erify (Fj,Φj, params, UIDj) → {0, 1}. The CSP runs the tag verification
algorithm. The CSP receives the data upload request from the user. He first looks
for the validity of the UIDj in the Block-Id tree and then verifies the correctness of
the data block tags according to equation (2).

e(σji, g) = e(H(RIDj) ·mji,mpk) (2)

If the equation does not hold, it is rejected. Otherwise, the CSP first storesmji and
σji. Then the CSP calculates the tag aggregation θj, where θj = σj1×σj2× · · ·×σji

and stores θj in the Block-Id tree.

Audit phase: The audit stage includes the proof information generation algorithm and
the proof information verification algorithm. The audit phase is performed in two cases:
the GM commissions the TPA to conduct regular audits, and the GM commissions the
TPA to audit before each data download. At this stage, the CSP periodically generates
challenge information based on the public information τ in the blockchain and the number
of challenge blocks c and then sends proof information to the TPA for integrity verification.
The TPA verifies the correctness of the proof information and returns the verification
result to the GM.

• ProofGen (Fj,Φj, params, τ, c) → P . The CSP runs the ProofGen algorithm. τ
refers to the public information in the blockchain, including the current block header
information. τ cannot be known and modified by anyone in advance, which will
change over time with each audit. The CSP gets the number of challenge blocks c
from the GM, where 1 ≤ c ≤ n. The CSP generates challenge information based
on τ and c. For i ∈ [1, c], the CSP calculates the challenge block index I = {sji}
and random value {vji}1≤i≤c, where sji = ϕ (τ ||ji), vji = h (τ ||ji), the CSP cal-
culates µ =

∏
iϵI m

vji
ji and σ =

∏
iϵI σ

vji
ji . Finally, the CSP sends the information

P = {µ, σ, τ} as proof to the TPA.

1684 J.-X. Liu, H.Huang, Q.-S.Chen and Z.-J. Huang

• ProofV erify (P, params) → {0, 1}. The TPA performs the validation algorithm,
which first verifies the validity of the public information τ , then generates the chal-
lenge information according to τ and c. Finally, verify the correctness of data tags
according to equation (3).

e(σ, g) = e(µ ·
sjc∏

i=sj1

(H(RIDj))
vji ,mpk) (3)

Group user dynamic phase: The group user dynamic phase includes group users’
registration and revocation algorithms. At this stage, authorized group users perform
joining or exiting operations. The following is an introduction to two operations.

• EnrollMen (uj+1). The GM runs the algorithm. If the new group user uj+1 wants
to join the group, apply to the GM and obtain the corresponding user identifier
information. The GM stores the RIDj and UIDj in the IAT and sends UIDj to the
CSP for later verification. The CSP updates the tree accordingly. For example, if a
new user u5 wants to join the group, he first applies to the GM. Then he obtains the
real identifier RID5 and the anonymous identifier UID5, and the GM sends UID5

to the CSP. After receiving the information, the CSP inserts UID5 into the Block-Id
tree, as shown in Figure 7. When the number of users joining the group reaches 2k,
where k represents the number of layers of the multi-tree, the dynamic multi-tree is
upgraded.

Figure 7. Register user structure diagram

• RevokeMen (uj). The GM runs the algorithm. If the group user uj wants to be
withdrawn or revoked, the GM first deletes the user’s identifier in the IAT. Then
GM selects an unrevoked group user to regenerate block tags σ

′′
ji of the revoked user’s

data. Finally, the GM sends the revoked user identifier, the newly generated data
block tags, and the anonymous identifier of the user who regenerated the tags to the
CSP. The CSP updates the Block-Id tree based on the information initiated by the
GM. For example, suppose we want to revoke a group user u2. In that case, the GM
downloads the revoked user’s data from the CSP and delegates the non-revoked user
u1 to regenerate the tag σ

′′
2i = (H (RID1) · m2i)

x for the revoked user’s data. The
GM sends the data block m2i, generated the data tag σ

′′
2i and UID1 to the CSP for

storage. After receiving the information, the CSP replaces θ2 with θ
′′
2 in the Block-Id

tree, where θ
′′
2 = σ

′′
21 × σ

′′
22 × · · · × σ

′′
2i, as shown in Figure 8. The dynamic multi-tree

is demoted if the number of unrevoked group users is reduced to 2k−2 − 1.

Dynamic data update phase: The dynamic data update phase includes data insertion,
modification, and deletion. In our scheme, the CSP stores the data tags aggregation and
the user’s anonymous identifier in the Block-Id tree. Here, we use tag aggregation changes
to represent updates to the data. Adding, deleting, and modifying data is essentially
updating the tag aggregation. For example, authorized user u2 wants to add a data

Secure Sharing Data Integrity Audit Scheme with Dynamic User Groups in Cloud Storage 1685

Figure 8. Revoke user structure diagram

block, delete a data block, and modify a data block are all updates the tag aggregation
θ2 to θ∗2, as shown in Figure 9.

• Data tag insertion. Given Fj = {mji}1≤i≤n, let’s assume that the group user uj

needs to insert a new block mj(n+1), the GM generates the partial tag σ
′

j(n+1) =

(H (RIDj)·mj(n+1))
sk

′
j , and the group user generates an entire tag based σj(n+1) on it.

Then the group user sends the data insertion request
{
RIDj, jn, I,mj(n+1), σj(n+1)

}
to the GM, I represent the operation type as data tag insertion. The GM first
verifies the RIDj of validity and sends

{
i, I,mj(n+1), σj(n+1)

}
to the CSP. After

the CSP receives the information, it proves the correctness of the generated data
tags, regenerates aggregation tags θj and then updates the Block-Id tree, where
θ∗j = σj1×σj2×· · ·×σjn×σj(n+1). For example, for the authorized user u2, u2 wants
to insert the new block m25, the CSP first stores the data m25 and the data tag σ25,
then the CSP updates the Block-Id tree based on the information, updates the tag
aggregation θ∗2 in the Block-Id tree, where θ∗2 = σ21 × σ22 × · · · × σ24 × σ25.

• Data tag modification. Given Fj = {mji}1≤i≤n, let’s assume that the group user
uj wants m

∗
jn to replace the block mjn, the group user first generates the block tag

σ∗
jn = (H (RIDj) ·m∗

jn)
x, then the group user uj sends

{
RIDj, jn,M,m∗

jn, σ
∗
jn

}
to

the GM, where M represents the operation type as data tag modification. The GM
verifies the validity before sending the modification request

{
ji,M,m∗

jn, σ
∗
jn

}
to the

CSP. After receiving the modification request, the CSP replaces the stored block
mjn with m∗

jn and the stored tag σjn with σ∗
jn, then updates the Block-Id tree to

replace θj with θ∗j , where θ∗j = σj1 × σj2 × · · · × σ∗
jn. For example, if the authorized

group user u2 wants to modify the data m22, the CSP changes m22 to m∗
22 and σ22 to

σ∗
22, the CSP replaces θ2 with θ∗2 in the Block-Id tree, where θ∗2 = σ21×σ∗

22×· · ·×σ2n.

• Data tag deletion. Given Fj = {mji}1≤i≤n, let’s assume that the group user uj wants

to delete the data mjn, uj first sends the request {RIDj, jn,D} to the GM, where
D indicates that the operation type is data tag deletion. Then, the GM queries
whether the block belongs to the user. If not, reject the delete request. Otherwise,
the GM sends requests {jn,D} to the CSP. After the CSP receives the message, he
deletes the block mjn, σjn and regenerates tags aggregation θ∗j in the Block-Id tree,
where θ∗j = σj1 × σj2 × · · · × σj(n−1). For example, if the authorized group user u2

wants to delete data m22, the CSP deletes m22, the data tag σ22 and regenerate tags
aggregation θ∗2 in the Block-Id tree, where θ∗2 = σ21 × σ23 × · · · × σ2i.

1686 J.-X. Liu, H.Huang, Q.-S.Chen and Z.-J. Huang

Figure 9. Data tags aggregation update structure diagram

5. Security analysis. We analyze the scheme’s security from six aspects: audit correct-
ness, audit reliability, identity privacy protection, data privacy protection, non-interactivity,
and dynamic shared data.

5.1. Audit correctness. If the cloud service provider is honest and trusted, storing all
the correct data truthfully, the proof information generated by the CSP can pass the
verification of the TPA. According to the basic properties of bilinear mapping, the TPA
can derive the right-hand equation from the left-hand equation to verify data integrity.

e(σ, g) = e(

sjc∏
i=sj1

(H(RIDj) ·mji)
x·vji , g)

= e(

sjc∏
i=sj1

(H(RIDj)
vji ·mji

vji), gx)

= e(

sjc∏
i=sj1

(H(RIDj)
vji) ·mvji

ji ,mpk)

= e(µ ·
sjc∏

i=sj1

(H(RIDj))
vji ,mpk)

5.2. Audit reliability. Since the DL problem in the group G1 is relatively difficult to
solve, the malicious CSP can not pass the audit with a negligible probability, except that
the CSP has correct data blocks and generates effective proof information. We assume that
the data block mji is to be verified, and the CSP generates proof information P = {µ, σ}
to the TPA for verification. If P is valid information, it can be verified by the TPA, which
means that equation (3) holds. If the CSP uses tampered data blocks m

′
ji to generate

data tags as σ
′
ji =

(
H

(
RID

′
j

)
·m′

ji

)x
. The proof information P =

{
µ

′
, σ

′}
, where µ

′
=∏

i∈I m
′
ji

vji
, σ

′
=

∏
i∈I σ

′
ji

vji
, assuming the CSP sets σji =

(
σ

′
ji

)β
, where β ∈ Zq. We

can calculate (H (RIDj) ·mji)
x =

(
H

(
RID

′
j

)
·m′

ji

)x·β
, H(RIDj) = (H(RID

′
j))

β and

mji = (m
′
ji)

β. Based on the DL problem, it is difficult to calculate the random number β

when the CSP knows the H(RIDj) and H(RID
′
j). It means that it is difficult for the CSP

to find a β satisfy mji = (m
′
ji)

β. Therefore, P =
{
µ

′
, σ

′}
cannot be verified through the

TPA, and the CSP cannot perform substitution attacks. Therefore, this theorem holds.

5.3. Identity privacy protection. Identity privacy protection means that the CSP and
TPA cannot obtain the user’s identity information by any means. In the previous scheme,
which did not consider protecting user identity information, the CSP and TPA can obtain

Secure Sharing Data Integrity Audit Scheme with Dynamic User Groups in Cloud Storage 1687

user identity information from the audit process. So, in our scheme, we designed an
anonymous identity table to make the user’s identity anonymous. The GM maintains the
IAT to protect the user’s real identity. When generating tags, the GM takes advantage
of the underivable nature of one-way functions to hide the user’s valid identifier, thus
better protecting the user’s real identity privacy, where UID = H(RID). Specifically,
on the one hand, in the storage phase, the CSP can only know the anonymous user
identifier UID. Since the hash function H is a one-way safe function, the RID cannot
be recovered from H(RID). Also, the TPA can only obtain the UID when verifying the
proof information in the audit process, and the TPA cannot infer the real value RID from
the proof information generated by the CSP. Therefore, our scheme realizes the privacy
protection of identity.

5.4. Data privacy protection. In our scheme, data privacy refers to the inability of
the TPA to obtain data information. When the CSP generates data proof in the audit
process, he re-aggregates and generates the µ based on the data, where µ =

∏
i∈I mji

vji ,
µ rather than linear combination, thus ensuring the privacy of the data. The proof
information generated by the CSP cannot disclose the data information of the DO. In
our scheme, the CSP sends P = {µ, σ, τ} to the TPA, which µ includes data blocks and
σ includes data tags. The attacker is unable to obtain the value of the block tag σji

from σ, where σ =
∏

i∈I σji
vji . Even if σji is obtained, it cannot be recovered mji from

σji = (H (RIDj) ·mji)
x, because it does not know the value of x, which is equivalent to

solving the DL problem. Therefore, the attacker cannot obtain data information from the
proof information. In summary, this scheme meets the nature of privacy protection.

5.5. Non-interactivity. In our scheme, the group users do not need to send audit chal-
lenge information to the CSP. The group administrator sends the number of challenge
data blocks to the CSP, and the CSP can independently obtain public information from
the blockchain and generate proof information. There is no data interaction between CSP
and group users, which can reduce the communication overhead.

5.6. Dynamic shared data. In our scheme, on the one hand, we design a dynamic multi-
tree to realize the dynamic nature of shared data, including the insertion, modification,
and deletion of data tags. On the other hand, we also propose an upgrade and downgrade
strategy to solve the problem of low search efficiency caused by multi-tree compared with
the binary tree. In addition, we also cite the corresponding examples in the specific
program to describe.

6. Efficiency evaluation.

6.1. Theoretical analysis. We analyze the main computational overhead generated in
the scheme and compare it with the scheme proposed by Yan et al. [19]. The computa-
tional cost is mainly from bilinear pairing, exponentiation, and multiplication operations,
while addition, subtraction, and hash operations can be ignored. We mainly calculate the
computational cost of the following three stages: the TagGen stage mainly includes the
operation of generating tags; The TagVerify stage mainly involves verifying the operation
of equation (2); The main overhead of the ProofGen phase comes from computation µ
and σ; The ProofVerify stage mainly involves verifying the operation of equation (3).
Tmul represents a multiplication operation; Texp denotes a power operation; Tp denotes a
bilinear map operation; n denotes the number of data blocks; c denotes the number of
challenge blocks. The main computational expenses for each specific stage are shown in
Table 3.

1688 J.-X. Liu, H.Huang, Q.-S.Chen and Z.-J. Huang

In addition, to prove the feasibility of our scheme, we compared it with existing shared
data audit schemes from different perspectives, and the results are shown in Table 4.
Where “✓” means the scheme achieves the attribute, and “×” does not. Our scheme
meets all the above attributes and has better security and feasibility.

Table 3. Computational cost in each phase

Yan et al.’s scheme [19] Our Scheme
TagGen Phase nTmul + 2nTexp nTmul + nTexp

ProofGen Phase cTmul + cTexp 2cTexp

ProofVerify Phase 2Tp + Tmul + (c+ 1)Texp 2Tp + Tmul + cTexp

Table 4. Comparison of scheme properties

Yang et al.’s Yan et al.’s Yan and Gui’s Rao et al.’s Our scheme
scheme [18] scheme [19] scheme [20] scheme [21]

Public auditing × × ✓ ✓ ✓
Identity privacy protection ✓ ✓ ✓ × ✓
Data privacy protection ✓ ✓ ✓ ✓ ✓

Data dynamics × × × ✓ ✓
Group user dynamics ✓ ✓ × ✓ ✓

6.2. Experimental analysis. Due to our scheme’s support for dynamic data manipu-
lation, we compared the memory space of the newly proposed multi-tree model with the
previous complete binary tree storage model under different data numbers. As shown in
Figure 10, the horizontal axis denotes different numbers of data tag aggregation, and the
vertical axis denotes the corresponding memory space for different numbers of data tag
aggregation. In a 32-bit processor, the pointers of memory space occupy 4 bytes. Non-leaf
nodes store the denominator of leaf nodes under that node, which are 4 bytes. Leaf nodes
store data tag aggregation, which is 16 bytes.

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
e
m

o
ry

 s
p
a
ce

 (
b
yt

e
)

Number of data tags aggregation

Binary tree Multi- tree

Figure 10. Comparison of memory space between binary trees and multi-
trees with different numbers of data tags aggregation

To calculate the cost of each stage time in the scheme. Our experiment is running
under the Windows 11 operating system. We implemented our experiment using Java

Secure Sharing Data Integrity Audit Scheme with Dynamic User Groups in Cloud Storage 1689

language, placing the experimental code on the 16GB RAM, AMD Ryzen 7 6800H with
Radeon Graphics experimental platform, and running it on IntelliJ IDEA 2022.1.3 using
jdk-8u221-windows-64bit.

Firstly, we designed an experiment to evaluate the performance of generating tags
in our scheme. In this experiment, we generate tags for 0 to 10000 data blocks. The
computational overhead of generating tags is proportional to the number of data blocks.
In addition to calculating the computational overhead generated tags in our scheme,
we also designed a comparative experiment of the tag algorithm, and the experimental
results are shown in Figure 11. The experimental results indicate that our scheme has
less computation overhead in tag generation than Yan et al. [19].

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000

T
a
g
s

g
e
n
e
ra

ti
o
n
 t
im

e
(s

)

The number of data blocks

Yan et.al's scheme Our scheme

Figure 11. Tag generation time cost

The second experiment evaluates the efficiency of generating and verifying proof infor-
mation. The experiment compared the time cost of generating proof information between
Yan et al.’s scheme and our proposed scheme for different challenge block numbers. As
shown in Figure 12, the horizontal axis represents the number of challenge blocks, rang-
ing from 0 to 1000, and the vertical axis represents the time cost of generating proof
information. Although our scheme has a larger computational overhead in generating
proof information than the scheme proposed by Yan et al., our scheme is more secure. In
addition, we also designed an experiment to compare the computational cost of verifying
proof information between our scheme and the scheme proposed by Yan et al., as shown
in Figure 13. The computational overhead of these two algorithms is proportional to the
number of challenge blocks. Our time cost during the validation phase is the same as Yan
et al..

Finally, on the whole, the computational overhead of our scheme is lower than Yan
et al.’s. Specifically, we have reduced group users’ workload generating tags and shifted
more work from the DO to the CSP to improve computational efficiency. The CSP has
enormous computing power, so our scheme is feasible.

7. Conclusion. This paper proposes a shared data integrity audit scheme supporting
group user and data dynamics. We construct a dynamic multi-tree storage mode better
to achieve the group users and data dynamics. The identity anonymous table is designed
to protect the user’s identity information. We encrypt the certification information during
the audit process to prevent auditors from obtaining user information. Our scheme can
meet the security requirements for good cloud-shared data. The experimental results
indicate that this scheme has high security and feasibility. Although our scheme solves

1690 J.-X. Liu, H.Huang, Q.-S.Chen and Z.-J. Huang

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000

C
o
m

p
u
ta

ti
o
n
 t
im

e
(m

s)

The number of challenge blocks

Yan et al's scheme Our scheme

Figure 12. Proof information generation time cost

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

V
e
ri
fy

 t
im

e
(m

s)

The number of challenge blocks

Yan et al's scheme Our scheme

Figure 13. Verify time cost

the privacy security of data and the privacy protection of identity, we need to consider
that there may be some malicious behaviors of group users and administrators. In the
future, we will focus on how to ensure the credibility of group users.

Acknowledgment. This work is supported by the National Social Science Fund of
China (No.21XTQ015), Fujian Provincial Natural Science Foundation of China (Nos.
2023J01920, 2020J01905, 2020J01814), and the presidential research fund of Minnan Nor-
mal University (No. KJ18024).

REFERENCES

[1] M. Ali, R. Dhamotharan, E. Khan, S. U. Khan, A. V. Vasilakos, K. Li, and A. Y. Zomaya, “Sedasc:
secure data sharing in clouds,” IEEE Systems Journal, vol. 11, no. 2, pp. 395–404, 2015.

[2] P. Yang, N. Xiong, and J. Ren, “Data security and privacy protection for cloud storage: A survey,”
IEEE Access, vol. 8, pp. 131 723–131 740, 2020.

[3] H. Wang, H. Qin, M. Zhao, X. Wei, H. Shen, and W. Susilo, “Blockchain-based fair payment smart
contract for public cloud storage auditing,” Information Sciences, vol. 519, pp. 348–362, 2020.

[4] P. Sharma, R. Jindal, and M. D. Borah, “Blockchain technology for cloud storage: A systematic
literature review,” ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–32, 2020.

Secure Sharing Data Integrity Audit Scheme with Dynamic User Groups in Cloud Storage 1691

[5] D. Thilakanathan, S. Chen, S. Nepal, and R. A. Calvo, “Secure data sharing in the cloud,” in
Security, Privacy and Trust in Cloud Systems. Springer, 2013, pp. 45–72.

[6] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud storage as the infrastructure of cloud computing,”
in 2010 International Conference on Intelligent Computing and Cognitive Informatics. IEEE, 2010,
pp. 380–383.

[7] P. M. Reddy, S. Manjula, and K. Venugopal, “Secure data sharing in cloud computing: a compre-
hensive review,” International Journal of Computer (IJC), vol. 25, no. 1, pp. 80–115, 2017.

[8] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public auditing for secure
cloud storage,” IEEE Transactions on Computers, vol. 62, no. 2, pp. 362–375, 2011.

[9] Y. Ji, B. Shao, J. Chang, and G. Bian, “Flexible identity-based remote data integrity checking for
cloud storage with privacy preserving property,” Cluster Computing, pp. 1–13, 2022.

[10] W. Shen, J. Qin, J. Yu, R. Hao, and J. Hu, “Enabling identity-based integrity auditing and data shar-
ing with sensitive information hiding for secure cloud storage,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 2, pp. 331–346, 2018.

[11] Y. Xu, L. Ding, J. Cui, H. Zhong, and J. Yu, “Pp-csa: A privacy-preserving cloud storage auditing
scheme for data sharing,” IEEE Systems Journal, vol. 15, no. 3, pp. 3730–3739, 2020.

[12] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public auditing for shared data in the cloud,”
IEEE Transactions on Cloud Computing, vol. 2, no. 1, pp. 43–56, 2014.

[13] Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote data integrity checking protocol with
data dynamics and public verifiability,” IEEE Transactions on Knowledge and Data Engineering,
vol. 23, no. 9, pp. 1432–1437, 2011.

[14] J. Li, L. Zhang, J. K. Liu, H. Qian, and Z. Dong, “Privacy-preserving public auditing protocol for
low-performance end devices in cloud,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 11, pp. 2572–2583, 2016.

[15] A. Fu, S. Yu, Y. Zhang, H. Wang, and C. Huang, “Npp: A new privacy-aware public auditing scheme
for cloud data sharing with group users,” IEEE Transactions on Big Data, vol. 8, no. 1, pp. 14–24,
2017.

[16] J. Xue, C. Xu, J. Zhao, and J. Ma, “Identity-based public auditing for cloud storage systems against
malicious auditors via blockchain,” Science China Information Sciences, vol. 62, pp. 1–16, 2019.

[17] J. R. Gudeme, S. Pasupuleti, and R. Kandukuri, “Certificateless privacy preserving public auditing
for dynamic shared data with group user revocation in cloud storage,” Journal of Parallel and
Distributed Computing, vol. 156, pp. 163–175, 2021.

[18] G. Yang, J. Yu, W. Shen, Q. Su, Z. Fu, and R. Hao, “Enabling public auditing for shared data in
cloud storage supporting identity privacy and traceability,” Journal of Systems and Software, vol.
113, pp. 130–139, 2016.

[19] Y. X. Yan, L. Wu, W. Y. Xu, H. Wang, Z. M. Liu et al., “Integrity audit of shared cloud data with
identity tracking,” Security and Communication Networks, vol. 2019, 2019.

[20] H. Yan and W. Gui, “Efficient identity-based public integrity auditing of shared data in cloud storage
with user privacy preserving,” IEEE Access, vol. 9, pp. 45 822–45 831, 2021.

[21] L. Rao, H. Zhang, and T. Tu, “Dynamic outsourced auditing services for cloud storage based on
batch-leaves-authenticated merkle hash tree,” IEEE Transactions on Services Computing, vol. 13,
no. 3, pp. 451–463, 2017.

[22] Y. Yu, Y. Mu, J. Ni, J. Deng, and K. Huang, “Identity privacy-preserving public auditing with
dynamic group for secure mobile cloud storage,” in Network and System Security: 8th International
Conference, NSS 2014, Xi’an, China, October 15-17, 2014, Proceedings 8. Springer, 2014, pp.
28–40.

[23] S. Jones, A. Ball et al., “The data audit framework: A first step in the data management challenge,”
International Journal of Digital Curation, vol. 3, no. 2, pp. 112–120, 2008.

[24] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable
data possession at untrusted stores,” in Proceedings of the 14th ACM Conference on Computer and
Communications Security, 2007, pp. 598–609.

[25] H. Wang, D. He, and S. Tang, “Identity-based proxy-oriented data uploading and remote data in-
tegrity checking in public cloud,” IEEE Transactions on Information Forensics and Security, vol. 11,
no. 6, pp. 1165–1176, 2016.

[26] J. Li, H. Yan, and Y. Zhang, “Identity-based privacy preserving remote data integrity checking for
cloud storage,” IEEE Systems Journal, vol. 15, no. 1, pp. 577–585, 2020.

[27] G. Bian, R. Zhang, and B. Shao, “Identity-based privacy preserving remote data integrity checking
with a designated verifier,” IEEE Access, vol. 10, pp. 40 556–40 570, 2022.

1692 J.-X. Liu, H.Huang, Q.-S.Chen and Z.-J. Huang

[28] A. Barsoum and A. Hasan, “Enabling dynamic data and indirect mutual trust for cloud computing
storage systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 12, pp. 2375–
2385, 2012.

[29] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic provable data possession,”
ACM Transactions on Information and System Security (TISSEC), vol. 17, no. 4, pp. 1–29, 2015.

[30] Y. Zhu, G.-J. Ahn, H. Hu, S. S. Yau, H. G. An, and C.-J. Hu, “Dynamic audit services for outsourced
storages in clouds,” IEEE Transactions on Services Computing, vol. 6, no. 2, pp. 227–238, 2011.

[31] H. Xiong, Q. Mei, Y. Zhao, L. Peng, and H. Zhang, “Scalable and forward secure network attestation
with privacy-preserving in cloud-assisted internet of things,” IEEE Sensors Journal, vol. 19, no. 18,
pp. 8317–8331, 2019.

[32] T.-Y. Wu, F. Kong, Q. Meng, S. Kumari, and C.-M. Chen, “Rotating behind security: an en-
hanced authentication protocol for iot-enabled devices in distributed cloud computing architecture,”
EURASIP Journal on Wireless Communications and Networking, vol. 2023, no. 1, p. 36, 2023.

[33] G. Thakur, P. Kumar, C.-M. Chen, A. V. Vasilakos, S. Prajapat et al., “A robust privacy-preserving
ecc-based three-factor authentication scheme for metaverse environment,” Computer Communica-
tions, vol. 211, pp. 271–285, 2023.

[34] B. Wang, B. Li, and H. Li, “Knox: privacy-preserving auditing for shared data with large groups in
the cloud,” in Applied Cryptography and Network Security: 10th International Conference, ACNS
2012, Singapore, June 26-29, 2012. Proceedings 10. Springer, 2012, pp. 507–525.

[35] Y. Li, Y. Li, K. Zhang, and Y. Ding, “Public integrity auditing for dynamic group cooperation files
with efficient user revocation,” Computer Standards & Interfaces, vol. 83, p. 103641, 2023.

[36] Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo, Y. Dai, and G. Min, “Identity-based remote
data integrity checking with perfect data privacy preserving for cloud storage,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 4, pp. 767–778, 2016.

[37] Y. Zhang, J. Yu, R. Hao, C. Wang, and K. Ren, “Enabling efficient user revocation in identity-
based cloud storage auditing for shared big data,” IEEE Transactions on Dependable and Secure
Computing, vol. 17, no. 3, pp. 608–619, 2018.

[38] X. Huang, H. Xiong, J. Chen, and M. Yang, “Efficient revocable storage attribute-based encryption
with arithmetic span programs in cloud-assisted internet of things,” IEEE Transactions on Cloud
Computing, vol. 11, no. 2, pp. 1273–1285, 2023.

[39] M. Szydlo, “Merkle tree traversal in log space and time,” in Advances in Cryptology-EUROCRYPT
2004: International Conference on the Theory and Applications of Cryptographic Techniques, Inter-
laken, Switzerland, May 2-6, 2004. Proceedings 23. Springer, 2004, pp. 541–554.

