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ABSTRACT. At present, tourism has turned into a significant industry in the global econ-
omy, which has a huge pulling consequence on economic development. The forecasting of
tourist flow in tourist attractions has become one of the hot and hard issues in tourism
research. For the purpose of dealing with the issue that tourist flow of scenic spots is
prone to load imbalance, which conduces to low prediction accuracy, this article suggests
a scemnic spot intelligent passenger flow prediction method on the ground of self-organized
migration optimization deep learning. Firstly, to deal with the issue of negative transfer
in self-organizing transfer learning algorithm, the data source domain is reconstructed by
adopting the idea of minimizing the uppermost mean divergence. Then, on account of
the optimized self-organized migration algorithm, wavelet analysis is introduced to estab-
lish a scenic spot intelligent tourist flow forecasting method on account of self-organized
migration optimization and time-sharing distribution characteristics of passenger flow.
By adopting the supervised learning method, the lowest speed descent method of forward
transmission of deviation is adopted to gradually correct the weight to acquire intelligent
forecasting of tourist flow. Finally, the experimental outcome indicates that Correlation
Coefficient (R), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) of
scenic spot intelligent passenger flow prediction method suggested in this article on the
ground of self-organizing migration optimization deep learning were 0.9604, 0.0371 and
0.0613, which were superior to the comparison model and had better prediction accuracy
Keywords: Tourist flow; Self-organized migration; Deep learning; Neural network;
Wavelet analysis

1. Introduction. Tourist flow prediction of scenic spots plays a significant part in the
expression of tourism growth policies and tourism tactic provision of a country. It can
effectively guide the resource allocation of the national tourism market, the future devel-
opment direction of tourism, and help tourism enterprises to formulate effective strategic
deployment [1,2,3]. Tourism forecasting plays a decisive role in the long-term develop-
ment of scenic spots. Precise visitor flow prediction can effectively avoid the phenomenon
of "overload” of visitor flow in scenic spots and realize the sustainable development of
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scenic zone. Guide visitors to make healthy and reasonable travel plans, for the purpose
of helping tourists get a better travel experience.

As the urbanization process accelerating, the visitor stream of scenic spots has increased
rapidly, and the problems such as over-saturation of passenger flow density during peak
hours have become increasingly prominent [4,5]. The time distribution tendency and
spatial dispersion characteristics of visitor stream play a crucial role in the governance
and resource arranging of scenic spots. The outcome of passenger stream sketch and
forecasting are the foundation and foundation for scenic spot handlers to make decisions
and offer visitant assistance.

1.1. Related Work. According to visitor stream forecasting, the relevant prediction
of tourist attractions began in the 1960s. In terms of tourist flow prediction, scholars
commonly use Artificial Neural Network (ANN) model and Support Vector Regression
(SVR)model, Grey Model (GM). Automobile degenerating merged shifting average model
and other forecasting models were used to predict passenger flow. Good experimental
results have been obtained [6, 7, 8, 9, 10].

However, the above studies mostly predict the overall visitor stream in scenic zone with-
out fully considering the spatial relationship among scenic spots in mountain scenic spots,
and most of the studies are on account of the time series of tourist stream data prediction,
and the spatial distribution characteristics of tourist stream in scenic zone and the spatio-
temporal relationship of tourist stream in scenic zone have not been fully utilized. For the
prediction problem of Spatiotemporal automobile degenerating and transferring average,
Martin and Oeppen [11] first proposed the spatiotemporal automobile degenerating and
shifting average model. Block et al. [12] presented a Spatiotemporal Integrated Fore-
casting Framework (STIFF). On this basis, Sun et al. [13] presented a Spatiotemporal
bayesian network predictor to forecast traffic flow. Nourani and Kalantari [14] estab-
lished an Integrated artificial neural network (ANN) model for spatiotemporal prediction
of formal debared deposit at multiple stations in the Eel River Basin in northwestern
California. Spatiotemporal support vector regression (STSVR) proposed by Yaseen et
al. [15]. Dehghani et al. [16] constructed a Dynamic Linear Spatiotemporal Model
(DLSTM) for predicting monthly traffic. The spatial-temporal multiple regression model
constructed by Lwin et al. [17]. Khashei and Bijari [18] proposed a Spatiotemporal Deep
Learning (STDL) model for predicting air quality. It has been proved by experiments
that STANN has better prediction accuracy than STARIMA model [19] and can better
process nonlinear spatiotemporal series data.

At the moment, the study on STANN almost concentrates on prediction and recogni-
tion. In terms of prediction, Nourani et al. [20] built a spatial-temporal neural network
model for groundwater level prediction. Yu et al. [21] used the spatial cyclic convolutional
network to forecast the short and medium semester traffic stream of the road network.
Polson and Sokolov [22] proposed a deep learning model structure combining multi-layer
nonlinear network and single-layer linear network, and applied it to short-term visitor
stream forecasting. Zhao et al. [23] forecasted short-term visitor stream on account of
BP-ANN. Li et al. [24] used LSTM and CNN to predict passenger flow. Zhang et al. [25]
adopted LSTM network to forecast subway passenger flow. In the same year, Rahimipour
et al. [26] adopted suitable neural network to forecast subway visitor stream, but its
adaptability to data was poor.

Even though a prediction model combining various traditional algorithms has emerged,
its application scope still lags behind that of deep learning methods. The prediction
method of deep learning, on account of big data, can realize the analysis of data in high-
dimensional space. Moreover, the structural variability of deep learning models is strong,
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so this kind of method has a wider application range and stronger data adaptability.
Based on the above, this paper decides to use the deep learning method to forecast visitor
stream of scenic zone. Based on the characteristics of visitor stream data of scenic zone,
the self-organizing neural network model is adopted and the transfer learning algorithm
is combined to achieve accurate prediction.

1.2. Contribution. From the above, it can be seen that tourist flow prediction of scenic
spots plays a decisive role in the long-term development of scenic zone, and exact visitor
stream prediction can effectively avoid the phenomenon of ”overload” of visitor stream in
scenic zone and realize the sustainable development of scenic spots. In order to realize the
exact forecasting of visitor stream of scenic zone, this article designs an intelligent visitor
stream forecasting method based on self-organized migration optimization deep learning.

First, the method minimizes the MMD distance among the origin field and the object
field data, filters the origin field data, and optimizes the self-organizing migration algo-
rithm. Then, through the iterative deviation calculation of forward deviation transmission
and reverse deviation transmission in the optimized self-organizing migration algorithm,
the intelligent prediction of passenger flow is completed. Finally, the simulation outcome
certifies that the prediction method designed in this article can excellently realize the
accurate prediction of tourist flow in scenic spots.

2. Relevant theoretical analysis.

2.1. Self-organizing neural networks. Self-organizing Neural Network (SOM) retains
the topological scheduling among samples as well as decreasing the property of the stim-
ulant sport space [27], and its internal connections are indicated in Figure 1.

Figure 1. Self-organizing neural network structure

For d-dimensional data, when the output dimension of SOM network contains N = nxn
neurons, the data of each dimension must correspond to a weight vector. In this case, the
dimension of the weight vector is also d, and weight can be expressed as Equation (1).

H={hj|hjeRj=1,--- N} (1)
SOM network is trained through several iterations, and each iteration includes two pro-

cesses: competition and cooperation. To find the best matching unit through competition
is Equation (2).
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d = argmin |y (s) — h;(s)| (2)

where y(s) represents the input of the s iteration. After the competition is completed,
the weights of the neurons of the greatest mapping unit and the neighborhood are adjusted
to realize the self-organization of the network as Equation (3).

hi(s +1) = hy(s) + wg(s) [y (s) — hj(s)] (3)

where wg;(s) is used to define the updating mechanism for preserving topological re-

lationships in the neuron neighborhood. The updating mechanism in this paper adopts
Gaussian function, namely Equation (4).

) = o(s) exp |- LT ()

The SOM constantly adjusts the weight of each node connection during the training
process to screen out more winning neurons. Through cooperation, the winning neurons
are kept in contact with other neurons in the neighborhood, so as to ensure the topological
stability of the network.

2.2. Transfer learning. Transfer learning is able to transfer knowledge adaptively from
the origin field to the objected field, and reduce the distribution difference with the origin
field data by means of local manifold self-learning in the objected field [28,29]. The steps
are as follows:

(1) Target data k-means bunching. The classical k-means algorithm is used to obtain
the clustering prototype, which is regarded as a pseudo-class core, and the distribution
structure information of the target domain samples is obtained. The calculation formula
is Equation (5).

9(Q,U,Vs) = QY = UV[l3 (5)

where: () represents the projection matrix; U stands for target data cluster centroid; V;
stands for target pseudo-label matrix.

(2) Native manifold self-learning of objected data. The native manifold self-learning
intrigue is inserted to adjustable study the homogeneity of data in terms of the native
connection in the low-dimensional space projected by the target data.

m;
0(Q. 1) = ) |QY}; — Q¥y|3T:; + 0T} (6)
ij=1
where T represents the target adjacency matrix; # indicates the hyperparameter.

(3) Source domain data class centroid calculation. The clustering prototype based on
target domain data is obtained through computing the imply of the sports of the same
class of samples.

(4) Source domain data discrimination structure retention. In the source domain data,
the specimen of the equal kind is as close as possible in the projection space, and samples
of various kinds are as far away as possible, and the discriminant structure information
of the source domain is retained.

1 D mg
A(Q) = —> > 1IQYy; — QYall3 (7)
Md =1 =a

(5) Two domain course centroid mapping. The closest neighbor comb method is used

to solve the class centroid problem, and the closest origin centroid is found for every
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objected field bunch centroid, and the distance sum is minimized. The course centroid
mapping of the two fields is expressed as Equation (8).

Q. U) = |QViE, - U3 (8)

where F; represents the constant matrix, which is adopted to calculate the origin field
data’s centroid in the projection space; Y stands for source domain data.

3. Optimized self-organizing migration algorithm. In Self-Organized Transfer Learn-
ing (SOMA), the dispersion deviation among origin field data and objected field data is
large, so negative transfer may occur. SOMA is more about processing the objected field
data, and does not filter the source field data, which may cause negative migration due
to the large divergence among the origin field and the objected field data. If you are able
to effectively eliminate bad data in the source domain, you can avoid negative migra-
tion or poor migration effect. Therefore, based on the idea of minimizing the Maximum
Mean Discrepancy (MMD), this section reduces the distribution difference between the
two domains by downplaying the MMD distance among the data in the origin field and
the objected field, and then constructs a new source domain, as shown in Figure 2.

14
: O 0o :
| U IReflection
: e ] :‘ |/ i /OO O '\ « Datapreprocessing
O O O 1 ’ / / / and normalization
\_ B
Feature extraction —
Target domain data
Result
 eomE ® ) output
| (X2 | N :
<« Training process —
I.. Heo L q:Reﬂection
| . Transfer learning
| ( JN | (] | |
\¥_.___’___./} process
Source domain data Self-organized migration  Ejjter source domain data

Figure 2. Optimized self-organizing migration algorithm framework

Suppose there is a set of L training samples 7" = {(y;, z;)[j = 1,2,...,L;i =1,2,... K},
where the input to each training sample contains K high-dimensional attributes, and z;
is the label of the sample. For training sample 7”, the optimization process is as follows:

(1) Data preprocessing and normalization. Use the SMOTE method to increase the
few classes in the dataset to construct a balanced dataset. After synthesizing A few class
samples, we can get a new set T = {(y;,z;)|j = 1,2,...,M;i =1,2,..., K} containing
M training samples, and use Equation (9) to normalize the data.

max

=l I 19 M, i=12,... K (9)
i T Yy

where y5* = max{yu,y.% e YM S y;?;in = min{y1s, Yoi, - - Ynsi}, J = 1,2,..., M, i =
L2, .. K. If yj™ = yp™, then y;; = 1.
(2) Feature extraction. According to the data characteristics of the origin field and the

objected field, the input sample characteristics of the two domains are minimized. In the
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infinite dimensional regenerated kernel Hilbert space, there are:

. 2

min HEq(y) [Cb(YJ)] - Eq(mj) [QS(Y;Z)] H (10)
where ¢(+) is the function that maps the original data to the regenerated Hilbert space;
Y; stands for origin field data; X; stands for objected field data; MMD values represent
the difference in the dispersion of data between origin field and objected field. With the
help of kernel calculation, Equation (10) is rewritten as Equation (11).

00 = D o) = t(LN) (1)

The kernel matrix L is then decomposed into (LL™2)(L~2L), and the transition matrix
B is used to reduce it to n-dimensional space.

(3) Training process. The data in the training sample is input into the SOM neural
network for training, and the training is stopped until the uppermost amount of training
times is obtained. After the training, the network completes the clustering of K attributes
of the input sample Y by self-organizing. The nodes of the output layer become the
excited neurons in this input mode, and the relation weights among the output neurons
and the input neurons become the clustering center vector of the input data. The weight
vector H = (hj|lj =1,2,...,M; i = 1,2,...,Q) of excitatory neurons is extracted and
normalized as input data 7" = {(hj;, z;)|j = 1,2,...,M; i =1,2,...,Q} of the integrated
classifier. o

(4) Transfer learning process. Let B = L™Y2B, B € R(m+m2)x7 then the objective
function is Equation (12).

min tr(B" LNL"B) + atr(B" B) (12)
where W = I —(1/(my+ms))II, I is the identity matrix and II is the all-1 moment matrix;
« represents the equilibrium parameter; (BT B) represents the complexity of matrix B.
By introducing the Lagrange function, we obtain:

K, =tr(BY(LNL" + al)B) + tr((I — B'LWLB)¢) (13)

The new feature space is BTL, and a new source domain sample is constructed based
on it, and then the SOM method is used to calculate and get the final recognition result.

4. Intelligent tourist flow prediction of scenic spots based on self-organized
migration optimization deep learning.

4.1. Forward bias transmission in SOM. Due to the wide distribution range of vis-
itor stream in scenic spots and the non-stationary distribution of tourist flow over time,
the ancestral time series model is not fit for solving such problems. As a large-scale
parallel distributed structure model with strong generalization ability, the self-organizing
neural network can deal with complex and nonlinear problems. Therefore, this paper
selects the self-organizing neural network model as the visitor stream prediction model
of scenic spots, introduces wavelet analysis on the basis of the optimized self-organizing
migration algorithm, and combines the time-sharing dispersion feature of visitor stream
to establish the scenic spot intelligent visitor stream prediction model of self-organizing
migration optimization with deep learning. Through the iterative deviation calculation of
forward deviation transmission and reverse deviation transmission in SOMA algorithm.
The intelligent prediction of visitor stream is completed, and the forecasting accuracy is
high. The prediction process is shown in Figure 3. This method is explained in detail
below.
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Figure 3. Forecasting process

Self-organizing neural network is an optimization neural network that replaces the
hidden layer transmission function with wavelet function. Through supervised learn-
ing method, the weight is gradually corrected by using the lowest speed descent method
of forward transmission of deviation, so as to achieve the training goal. Self-organizing
neural network can deal with nonlinear and high dimensional problems well and has good
generalization performance. The specific flow of forward propagation in AD hoc networks
is shown in Figure 4.
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Firstly, the stimulant of the obscured layer is calculated, and the influencing factors in
each group of the training data are regarded as the row vector Y; containing elements.
An M x N input matrix Y = [Yj1,Yis, ..., Yiy] is established, and the relation weights
between the obscured layer and the stimulant layer are arranged in the corresponding
order to obtain the weight matrix h;. The original value of the connection weight H; is
usually set randomly, and the original value h is generally set to a small non-zero random
number. The input matrix I’ of the hidden layer is obtained by matrix calculation. In
the matrix, the elements of the n-th column in the j-th row represent the value of the
input data W; in the n-th group, which is expressed as F' = H; - Y.

Each element of the matrix F' is introduced into the transfer function f(x) to achieve
the obscured layer output matrix G = f(F'). The transfer function of the hidden layer of
SOM neural network is log-Sigmoid function, which is converted into Morlet function in
this paper, as shown in Equation (14).

p(y) = e/ cos () (14)
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The relation weights h; between the output layer and the obscured layer are sorted
respectively, and the weight matrix H; is established. The output matrix X, is obtained
by matrix calculation, and its network output value is expressed as X; = H; x G.

4.2. Intelligent tourist flow prediction of scenic spots based on self-organized
migration optimization deep learning. Aiming at the complicated and uneven distri-
bution of visitor stream in scenic spots, this article proposes an intelligent tourist stream
forecasting method on account of SOMA optimization deep learning according to the
SOMA optimization algorithm and forward bias transmission method. This method uses
gradient descent to continuously transform the weight of each node in terms of the devia-
tion between the network output value and the expected output value, so as to reduce the
prediction deviation until the weight can accurately map the interrelationship of factors
affecting tourist entry and exit of scenic spots.

(1) Divide the data set. All sample data of any passenger flow d are extracted from
tourist data of scenic spots, and the sample data are divided based on the optimized SOM
algorithm to form training sample Y and test sample X respectively.

(2) Extracting visitor stream characteristics of scenic spots. The travel times of each
type of visitor stream and the travel time and weather in the travel records of each type of
passenger flow have an important effect on the visitor stream attribute, so the passenger
flow attribute A can be expressed as: A;; = (fi1, ..., fi1,- .., fi;) where f;; represents the
factors affecting tourist flow in scenic spots. For discrete attribute elements and continu-
ous attribute elements that do not satisfy the conditional distribution independence, we
use Equation (15) and Equation (16) respectively.

(fxv)(m) =Y f(s)o(m —s) (15)

S§=—00

(f xv)(m) = 2T f(s)v(m — s)ds (16)
(3) Normalization processing. The actual tourist flow value of scenic spots is established
as an expected output matrix C, and its deviation matrix is obtained: £ = C' — X. Set
a local gradient matrix ¢,, which has the same value as the deviation matrix F, where
the m-th factor 6, represents the local gradient value of the M-th data about the output
layer node: ¢ = E. The weight conversion matrix AH, and the weight matrix H,
(Hy = H + AH,) from the output layer to the obscured layer can be derived by using the
local gradient, and the specific analytic formula is Equation (17).

AHQ = u X ¢2 X GT (17)

where p represents the learning rate, which can automatically adjust the weight of the
reverse deviation transmission number of the self-organizing neural network to ensure that
the network can try to maximize convergence and the convergence rate is high.

Adopt the same method to adjust the weight matrix H; from the obscured layer to the
input layer:

H=H+AH =H+pux ¢, xY" (18)

(4) Transfer learning process. Suppose that at some point, a group of data in the
data set stagnates in evolution, and data S; is selected as the source of transfer learning.
The individual location of data S; is crossed with all individual locations in the data
set according to Equation (19). Migration is not a simple increase in information, but a
readjustment of data structures after the migration of information.
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yfj(‘s + ]‘) =0.5- (yzbj,start(s)) + (yf] (8) - y?j,start(‘s)) - AHQ + y;](s) (19)

(5) Output forecast results. After completing the above process, the reverse deviation

transmission process terminates. The weight matrix H; and H, are combined with the

forward bias transmission algorithm in the previous section to re-calculate the forward

propagation process and obtain the bias matrix £, so as to obtain the analytical expression
of the total deviation Eg in the network.

ER:ZG%‘¢(H1+H2) (20)
i=1

If Er is still in a downward trend, then recalculate the reverse deviation transmission
process and forward propagation process, and terminate the iteration until the value of
ER is the minimum or no longer changes, complete the whole process of visitor stream
prediction of scenic spots, and realize the accurate prediction of passenger flow.

5. Performance testing and analysis.

5.1. Performance comparison. For the purpose of verifying the performance of the
prediction model designed in this article, the Huangshan Scenic area in China is choosed
as the research object. The data adopted in this research include the passenger flow
data of Huangshan scenic spot from September 1, 2017 to March 7, 2020. The models
in literature [19, 30, 31] were used to conduct comparative experimental design, and the
experimental comparison models were trained in MATLAB R2017b environment. For the
convenience of description, reference [19] is denoted as SG-ANN, reference [30] as TF-
LSTM, reference [31] as ADLA, and the algorithm in this paper is denoted as ST-SOM.

After analyzing the passenger flow of Huangshan scenic spot, it is found that the dis-
persion of visitor stream in ordinary days and holidays is different with time and space.
Therefore, in the experiment of forecasting visitor stream in Huangshan Scenic spot, hol-
iday passenger flow and non-holiday passenger flow are distinguished in the experimental
data. The distribution of cable car passenger flow in Huangshan Scenic area can be
divided into twelve groups according to the month. Combined with the prediction of
monthly specific factors, the future tourist flow of scenic spots can be dynamically pre-
dicted. Table 1 shows the results of the real and predicted values predicted by the model
designed in this paper in 2020.

As can be seen from Table 1, the passenger flow data of Huangshan scenic spot is
closely related to holidays, and the passenger flow in May and October has an explosive
growth. The passenger flow predicted by ST-SOM model in May and October is 648,437
and 615,643 respectively, which is different from the real value of 145 and 277 respectively,
and almost consistent with the true passenger flow. Figure 5 displays the prediction effect
of SG-ANN model, TF-LSTM model, ADLA model and ST-SOM model with the actual
value on the tourist flow data set of Huangshan scenic spot.

From the forecast results in Figure 5, the tourist flow of scenic spots shows a certain
volatility and a peak. When SG-ANN, TF-LSTM and ADLA models were used to forecast
the visitor stream of Huangshan scenic spot, the fitting degree between the forecasted
value and the actual value was low, especially for the forecast of the May Day and National
Day holidays, and there was a big difference between them and the actual tourist flow.
However, the ST-SOM model established in this paper based on SOM method had a
better prediction effect. Comparing the predicted value and the actual tourist volume,
it can be intuitively seen from the two line charts that the predicted value of ST-SOM
model is closer to the actual tourist flow line and almost coincides, which indicates that
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Table 1. ST-SOM model forecast for 2020

The year 2020 Actual data Forecast data

January 119372 118736
February 186528 187042
March 367284 367345
April 253637 253562
May 648292 648437
June 457238 457091
July 548271 547453
August 583724 583542
September 385272 385076
October 615366 615643
November 287465 286904
December 183749 183075
x10° Y

T T T T T T T T T

—--@--- Actual value
vas —— SG-ANN R
—V— TF-LSTM
ADLA
—%— ST-SOM

Tourist flow of scenic spots
N

0 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12

The month of 2020

Figure 5. Comparison of forecast results of tourist flow of scenic spots in 2020

the prediction error is small. This model can effectively forecast the visitor stream of
Huangshan scenic spot in advance and actually forecast the visitor stream of future scenic
spots.

5.2. Comparison of model methods and performance evaluation. For the purpose
of evaluating and compare the prediction accuracy of the models, SG-ANN model, TF-
LSTM model, ADLA model and ST-SOM model were respectively used to train and
forecast the visitor stream data of Huangshan scenic spot, and the forecasting outcome of
these four models were compared. The experimental results are measured by Correlation
coefficient (R), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) [32].
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Table 2 shows the outcome of four model evaluation indicators, and draws a visual bar
comparison chart for the results, as shown in Figure 6.

Table 2. Comparison of prediction accuracy

Model R MAE RMSE
SG-ANN  0.8746 0.0974 0.1292
TF-LSTM 0.9162 0.0748 0.1741
ADLA  0.8479 0.1725 0.2775
ST-SOM  0.9604 0.0371 0.0613

1.2
B SG-ANN TF-LSTM ADLA mST-SOM

1
0.8
0.6
]
0.4
0.2

0 - - . [ |

R MAE RMSE

Figure 6. Performance comparison

As can be seen from Table 2 and Figure 6, in the experiment, the accuracy evaluation
indexes of the ST-SOM model are significantly better than those of the SG-ANN model,
TF-LSTM model and ADLA model. The RMSE of ST-SOM model was 0.0613, which
decreased by 6.79%, 11.28% and 21.62% compared with SG-ANN model, TF-LSTM model
and ADLA model, respectively. MAE is 0.0371, which is 6.03%, 3.77% and 13.54% lower
than SG-ANN model, TF-LSTM model and ADLA model, respectively. In addition,
in the prediction results, the MAE and RMSE values of the SG-ANN model, TF-LSTM
model and ST-SOM model are significantly lower than those of the ADLA model, and the
errors are all lower than 15%, which indicates that the neural network model is more fit
for dealing with the prediction issue of multi-input and multi-output. Through comparing
the correlation coefficient R, it can be seen that the R-value of ST-SOM model is 0.9604,
which is 8.58%, 4.42% and 11.25% higher than that of SG-ANN model, TF-LSTM model
and ADLA model, respectively. In addition, the R-value of the SG-ANN model is slightly
lower than that of the TF-LSTM model, and the R-value of the ST-SOM model is higher
than that of the SG-ANN model, TF-LSTM model and ADLA model, which indicates that
after self-organized transfer learning, the R-value of the ST-SOM model is higher than
that of the SG-ANN model, TF-LSTM model and ADLA model. The ST-SOM model,
which introduced the deviation matrix of forward transmission and reverse transmission,
is superior to the contrast model and has a better fitting effect for tourist flow in scenic
spots. Therefore, it can be seen from the accuracy of the experimental outcome that the
ST-SOM model contains more passenger flow transfer learning information and attribute
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feature information, which can excellently enhance the prediction precision of the model
and make the ST-SOM model have better fitting effect and prediction accuracy.

6. Conclusion. Aiming at the issue of low accuracy of present tourist flow prediction
methods, this article suggests an intelligent tourist flow prediction method based on self-
organized migration optimization deep learning. The method first screens the origin field
data, minimizes the MMD distance between the source domain and the target domain
data, reduces the distribution difference between the two domains, and achieves the pur-
pose of optimizing the self-organizing migration algorithm. Then, through the supervised
learning method, based on the optimized self-organized migration algorithm, the wavelet
function is introduced, and the minimum speed descent method of forward transmission
of deviation is used to gradually correct the weight, so as to accurately map the interre-
lation of factors affecting tourist entry and exit of scenic spots, and realize the accurate
prediction of tourist flow of scenic spots. Finally, the experimental outcome indicates that
the method suggested in this article can excellently enhance the R, MAE and RMSE of
tourist flow prediction methods. It can be well applied to scenic spot intelligent passenger
flow forecasting.
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