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Abstract. With the continuous improvement of network infrastructure, network attacks
are more complex. Meanwhile, the continuous expansion of the network scale, increas-
ingly complex structure and endless hacker intrusion methods pose enormous challenges
to network intrusion detection. The current intrusion detection system is difficult to face
the large-scale high-speed network environment detection. Given the high complexity of
network data, this study improves the Random Forest algorithm to construct an intru-
sion detection model. Then an intrusion detection system is implemented under the Spark
framework. The experimental results show that the F1 values of various labels trained
by the random forest algorithm are 0.964, 0.963, 0.774, 0.778, 0.762, 0.953, and 0.871.
The macroF1 value of the algorithm is 0.867. The F1 values of various labels trained
by the improved random forest algorithm are 0.984, 0.982, and 0.875, respectively. The
macroF1 value of the improved forest algorithm is 0.907. Moreover, the model training
and classification time of the improved random forest algorithm is much shorter, which
is improved by about 25%. In conclusion, this designed improved random forest intrusion
detection system has higher accuracy and stronger performance. It improves the security
of network usage and maximizes the security of user networks.
Keywords: internet; network security; random forest algorithm; intrusion detection;
spark

1. Introduction. With the rapid development of Internet technology, network security
has become an important issue in modern society [1]. The popularization of network
infrastructure not only facilitates information exchange, but also brings new security
challenges, especially for malicious data intrusion on the network [2]. These intrusions
not only pose a threat to individual users, but also have serious impacts on national
security and business operations. In this context, the development of effective network
intrusion detection systems (IDS) is particularly important [3]. This research aims to
develop an efficient network intrusion detection system for malicious data in the network
by combining distributed network and improved random forest (RF) algorithm under the
Spark framework. The goal of this system is to achieve highly accurate malicious data
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detection in large-scale and high-speed network environments. Considering the limita-
tions of existing intrusion detection methods, especially the efficiency when dealing with
large data, this research focuses on the optimization and implementation of the algo-
rithm, which is committed to improving the detection speed and accuracy. In existing
research, there are some disagreements about the methods and effectiveness of network
intrusion detection. Especially in terms of algorithm selection and optimization, different
researches have proposed various views. In this study, based on these disagreements, an
improved RF algorithm is proposed, implemented and tested in the Spark framework. It
aims to explore more effective cybersecurity solutions. Taken together, the main contri-
bution of this research is to develop an efficient intrusion detection system for large-scale
network environments. By combining the improved algorithm with the Spark framework,
this research not only improves the accuracy of intrusion detection, but also provides an
effective solution for handling large amounts of data. The experimental results show that
the proposed method has a wide range of applications in the field of network security,
providing new perspectives and technical support for related research.

2. Related Work. With the development of the Internet, network attacks are increas-
ingly frequent and the IDS is proposed to protect the data security of users to some
extent. Althobaiti et al. created a IDS based on cognitive computing to achieve secu-
rity in the physical systems of industrial networks. The system covered data collecting,
pre-processing, feature selection, classification, and parameter optimization. The noise
present in the collected data was removed. The model was optimized to select the optimal
subset of features for final intrusion detection. The outcomes indicated that the proposed
model had good performance [4]. According to Devi et al.’s research, the information
technology infrastructure and traditional operating systems used in cloud computing are
susceptible to intrusion attacks. To address the cloud computing security problem, the
research team proposed an adversarial network-breeding IDS with dual-channel capsule
generation optimized by the Red Fox optimization algorithm. The research results showed
that the system had a large improvement in accuracy and performance than the tradi-
tional method [5]. Zhang et al. established a IDS based on the defense-in-depth concept
to enhance the network security of industrial control systems. The system had multiple
layers of defense, providing time for the compromised system. The research team simu-
lated five attacks, including false data injection, data filtering, man-in-the-middle, data
tampering, and denying services, to provide a second layer defense in the event that the
intrusion detection defense layer fails. The findings revealed that the system can detect
network intrusions before major consequences occur, effectively providing time for the
system [6]. Ning et al. analyzed the controller local area network. Due to the lack of
security protection mechanisms in the controller area network, various attacks on the
controller area network posed a serious threat to the safety of vehicles. To solve this
problem, the research team proposed a IDS based on local anomaly factor, utilizing the
characteristics of voltage signals on the controller LAN bus. The findings suggested that
the method could significantly increase detection precision, avoid the modification of the
controller LAN protocol and reduce the computational content [7]. Detecting nodes that
propagate false data is a prerequisite for effectively deploying connected vehicle network
services. Anyanwu et al. proposed a novel overshooting ensemble into RF algorithm for
detecting false underlying security messages in connected vehicle networks. The results
showed that the proposed algorithm far outperformed other algorithms with 99.60% [8].
With the rapid growth of wind energy production and manufacturing, the cost of operat-
ing and maintaining the engines is also increasing rapidly. Most of the wind turbines are
equipped with supervisory control and data acquisition systems for system control and
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data logging. Qin et al. proposed using various supervisory data as data points. The
wavelet analysis was applied to reduce the noise in the input signals. Finally, the recursive
least square filter was applied to reduce the false alarm rate and find the optimal input
features. The results showed that the RF algorithm used provided more accurate output
and significantly reduced the false alarm rate [9]. To mitigate network attacks, Haffar et
al. explained the false classification rate of the federated model by building a decision
tree RF model. Firstly, a RF containing depth constrained decision trees was used as
an alternative to the federated black box model. Then the decision trees in the forest
were used to calculate the feature values in the erroneous prediction model. The results
showed that the model was capable of detecting malicious attacks on the network with
high accuracy [10].

In summary, in the research on dealing with malicious network intrusion, more re-
searchers realize that the traditional network intrusion system cannot fully meet the
current needs. There are problems such as poor accuracy, difficulty in dealing with com-
plex environments, and long iteration times. To address these problems, this research
introduces the Spark framework to cope with the many iterations and long time. The RF
algorithm is introduced to address the poor detection accuracy in complex environments.
Then the random algorithm is improved to optimize the system performance.

3. Network IDS Construction based on Spark Framework and Enhanced RF
Algorithm. With the continuous development of the Internet, 5G technology and In-
ternet of Things (IoT) technology have made great progress, which makes the current
network environment increasingly complex. To protect the user demands for system net-
work security, relevant scholars have constructed the IDS model. The traditional IDS
is slightly insufficient to face the current complex network environment. Therefore, the
research combines the RF algorithm with IDS to develop an improved RF algorithm
based on the Spark framework, which is used to effectively detect network malicious data
intrusion. To achieve this goal, the research adopts a series of innovative methods and
technical strategies. Firstly, the focus is placed on optimizing the RF algorithm to en-
hance the performance of the model by adjusting the decision tree generation and feature
selection mechanisms. Secondly, the distributed computing capability of the Spark frame-
work is utilized to process large-scale network data, improving the processing speed and
efficiency of the system.

3.1. IDS and RF algorithm. The IDS is a system that monitors and defends against
malicious intrusions on a network or computer. IDS can proactively detect attacks and
traces intrusion points based on network behavior and traces. In addition, IDS can also
analyze the suspicious behavior and determine the intrusion type of the behavior by
comparing it with the known pattern library. Then the corresponding response operation
is made according to the security policy. The working process of traditional IDS is shown
in Figure 1.

The operational flow of a IDS, a security mechanism specifically designed to monitor
and defend against malicious activity on a network, is shown in Figure 1. The core process
of the IDS begins with continuous monitoring of host status, activity, system logs and
the network to collect audit data, which can help to promptly identify signs of potential
attacks or anomalous behavior that violates security rules. The system then reviews and
analyses this audit data in detail, a stage that is key to the detection process. In the
intrusion detection segment, various efficient techniques and methods are often utilized to
perform intrusion detection. Once abnormal activities are detected, the IDS will activate
its management module to react according to the established security policy. Necessary
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Figure 1. Workflow of intrusion detection system

measures are taken, including logging intrusion details, issuing alerts, and blocking illegal
activities.

The RF algorithm is a powerful machine learning method that operates on an unpruned
decision tree. Decision tree models are popular in the field of machine learning because
they are not only efficient and easy to implement. In addition, their unique processing
does not require normalization or standardization of feature values before model train-
ing. The decision tree model predicts through a top-down approach. According to a
certain decision-making logic, data is classified to ultimately obtain classification results
or predicted values. In the RF algorithm, multiple such decision trees are constructed
in parallel and each tree is trained on a random subset of the dataset, which helps to
increase the diversity and robustness of the model. Each tree works independently in the
decision-making process. The final prediction is obtained by integrating the predictions
of all trees, usually using a majority vote. This integrated approach effectively reduces
the bias and variance of the model and improves the accuracy and reliability of the over-
all prediction. This integrated learning approach of the RF algorithm combines multiple
decision trees, which can effectively handle various complex datasets. It has a wide range
of application scenarios. The general structure of a decision tree is shown in Figure 2.

Figure 2. Decision tree structure
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Figure 2 shows the decision tree structure. Each node of the decision tree represents a
test of a feature or attribute. Directed edges between nodes indicate different results of
the test. The top node is called the root node, which is the starting point of the decision-
making process. From the root node, the tree diverges along different paths depending on
the feature values of the data until it reaches the leaf nodes, which are at the bottom of
the decision tree. Each of these nodes corresponds to a classification decision or prediction
output. A key advantage of this structure is its intuitive and explanatory nature, making
the decision-making process easy to understand and interpret. The node Ni, (i = 0, 1, 2, 3)
is the decision node. The node Cj, (j = 1, . . . , 6) indicates the category of classification.
The DT algorithm is a method for creating branching sub-trees and choosing the best
features for classification, and then classifying the data through these branches. The DT
is constructed in two steps, feature selection and DT construction. How to select the best
segmentation features is the key to the DT construction process. In DT, the methods
commonly used to measure the segmentation effect of features on samples are information
gain, information gain ratio, and Gini index.

The information gain (IG) method uses information entropy to calculate the information
gain of each attribute, and determines the best node splitting feature based on the IG.
For the discrete source a, the self-information formula characterizing the magnitude of
the information transmitted by ai is shown in Equation (1).

I(ai) = − log2 P (ai) (1)

In Equation (1), P (ai) is the probability of the discrete information source a in the
k fetches. To measure the overall uncertainty of the source, the information entropy is
introduced, as shown in Equation (2).

Info(D) = E(X) =
m∑
i=1

P (ai) log2 P (ai) (2)

In Equation (2), X is the source, D denotes the dataset, m denotes the classification.
A denotes the feature. From Equation (2), for a dataset D, the information entropy is
known. If feature A is applied to classify D, the information entropy of the divided data
subset is shown in Equation (3).

InfoA(D) =
v∑

j=1

(
|Dj|
|D|

× Info(Dj)

)
(3)

In Equation (3), the number of samples in dataset D is |D|. The number of categories
classified as jth is |Dj|. v denotes the number of subsets classified by feature A. The
InfoA(D) is negatively correlated with the classification purity. The information gain of
feature A can be obtained from Equation (2) and (3), as shown in Equation (4).

Gain(A) = Info(D)− InfoA(D) (4)

The strength of classification ability for feature A is characterized by the magnitude of
information gain value. The essence of the information gain method is to calculate the IG
value of each attribute value and select the largest attribute to classify the subset. How-
ever, the information gain method has the biased multi-value features. The information
gain ratio method can effectively solve the problem. The IG ratio is shown in Equation
(5).
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Gain ratio(A) = Gain(A)

Split InfoA(D)

Split InfoA(D) = −
v∑

j=1

[
|Dj |
|D| ∗ log2(

|Dj |
|D| )]

(5)

In Equation (5), D is the data set. A is the feature. v denotes the number of sub-
sets divided by feature A. Split InfoA(D) is the penalty coefficient, which is negatively
correlated with the size of feature A, thus avoiding the biased features with multiple val-
ues. However, this method still has problems. If a feature has a small number of values,
the corresponding penalty coefficient will be larger, resulting in a larger information gain
ratio. Features with fewer values are more likely to be selected.

Ginisplit A(D) =
v∑

j=1

[
|Dj |
|D| ∗Gini(Dj)]

Gini(D) = 1−
m∑
i=1

( |Ci|
|D| )

2
(6)

In Equation (6), D is the dataset, and A is the feature. v denotes the number of subsets
divided by feature A. |Ci| denotes the quantity of i categories in dataset D. The Gini
index method is used in node splitting. The Gini index of all features is calculated from
Equation (6). Then the best split feature is the one with the lowest Gini index.

RF is a multi-classifier composed of several DTs. The classification result is determined
by voting method or taking the mean value. RF uses Bagging integration ideas to build
models for work, randomly extracting feature subsets and training subsets for generating
multiple DT classifiers, respectively. The generated multiple classifiers are combined
for prediction. The RF classifier with integrated learning idea of multiple classifiers is
constructed using Bagging integration. Figure 3 depicts the construction procedure.

Figure 3. RF construction diagram

From Figure 3, the RF construction is divided into four major components, randomly
drawn sample set, randomly drawn split features, DT generation and RF classifier con-
struction. The first part is random sample set extraction. The Bootstrap sampling
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method is applied to extract k training sets, Dtrain = D1, ..., Dk. The same samples are
taken each time, and no processing is done after taking. The extraction is repeated several
times. The samples that are not extracted each time constitute the out-of-bag data set.
The second part is to randomly extract segmentation features. m features are extracted
randomly and without putting back from M sample features. The extracted features are
used as the nodes to generate the DT to divide the attribute set. The third part is DT
generation. The common types of DT generation methods are selected. The single DT is
trained and constructed based on the above randomly extracted sample set and feature
set. Finally, the single DT is trained iteratively to build and obtain multiple DTs. The
fourth part is to integrate the individual DTs into a decision forest. In the prediction
stage, the sample data are fed into each DT to get the final splitting result [11].

3.2. Construction of IDS based on improved RF algorithm. With the current
popularity and development of the Internet, the frequency and complexity of malicious
cyber-attacks have risen dramatically. This poses unprecedented challenges in the field
of network security. The diversity and advanced techniques of modern network attacks,
such as Distributed Denial of Service (DDoS) attacks, phishing attacks, and zero-day
vulnerability exploits, pose a severe test for traditional security defence mechanisms. In
such a context, effective IDSs have become the key to ensure network security. This
research is dedicated to constructing an efficient and accurate network intrusion detection
model by combining an advanced intrusion detection system framework with an improved
RF algorithm. The model aims to improve various network attack detection through
innovative methods and techniques, while ensuring processing efficiency in high data traffic
environments. The constructed model not only considers the characteristics of existing
network attacks, but also foresees new types of attacks that may appear in the future,
which makes the system have good adaptability and scalability. The overall construction
process of the model is shown in Figure 4. The intrusion detection model in Figure 4

Figure 4. The construction process of IDS

involves several key steps. First, network traffic data is comprehensively collected and
preprocessed to ensure the accuracy and integrity of the data. Next, feature selection and
data analysis are performed by an improved RF algorithm to effectively distinguish normal
traffic from potentially malicious activities. On this basis, the model applies a multi-
layer decision-making mechanism to judge and classify network behaviors, thus achieving
accurate identification of various network attacks. In addition, the model includes a
dynamic learning mechanism that can be continuously optimized and adjusted based
on the latest cyber threat data to cope with the ever-changing cyber security threat
environment. The whole intrusion detection can be divided into 3 stages. In the data
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preprocessing phase, the main preprocessing of network data is performed. In the model
training phase the decision tree model for classification detection is generated based on
RF. The processed network intrusion dataset is used as the training set for the improved
RF algorithm, then multiple weakly classified decision trees with weights are generated.
Finally, all the weakly classified decision trees are composed into a multi-classifier model
for intrusion detection. In the model testing phase, the test set is classified using the multi-
classifier model to determine whether the sample data is attack data and to determine
the type of attack. At the same time, the performance metrics of the model are tested
using the test set, which can be evaluated in a better way [12].

RF has strong noise resistance, easy to scale, easy to parallelize, and strong general-
ization ability. However, some shortcomings are more prominent when dealing with large
and complex network intrusion. Traditional RF randomly selects feature subsets to build
DTs. There are a large number of highly correlated features in network data traffic fea-
tures, which leads to excessive similarity between DTs. It is not conducive to improving
the generalization ability of decision forests. From the nature of RF, as the threshold
increases throughout the forest, the generalization error PE converges to an upper bound,
as shown in Equation (7) [13].

PE ≤ p̄(1− s2)/s2 (7)

In Equation (7), s is the average classification accuracy of the DT. p̄ is the average
association between DTs. From Equation (7), increasing s or decreasing p̄ can reduce the
generalization error PE and improve the model strength. An improved Relief is combined
with RF. The enhanced Relief-RF is able to increase the feature expressiveness of a few
classes of samples and calculate the feature weights. Then the feature random selection
process in generating DTs is restricted by a stratified feature random sampling strategy.
It can avoid too many poorly performing features or invalid features from being selected.
Each feature subset has better discriminative ability, thereby improving the classification
strength of the IDS model [14]. Relief-RF is a feature weight algorithm that measures
the discrimination between features and positive and negative categories. Equation (8)
displays the weight calculation.



W (A) =
k∑

i=1

diff(A,S,N)
k

−
k∑

i=1

diff(A,S,M)
k

diff(A, S1, S2) =



|S1[A]−S2[A]|
max(A)−min(A)

, ifAiscontinues

0, ifS1[A] = S2[A]

1, ifS1[A] ̸= S2[A]

(8)

In Equation (8), A denotes the feature, S denotes the sample, and diff(A, S1, S2) denotes
the distinction between S1 and S2 on the feature value A. In Equation (8), a feature A
is selected. A sample S is randomly selected along with the neighboring sample M
and negative class N . Then the distance between the sample M and negative class N
and the feature A is calculated. The weights of the feature A are adjusted according
to the difference of the distance between the same and the different. The classification
weights of the final feature A is obtained after iterating k [15]. To solve the problem that
Relidf algorithm is not applicable to multiple labels, the Relidf algorithm is improved by
changing the sample extraction to n nearest-neighbor samples from each category. Then
the distance is iteratively updated. The weight is shown in Equation (9).
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W (A) =
k∑

i=1

∑
C/∈c(S)

[
p(c(C))

1−p(c(S))

n∑
j=1

diff(A, S,Nj(C))

]
nk

−
k∑

i=1

n∑
j=1

diff(A, S,Mj)

nk
(9)

In Equation (9), C is the heterogeneous sample of the sample S. p(c(C)) and p(c(S))
denote the weight of C and S in the sample set of the respective categories to which
they belong, respectively. Nj(C) denotes the sample that is dissimilar to the sample S.
Although the improved Relief-RF can effectively solve the shortcomings of the Relief,
the randomly selected equal heterogeneous sample is not well suited to the imbalance
problem of the intrusion dataset in this study. Therefore, the Relief-RF algorithm is
improved again. The improved weight iterative is shown in Equation (10) [16].


W (A) = W (A)−

k∑
i=1

∑
C/∈c(S)

[
p(c(C))

1−p(c(S))

n2∑
j=1

diff(A,S,Nj(C))

]
n2

−
k∑

i=1

n1∑
j=1

diff(A,S,Mj)

n1

n1 = n ∗ l−
l++l−

, SisPositive

n1 = n ∗ l+
l++l−

, SisNegative

(10)

In Equation (10), n1 is the like-neighboring sample. n2 is the dissimilar neighboring
sample [17]. The improved Relief-RF algorithm can ensure that the minority class has
a larger proportion when positive and negative samples are sampled. It can effectively
avoid the problem that the classification results are biased toward the majority class. The
improved Relief-RF is used to optimize the RF algorithm random feature sampling subset
process to avoid too many poor performance or invalid features selected to generate DTs
[18]. The hierarchical random feature selection process is shown in Figure 5.

Figure 5. Layered random feature selection process

This experiment improves the Relief-RF algorithm to calculate the weights of network
traffic data features and discards zero weight features. The remaining features are ar-
ranged into three feature subsets of high, medium and low based on their weights. A
DT is generated by extracting features from the three feature subsets of high, medium
and low in the ratio of 5:3:2 when constructing the DT. The DT classification accuracy is
checked with a test set. It is used as the weight of this DT. The result of the integrated
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strategy model is shown in Equation (11) [19].

F (X) =
k∑

i=1

ωi · hi(Xj) (11)

In Equation (11), the weight of the decision number hi(Xj) is ωi, which is positively
correlated with DT classification ability. The IDS model is constructed using the improved
RF algorithm. The main process is shown in Figure 6.

Figure 6. Improved RF build IDS process

Firstly, the weights of each feature are calculated using the improved RF algorithm.
Then the features with zero weight are eliminated. The remaining features are arranged
according to the weight values and separated into three feature sets, high, medium and low.
Then the features are randomly selected from each of the three feature sets in a 5:3:2 ratio
in a hierarchical manner for generating DTs. Finally, the accuracy of each DT is evaluated
using the out-of-bag dataset. The accuracy is used as the weight of each DT. All DTs are
combined with weights to obtain the IDS model [20]. The classification evaluation index
is the confusion matrix. Because of the long training time of traditional RF algorithm
in processing large amount of network data, Spark distributed framework is introduced
to construct the distributed cluster environment and design distributed network IDS. It
is divided into network traffic collection module, data transmission processing module,
intrusion detection module and intrusion management module.

4. Base and improved RF algorithm for IDS performance testing. In this chap-
ter, the network IDS constructed by RF is compared with the network IDS constructed
by improved RF. The performance of the two different algorithms for intrusion detection
is analyzed. In addition, a new detection algorithm model is introduced for comparison,
so as to filter out the model with the best classification performance. The effectiveness
of the model proposed in the study is further validated. The experimental results con-
firm that the improved RF algorithm can show excellent performance on several standard
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datasets, especially in the key performance metrics such as classification accuracy, recall
and F1 score. Moreover, by comparing with the traditional RF algorithm and other pop-
ular algorithms, the results also demonstrate the significant advantages of the improved
algorithm in network intrusion detection.

4.1. Data processing and environment setup. Most current public datasets lack
diversity in traffic characteristics. There are fewer attack types to simulate the most
realistic network attack trends. The test dataset is CICIDS2017, a public intrusion dataset
published by the North American Institute for Secure Networks. This dataset records
network traffic data for five consecutive days, including attacks such as DoS attacks,
DDoS attacks, botnets, brute-force attacks, etc. Detailed information is shown in Table
1.

Table 1. CICIDS2017 Data Set

Label Attack type Number Total (numerical)
Benign Benign 2273097 2271320

DDoS 128027 128025
DoS/DDoS DoS Slowloris 5796 5796

DoS Slowhttptest 5499 5499
DoS Hulk 231073 230124

DoS GoldenEye 10293 10293
Heartbleed 11 11

Brute Force FTP-Patator 7938 7935
SSH-Patator 5897 5897

Web Attack WebAttack-BruteFore 1507 1507
Web Attack-XSS 652 652

WebAttack-SqlInjectn 21 21
Infiltration Infiltration 36 36
PortScan PortScan 158930 158804

Bot Bot 1966 1956
Total Intrusion / 557646 556556
Total samples / 2830743 2827876

Table 1 displays the detailed data details. From Table 1, this dataset is an unbalanced
dataset. The RF algorithm is not effective in classifying the dataset with a small number
of samples. Therefore, it is necessary to pre-process this dataset by extracting the different
samples in the training set to obtain the training dataset samples, as shown in Table 2.

Table 2. Extract the Number of Samples for Each Category

Type Benign DoS/DDoS Brute Force Web Attack Infiltration PortScan Bot
Code 0 1 2 3 4 5 6

Original sample 2273097 379748 13832 2180 36 158804 1956
Sample 48297 39978 2076 1349 468 23840 1285

The number of samples for each data category in the training set after pre-processing
is shown in Table 2. The processed dataset is used as the training dataset to train the
iterations of different models. The detection effect of each model is analyzed.
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4.2. Intrusion detection model performance testing. To evaluate the effectiveness
of various IDSs, the iterative performance of the constructed network intrusion detection
models is first tested. The simulation experiments are implemented in Matlab. The net-
work intrusion detection model under the traditional RF algorithm (denoted as RF-IDS),
the network intrusion detection model under the improved RF algorithm (denoted as IRF-
IDS), the network intrusion detection model under the BP neural network (denoted as BP-
IDS) and the network intrusion detection model under the genetic algorithm-optimized
BP neural network (denoted as GA-BP-IDS) are compared, respectively.

Figure 7. Fitness of different models under different iterations

Figure 7 shows the fitness changes of four models at different iterations. From Figure
7, the IRF-IDS model can reach the stable adaptation value in about 27 iterations, and
the best value is 0.61. The RF-IDS model can reach the stable adaptation value in about
36 iterations, and the best adaptation value is 0.62. The GA-BP-IDS model and BP-IDS
model can reach the stable adaptation value in about 41 and 46 iterations, respectively.
The stable adaptation value is 0.63 and 0.64. Compared with the other three models,
the stable adaptation value is 0.63 and 0.64, respectively. Compared with the other three
models, the IRF-IDS model can iterate to the stable faster. Therefore, it has better
stability in intrusion detection. The IRF-IDS model reaches the stable faster than the
other models. This may be due to its optimization in feature selection and classification
algorithms, which can process the data more efficiently, thus speeding up the convergence
of the model and improving its intrusion detection stability.

The error performance of the four models during the iterative process is shown in Figure
8. The average sum of squares of errors for the four models is shown in Figure 8(a). From
Figure 8(a), the average sum of squares of errors values after reaching stable state for
IRF-IDS, RF-IDS, GA-BP-IDS, and BP-IDS are 0.24, 0.29, 0.33, and 0.36, respectively.
The minimum sum of squares of errors for the four models is shown in Figure 8(b). From
Figure 8(b), the minimum error sum of squares values of IRF-IDS, RF-IDS, GA-BP-IDS,
and BP-IDS after reaching the stable state are 0.13, 0.17, 0.18, and 0.19, respectively.
Based on the error performance of different models, the IRF-IDS model is able to iterate
to the stable mean error sum of squares and minimum error sum of squares more quickly.
IRF-IDS reaches a converged state, with values of 0.24 and 0.13 for the mean error sum
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of squares as well as the minimum error sum of squares, respectively. It indicates that it
has higher prediction accuracy and stability, due to the algorithm’s advantages in dealing
with data noise and complex features.

Figure 8. Error performance of different algorithms

The extracted sample dataset in Table 2 is further selected for evaluation tests. The
test set is categorized and predicted using the conventional RF algorithm as the reference
algorithm. The confusion matrix shown in Table 3 is obtained. The first column is the
prediction type of the algorithm and the first row is the attack category label.

Table 3. RF Algorithm Prediction Result Confusion Matrix

PTT 0 1 2 3 4 5 6
0 46436 728 203 78 32 463 58
1 773 38488 117 49 23 519 46
2 309 139 1698 17 12 122 17
3 219 118 19 1153 9 79 19
4 57 28 4 3 368 31 7
5 473 410 27 35 17 22573 12
6 30 67 8 14 4 53 1126

Table 3 shows the prediction results of the RF algorithm on different attack types. Each
element in the confusion matrix represents the prediction performance of the algorithm on
a specific category. Higher values of true positives and lower values of false positives indi-
cate that the algorithm performs well on certain categories. Meanwhile, they also reveal
the limitations of the algorithm on certain categories. For example, a high false-negative
rate indicates poor detection of certain attack types. From this table, the F1 values of
RF algorithm for each type of label in the training set are 0.964, 0.963, 0.774, 0.778,
0.762, 0.953, and 0.871. The macroF1 value of RF algorithm is 0.867. The classification
prediction experiment of the improved RF algorithm model is designed. Table 4 displays
the test results.

From the data in Table 4, the F1 values for each type of labels in the training set
under the improved RF algorithm are 0.984, 0.982, 0.875, 0.842, 0.796, 0.982, and 0.889,
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Table 4. Improved RF Algorithm Prediction Result Confusion Matrix

PTT 0 1 2 3 4 5 6
0 47580 319 102 71 31 235 52
1 354 39237 61 39 27 139 37
2 117 103 1861 14 13 56 13
3 92 86 20 1181 8 52 16
4 29 24 3 2 362 19 3
5 97 148 21 27 23 23293 7
6 28 61 8 15 4 46 1157

respectively. The macroF1 value for the improved RF is 0.907. The data in Table 4
shows the F1 values of the improved RF algorithm on different categories. Compared
with the traditional RF algorithm, the improved version has improved F1 values on all
categories, especially on the categories where the performance is previously poor. This
improvement is due to the optimization of the algorithm in feature processing and clas-
sification decisions. Therefore, it can distinguish between different types of cyber attacks
more effectively. Figure 9 further analyzes the coverage, recall, and F1 values of the two
models in different data sets scores.

Figure 9. Comparison of values between two algorithms

Figure 9(a) represents the recall, coverage and FI values of RF. Figure 9(b) represents
the recall, coverage and FI values of improved RF. From Figure 9(a), when the RF al-
gorithm is used to detect number 0 number 7, the highest recall, coverage, and F1 value
of RF are 0.96, 0.93, and 0.95, respectively. From Figure 9(b), when the improved RF
algorithm is used to detect number 0 number 7, the highest recall, coverage, and F1 value
of the improved RF algorithm are 0.98, 0.95, and 0.98, respectively. Figure 9 shows that
the improved RF algorithm is significantly higher than the RF algorithm in classification
accuracy. The test results in Figure 9 show that the improved RF algorithm has higher
F1 values in categories numbered 0, 1, and 5. The improved RF algorithm model has
good recognition performance for DoS/DDoS, Benign, and PortScan, and lower F1 values
in number 4, indicating that the model has poor recognition performance for Infiltration.
The improved RF algorithm performs better in all the metrics, especially in classifica-
tion accuracy. This performance enhancement is due to the inclusion of effective feature
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selection and more accurate classification decision-making mechanisms in algorithm op-
timization. Thus, the optimized RF has better performance in processing complex and
unevenly distributed datasets.

To further confirm the effectiveness of the enhanced RF model, the string algorithm
(Boyer-Moore, BM) is introduced to control the features involved in splitting. The rela-
tionship between the classification accuracy of the string search algorithm and the forest
algorithm is obtained, as shown in Figure 10.

Figure 10. Number of features and accurate classification graph

Figure 10(a) represents the recall of BM string algorithm, RF and improved RF. Figure
10(b) represents the coverage of BM, RF and improved RF. Figure 10(c) represents the
F1 value of BM, RF and improved RF. From Figure 10, the highest recall, coverage
and F1 values possessed by the improved RF algorithm model are 0.99, 0.98, and 0.99,
respectively. The algorithm outperforms the traditional RF model and the string model
in all the above three metrics, which is due to the fact that the improved RF handles and
utilizes the feature information more efficiently, and reduces the influence of irrelevant or
noisy features, thus improving the classification accuracy.

The training time and classification time of the three algorithms are compared. Table
5 shows the calculation time for ten training classification tests on the sample set data.

Table 5. Comparison of Model Calculation Time

Type Algorithm BM RF Improve RF
Training time 427.2s 421.7s 318.2s

Classification time 38.5s 34.7s 25.4s

From Table 5, the improved RF outperforms the RF algorithm in training and classi-
fication time. The enhanced RF training and classification time is nearly 25%, which is
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better than the traditional RF algorithm. The data in Table 5 shows that the improved
RF algorithm has a significant advantage in both training and classification time, due to
improvements in the computational efficiency of the algorithm. For example, by reducing
redundant calculations and optimizing the data processing flow, the algorithm can be
trained and classified faster, especially when dealing with large-scale datasets.

5. Conclusion. With the development of the Internet, the complexity of the network
environment is increasing. Network intrusion attacks are constantly emerging. Network
intrusion detection has become a popular research problem in the field. This research
improves the RF algorithm. The improved RF algorithm is combined with the intrusion
detection system to identify and classify the intrusion attacks, protecting the user network
security. The results show that the F1 values of all types of labels on the RF training
dataset are 0.964, 0.963, 0.774, 0.778, 0.762, 0.953, and 0.871. The macroF1 value of
RF algorithm is 0.867. The F1 values of all types of labels on the improved RF training
dataset are 0.984, 0.982, 0.875, 0.842, 0.796, 0.982, and 0.889. The macroF1 value of
improved RF is 0.907. The training time and classification time of the two algorithms are
compared. The RF algorithm has a training time of 421.7s and a classification time of
34.7s, while the improved RF are 318.2s and 25.4s, which has better performance. The
study uses stratified feature random sampling. Although it can improve the overall clas-
sification performance of the model, the feature selection range is reduced. Therefore, the
correlation between decision trees increases and the generalization ability of the model
decreases. The change in model performance under different sampling methods should be
further investigated subsequently. Despite the results achieved in this study, there are still
several issues and challenges that need to be addressed. Firstly, although this research
has achieved improvements in the accuracy and efficiency of network intrusion detection,
the detection effectiveness of certain complex attack types, such as Advanced Persistent
Threats (APTs) and zero-day attacks, still needs to be improved. Secondly, current re-
search focuses on the efficiency and accuracy. Future work can explore how to further
optimize the algorithm to improve the adaptability to new and complex attacks. Finally,
future research should also focus on exploring intrusion detection strategies in large-scale
distributed network environments. With the development of IoT and cloud computing
technologies, network environments have become more complex and dynamic. This re-
quires IDS to adapt to constantly changing network conditions and respond promptly
to emerging security threats. Therefore, more intelligent and adaptive network security
mechanisms will become an important trend in the field of network security.
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