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Abstract. Ontology plays a critical role for the representation and knowledge sharing.
And the ensuing ontology heterogeneity problem often affects the interoperability among
ontologies. Ontology Matching(OM) using similarity measures is a cutting-edge method
for addressing the ontology heterogeneity problem. Ontology meta-matching(OMM) is
proposed for optimising the aggregated multiple similarity measures’ weights for improv-
ing the ontology alignment’s quality. However, OMM based on Evolutionary Algorithm
(EA) requires comparison with the reference alignment during the fitness evaluation,
thus decreases the efficiency of the algorithm. For reducing EA’s computing cost, an
Anti-Distance Approximation Model(ADAM) assisted EA is proposed for forecasting the
individuals’ fitness. The model accomplishes the approximation of fitness values based
on the distance relationship between individuals in the decision space. First, grid sam-
pling method is used to collect solutions in the feasible domain, which will be evaluated
by fitness function. Sampling solutions can not only help to analyze the fitness landscape
of a local region and improve the accuracy of the approximation, but also can be used to
construct ADAM. In the experiment, we used Benchmark and Anatomy provided by On-
tology Alignment Evaluation Initiative to test EA-ADAM’s performance comparing with
EA and other cutting-edge systems. Experimental results demonstrate the algorithm’s
efficiency and effectiveness.
Keywords: Ontology Meta-matching, Ontology Alignment, Evolutionary Algorithm,
Expensive Optimization, Fitness Approximation

1. Introduction. Ontology describes domain knowledge and expresses the specification
of the terms in the vocabulary [1], which is the modeling tool of Semantic Web(SW).
According to [2], an ontology consists mainly of classes: describe objects with common
characteristics in a specific domain(For example, ”birds” can represent a class of all bird
objects in animals); properties: describe the entities’ relationship; instances: describe a
specific object of the class(For example, ”English” is an instance of the ”Language” class);
and the relationship between the elements in the ontology. Elements mentioned above
are collectively called entities. With the development of the SW and the Knowledge
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Graph, a large number of ontologies have emerged in various domain [3, 4]. However,
different developers construct ontologies from their own perspective, which leads to the
same knowledge’s different representations, i.e. ontology heterogeneity problem [5].

Previous studies have shown that OM can find correspondences between heterogeneous
ontologies to solve the ontology heterogeneity problem [6]. Specifically, OM utilizes simi-
larity measures to evaluate the similarity and obtain the correspondence between entities
from different ontologies, finally, output the matching result [7]. As the key of OM, sim-
ilarity measure dedicates to evaluating the similarity of the entities from two ontologies
[8]. However, only one similarity measures is difficult to provide the satisfactory results,
which shows the necessity for aggregating multiple similarity measures to optimise OM’s
results [9]. OMM investigates how different similarity measures can be combined and
debugged to determine high-quality matching results [10]. OMM first identifies different
similarity matrices through similarity measures, and then assigns appropriate weights and
thresholds to these matrices to obtain final matching results [11]. Since the weights and
thresholds take real numbers in the range of [0,1], OMM problem is usually modeled as a
class of continuous optimization problems. According to the previous studies, EA [12, 13]
has been an effective method for addressing the OMM problem [14].

For OMM base on EA, since population requires a large number of fitness evaluation
[15], which will deteriorate the efficiency of the algorithm. The most popular approach
is to use surrogate-models instead of the expensive fitness evaluation process while guar-
anteeing the optimization ability of the algorithm, i.e., Surrogate-Assisted Evolutionary
Algorithm(SAEA). Mainstream surrogate models such as Support Vector Machine(SVM)
[16], Gaussian process regression (GPR) [17], and Radial Basis Function(RBF) [18] have
been widely used in solving high cost problems. However, these models are based on the
idea of regression, which often requires complicated training processes and high computa-
tional complexity. In contrast, similarity-based model utilizes inter-individual interrela-
tionships to directly obtain an approximate mapping of the fitness function, which avoids
the complex training process and is an efficient generalized model.

Most of the similarity-based methods face two main problems. First, such models rely
on the distance of individuals in the solution space, i.e., the closer the Euclidean distance
between two individuals, the more approximate their fitness. However, existing analyses
of Fitness Landscape(FL) have shown that when the dimensionality of the solution space
increases significantly, the accuracy of fitness predictions using distance relationships will
be difficult to guarantee [19]. In some regions, it is possible that the fitness values of two
neighboring individuals may vary dramatically, even if they are close in solution space.
Therefore, in the process of estimating an individual using similarity-based models, it
is necessary to analyze the FL in which the individual is located. One of the effective
analytical methods is to extract sampling information in the feasible domain using sam-
pling methods and then discretize the FL to represent it. Second, the individuals used
to construct the model need to compute their fitness values, which is often done in an
algorithm update, and these computations likewise deteriorate the algorithm’s running
time.

To perform the OMM task more efficiently while keeping the match quality as high as
possible, a kind of similarity-based model, i.e., ADAM based on grid sampling is proposed,
which is based on the distance relationship between the neighboring sampling individuals
and the interested individuals in the solution space to accomplish fitness estimation,
thus does not require a complex training process. In particular, we use grid sampling to
divided the feasible domain into uniform grids. Each sampling point’s fitness value will be
calculated using fitness function. Sampling points will not only help analyze the roughness
of the FL within a local region (i.e., relatively significant fitness variations within localized
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regions), but they can also be used for fitness estimation. After that, the feasible domain is
divided into different regions centered on each sampling point. For a new individual, first
determine its region in the feasible domain, when it located in a region with a relatively
rough fitness landscape (large fitness difference), then use the fitness function to calculate
it. Otherwise, use the neighborhood sampling points to estimate it. On the one hand,
it will reduce the running time of the algorithm, On the other hand, it can theoretically
improve the accuracy of the estimation. Since the sampling process is done before the
algorithm update, the problem of needing to accurately compute additional individuals
to build the model during the algorithm update is solved. The main contributions are as
follows:

• the FL is analyzed using grid sampling, when the FL where the individual is located
is considered relatively rough, calculate it using the fitness function. Otherwise it
will be estimated using ADAM;

• an ADAM based on grid sampling is presented to forecast the fitness of the individ-
uals;

• an ADAM assisted EA is proposed for efficiently addressing the OMM problem.

The rest of this paper is organized as follows: Section 2 introduced the related work of
this paper; Section 3 presents some basic conceptions of OM; Section 4 shows the con-
struction of Anti-Distance Approximation Model(ADAM) assisted EA; Section 5 presents
relevant results of experiments; Section 6 introduces the conclusion.

2. Related Work. In this section, we will review the research process of OMM tech-
niques and surrogate models used to solve expensive optimization problems in chronolog-
ical order, respectively.

2.1. Reviews of OMM Techniques. As the number of ontologies proliferates, the
task of OM becomes more complex, so OMM combined multiple similarity measures has
become a cutting-edge technology. The most popular approach is to model the OMM
problem as an optimization problem and solve it by meta-heuristics [20].

Martinez-Gil et al. [15] proposed genetics for ontology alignments, which firstly used
genetic algorithms to automatically establish the optimal weights of different similarity
measures. After that Ginsca et al. [21] used EA to optimize three different types of
similarity measures, i.e. syntactic-based, semantic-based and taxonomy-based, then used
threshold screening for final alignment to improve the result’s quality. In addition, for
reducing the algorithm’s running time, Xue et al. [22] optimized the ontology alignment
using a Compact Evolutionary Algorithm (CEA) and obtained the experiment results
with acceptable correctness and completeness. In order to prevent EA from falling into
precocious convergence, Lv et al. [11] proposed a kind of adaptive pressure selection
operator for optimizing EA-based ontology meta-matching. Besides EA, Particle Swarm
Optimization(PSO) [23] has also become a common method for solving OMM problems
due to its excellent performance and robustness. Semenova et al. [24] utilizes PSO
to find appropriate weights for semantic measure metrics, enabling automatic tuning
of parameters. In order to improve the quality of matching, Zhu et al. [25] proposed a
Simulated Annealing(SA) PSO to optimize the parameters of multiple similarity measures
and use SA strategy to help the algorithm jump out of the local optimal solution. Since
researchers have different requirements on the focus of the matching results (e.g., the
requirements on recall and precision in different research contexts), the single-objective
OMM method is difficult to meet the matching requirements, and thus it is necessary to
model the OM as a multi-objective OMM optimization problem. Xue et al. used NSGA-II
[26] and MOEA/D [27] for maximizing three optimization objectives of OM. Semenova et
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al. [28] proposed MOPSO-based OMM system. In addition, other meta-heuristic methods
such as grasshopper algorithm [29] and firefly algorithm [30] have been successively applied
to solve OMM problem. Besides meta-heuristics, Machine Learning(ML)[31] has also
become an advanced method. Xue et al. [32] proposed a new OMM framework based on
Reinforcement Learning(RL) [33] to obtain high-quality alignment.

It can be seen that most of the meta-heuristic algorithms around OMM are aimed at
the quality of the alignment, while ignoring the time consumption of the matching system,
which makes it difficult for conventional techniques to perform well. Therefore, surrogate-
based optimization has become a popular research, which tends to reduce the number of
real fitness calculations to improve the efficiency of the algorithm while ensuring excellent
optimization capabilities of the algorithms.

2.2. Surrogate-based Optimization. Many scholars have made great contributions in
the field of surrogate-based optimization, proposing a series of efficient surrogate-models.

Classical surrogate-models include Polynomial Regression(PR) [34], SVM, Kriging [35],
RBF, and Neural Network(NN) [36, 37]. These models are based on the idea of regression,
which greatly reduces the computational cost of the algorithms in solving costly problems.
Bernaridno et al. [38] applied a linear regression method with weights to a clone selec-
tion algorithm to improve its performance in high-cost problems. Ciccazzo et al. [39]
applied SVM to the simulation of circuit analysis with satisfactory results. Liu et al.
[40] proposed a gaussian process surrogate model assisted EA to solve the medium-scale
expensive problem. RBF models for large-scale optimization problems with constraints
greatly greatly improves the efficiency of the evolutionary algorithm [41]. Graning et al.
[42] introduced NN to EA and verified the performance improvement. Meanwhile, since
each model has its own advantages and disadvantages [43], some studies such as [44] have
used multiple surrogate-models simultaneously to enhance the robustness of the model.
Unlike the regression-based model described above, similarity-based models utilize inter-
relationships between individuals to accomplish the forecast. The most representative of
these is Fitness Inheritance(FI) [45]. FI was first proposed by Smith et al., since a new
individual evolves from its parent individual, then in some cases the approximate fitness
value of the new individual can be obtained from its parent individuals. Inspired by Smith,
many models based on interrelationships between individuals have been produced, such
as [46], [47]. This type of model is highly dependent on the similarity between individuals
and is often widely applied to localized regions of the problem.

As can be seen above, research on OMM techniques based on meta-heuristic algorithms
dominates. However, for classical OMM techniques based on EA, excessive computational
consumption in fitness evaluation process will deteriorate the efficiency of the algorithm.
Existing surrogate-models such as RBF, NN, etc. often require data for training, which
causes extra computationally expensive. As for the existing similarity-based models, over-
reliance on similarity between individuals makes forecast accuracy difficult to guarantee.
To improve the efficiency of EA-based OMM, an EA-ADAM has been proposed, which
utilizes the neighborhood solutions in the feasible domain to construct ADAM to estimate
new individuals in order to reduce the number of fitness calculations. In particular, we
use grid sampling to obtain the neighborhood solutions and use these solutions’ fitness to
analyze the roughness of FL and then determine whether to estimate it or not, which will
theoretically improve the accuracy of the estimation.

3. Preliminaries.
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3.1. Ontology and Ontology Alignment. Ontologies describe a specific domain’s
knowledge by defining concepts, properties, instances, and the relationships of them.
An ontology can be defined as follows:

Definition 3.1 (Ontology). An ontology can be regarded as a 4-tuple Onto = (C, P, I, R),
where: C, P , I represent the nonempty set of classes, properties, instances respectively;
and R represents the relationship of the entities from the ontologies.

For solving the ontology heterogeneity problem, ontology matching process is the cutting-
edge technique for determining the ontology alignment, which is defined as follows:

Definition 3.2 (Ontology Alignment). Ontology alignment can be seen as a 5-tuple (id,
e1, e2, confidence, relation), where: id represents the matching element’s identifier; e1,
e2 represent the entities from O1 and O2, respectively; confidence represents matched
element’s confidence, range [0,1]; relation Reflects the relationship of e1, e2, such as
equivalence, generalization, etc.

3.2. Similarity Measure and Aggregation. Similarity measures are important tech-
niques for calculating the similarity value of mappings. The mapping with higher sim-
ilarity value, the more it will be regarded as the correct mapping and will be saved.
Therefore, the selection of similarity measures will directly affect the matching result.
When performing ontology matching tasks, linguistic-based and syntax-based similarity
measures are widely selected.

Linguistic-based method utilize synonyms or superlatives of two words to discover cor-
respondences between entities, often with the help of dictionaries or thesauri. Among
them, Wu and Palmer method [48] utilizing WordNet [49], an electronic lexical database,
is widely used as an effective similarity measure. As for syntax-based similarity mea-
sures, the classical technique N-gram [50] is selected. In addition, Bidirectional Encoder
Representations from Transformers(BERT) [51] is likewise considered, which has powerful
semantic understanding and can better understand longer texts. However, during the pro-
cessing of ontologies, longer passages of text appear less frequently. For computational
efficiency reasons, the more efficient N-gram is selected. Similarity measures based on
symbolic regression such as Levenshtein [52], Jaro [53], etc. are also widely used, how-
ever, these above methods only consider the parts of the two strings that are the same
or different. In contrast, SMOA [54] considers both the same and different characters in
two strings, which theoretically provides a better measure of the similarity of two strings.
Therefore, we use Wu and Palmer method as linguistic-based similarity measure, and
N-gram and SMOA as two syntax-based similarity measures.

Since the complexity of the ontology heterogeneity problem, a single similarity mea-
sure is difficult for guaranteeing the high-quality of matching results. It is necessary to
integrate various similarity measures and thus improve the confidence of the alignment.
The weighted sum method can be used to aggregate similarity measures [55], which can
be defined as Equation (1):

sag(ei, ej) =
n∑

k=1

wk · sk(ei, ej), subject to
n∑

k=1

wk = 1 (1)

where ei and ej represent two entities of two ontologies, wk represents the aggregating
weight of the kth similarity measure sk. Assuming three similarity measures whose values
are s1 = 0.61, s2 = 0.54 and s3 = 0.85, respectively. Given the aggregating weight
vector (w1, w2, w3) = (0.25, 0.35, 0.4)T , and the final similarity value is

∑
wi × si =

w1 × s1 + w2 × s2 + w3 × s3 ≈ 0.68.
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3.3. Ontology Meta-matching Problem. Ontology meta-matching aims to obtain
satisfactory alignment by automatically finding aggregated weights and thresholds for
multiple similarity measures. To better assess the quality of the alignment, two metrics
of the classical ontology meta-matching system GOAL [56] are referenced in this work,
namely recall and precision. According to [57], precision calculates the percentage of true
correct matching sequences and recall evaluates the ratio of the correct match sequences
found to the all correct matches available, which can be defined as Equation (2) and
Equation (3), respectively:

recall =
|RA

⋂
A|

|RA|
(2)

precision =
|RA

⋂
A|

|A|
(3)

where RA and A are the reference alignment and the alignment, respectively. The
quality of ontology alignment is measured by a weighted summed average of recall and
precision, i.e. f −measure, which can be defined as Equation (4):

f −measure =
2 · precision · recall
precision+ recall

(4)

Based on above mentioned, the definition of ontology meta-matching is presented as
follows: 

max f −measure(W,T )

s.t. W = (w1, w2, · · · , wn−1)
T

n−1∑
i=1

wi = 1, wi ∈ [0, 1], i = 1, 2, · · · , n− 1

T ∈ [0, 1]

(5)

where W and T together comprise the n-dimensional decision variables, W represents
the integrated weights of multiple similarity measures, and T represents the threshold
used to filter low-quality mappings. The function f − measure(W,T ) is the f-measure
value of the ontology matching result obtained from the parameter set W and T .

4. Evolutionary Algorithm with Anti-distance Approximation Model. Classic
EA-based OMM needs to compare with reference alignment, which makes the algorithm
consume long running time. Therefore, an approximation model is proposed to improve
the efficiency of EA. Algorithm 1 presents the framework of EA-ADAM based OMM:

First, in the pre-processing phase, given two ontologies O1 and O2. Parse all entities
from O1 and O2 separately. Then use the given three similarity measures to calculate the
similarity of the parsed entities belonging to O1 and O2 respectively, and the three similar-
ity matrices get from different similarity measures are obtained, this will be incorporated
into the calculation of the fitness function.

During the initialization phase, generate s Sample Points(SPs) using grid sampling
and compute their fitness values using the fitness function. These solutions and their
corresponding fitness values will be stored in the archive A. The archive A will be set
out an extra location to store the Historical Optimal Solution(HOS), and at initialization,
HOS will be selected from the SPs to be stored. Then centered on each SP (excluding
HOS), the feasible domain is divided into the same number of local sub-regions as the
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Algorithm 1 EA-ADAM based OMM framework

1: Input: The number of maximum generation MGen;
2: Input: Related parameters;
3: Input: Reference alignment;
4: Input: Number of neighborhood individuals n;
5: Input: Number of samples s;
6: Pre-processing(O1, O2, similarity measures)
7: Sample s solutions using grid sample, and calculate their fitness using the fitness

function;
8: Save the above solutions and their corresponding fitness values in the archive A;
9: Divide the feasible domain into sub-regions using SPs and mark the relative roughness

of FL within each sub-region;
10: Select the solution from A with the highest fitness as the HOS;
11: Save the HOS into A(At this point there are two identical historically optimal solutions

in A, but the location where the HOS is stored will be constantly updated with the
algorithm);

12: Generate a population P of size M randomly;
13: Initialize the FOS, whose fitness value is set to 0;
14: for i=0; i <MGen; i++ do
15: for j=0; j <M ; j++ do
16: Select two solutions closest to jth individual from A;
17: if If the selected solution is in a relatively rough region of the FL or the HOS is

selected then
18: calculate the jth individual using the fitness function;
19: Update the HOS;
20: else
21: Construct ADAM to estimate the jth individual;
22: Update the FOS;
23: end if
24: end for
25: Calculate the FOS using the fitness function;
26: Update the HOS;
27: Perform select operations;
28: Perform cross operations;
29: Perform mutation operations;
30: end for
31: Output the HOS;
32: Decode the HOS and get the appropriate matching pair;
33: Output: recall, precision, f-measure.

SPs. And mark the location of the relative rough of FL within each localized region(if it
exists).

During the EA optimization phase, first find the first two closest neighboring SPs for
the new individual, which will help locate the region of it. Determine if the location of the
new individual is marked, and if so, fitness approximation at this time will be considered
inaccurate, thus use the fitness function to calculate it. If the selected solutions contain
the HOS, it could mean that the new individual has the potential to become the HOS,
in which case it will also be calculated using the fitness function. Otherwise, the selected
solutions will be utilized to construct the ADAM to approximate the new individual. It is
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worth noting that all new individuals that have been computed using the fitness function
are used to update the HOS. In addition, since the value being estimated is obtained
using a weighted average of the fitness values of the pre-designed SPs, then the estimate
will be confined to the range of the fitness values of the SPs, i.e., the estimate will not
exceed the maximum fitness value of the SPs at the maximum, which will hinder the
algorithm’s optimality search. Therefore, we will compute exactly the Forecast Optimal
Solution (FOS) for each generation, regardless of whether its estimate value is better than
the HOS or not.

4.1. Encoding Mechanism. Binary codes are used to store information. The encoding
information contains weights of three similarity measures mentioned and one threshold
value to filter lower similarity values, both of them will update in the iteration. Specif-
ically, we use the definition of split points in [0, 1] to represent the weights. Assume
that m represents the number of weights and the set of split points will be expressed as
sp′ = {sp′1, sp′2, . . ., sp′m−1}. When decode the information, the elements in sp′ are first
arranged in ascending order to obtain sp = {sp1, sp2, . . ., spm−1}, and then the weights
are calculated by Equation (6):

wj =


sp1, j = 1

spj − spj−1,1 < j < m

1− spm−1

(6)

The total length m of the individual code consists of an m − 1 bit split point and a
1-bit threshold. Figure 1 illustrates an example of weight encoding and decoding, which
includes five weights of five different similarity measures.

Figure 1. An example of weight coding and decoding.

From the given cutting points, the weights can be obtained as w1 = s1 − 0 = 0.18,
w2 = sp2−sp1 = 0.14, w3 = sp3−sp2 = 0.13, w4 = sp4−sp3 = 0.19, w5 = sp5−sp4 = 0.23,
w6 = 1− sp5 = 0.13. The sum of all weights is 1.
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4.2. Anti-Distance Approximation Model Based on Grid Sampling. Since the
feasible domain is large and complex, it is difficult to forecast the fitness of the newly gen-
erated individuals, the classical method is to discretize the feasible domain into sampling
points by sampling methods. Then calculate the fitness value of each SP using fitness
function, and the fitness value of the new individuals will be estimated using the neigh-
boring SPs. In order to ensure that the SPs can cover the whole feasible region uniformly
in the case of low dimension, we use the grid sampling [58], which can theoretically reflect
the characteristics of the feasible region well.

For the number of SPs, the algorithm’s approximation precision and computational
efficiency need to be weighed. In this work, the dimension of the feasible domain is
4. Suppose that n points are collected in each dimension, the final number of samples
obtained is n4. When n=2, the spacing of the samples is large, which will make the
approximation precision lower; when n=4, then the final number of SPs can be obtained
as 44=256, and such a large number of samples will lead to an increase in the amount
of computation and deteriorate the computational efficiency. Therefore, we set n=3 to
obtain 34=81 SPs. In addition, to ensure a uniform distribution of SPs, the three points
collected in each dimensional [0,1] interval are 0.25, 0.50, and 0.75, respectively. Figure 2
illustrates an example of using grid sampling in two dimensions, we can get 9 SPs which
correspond to a, b, .... , i nine coordinate points.

Figure 2. Example of sampling in two dimensions using grid sampling.

After SPs are collected, it is necessary to find the neighborhood individuals of the
new individual whose fitness is to approximate. This approximation is based on the
assumption that if two individuals are close enough in the decision space, they are equally
close in the objective space [59]. However, when the FL is relatively rough, the accuracy
of the approximation will be difficult to guarantee. FL is proposed by [60] and is used to
describe a visual model of the relationship between fitness functions and decision variables
for optimization problems in EA. The roughness of the FL is used to describe the degree
of undulation or irregularity of the surface of the fitness function in an optimization
problem. A rough local FL implies that the current local region of the fitness function
varies dramatically and is not conducive to the prediction of fitness values.
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Figure 3 presents the effect of different rough of the FL on the fitness approximation
in a one-dimensional Michalewicz function. Where x1 and x3 represent two solutions
calculated with fitness function, and x2 represents a new solution with the fitness to be
approximated. The vertical coordinate represents their real fitness. It can be seen that
the FL between x2 and x3 is rougher than between x1 and x2. Even though the distance
between x2 and x3 is also close, it is obvious that using the fitness of x3 to estimate x2

has a large error. In contrast, using x1 to estimate x2 yields satisfactory results.

Figure 3. An example of three solutions.

Therefore, it is necessary to analyze the roughness of the FL in which xi and its neigh-
borhood individuals are located to determine whether to perform fitness approximation
for xi. Since the construction of the fitness approximation is only in a local region, it is
more meaningful to analyze the roughness of the local FL compared to the global FL.

Before analyzing the FL, we need to determine the sub-region centered on each SP. In
this work, each sub-region is formed with each SP as the center and its neighboring SPs as
the boundary. All SPs in each sub-region consist of the central SP of that sub-region and
the neighboring SPs of the central SP. Suppose the ith SP is: xi = (xi1, xi2, xi3, xi4), its
neighboring SPs can be seen as (xi1± st, xi2, xi3, xi4), (xi1, xi2± st, xi3, xi4), (xi1, xi2, xi3±
st, xi4), (xi1, xi2, xi3 ± st, xi4), (xi1, xi2, xi3, xi4 ± st) respectively, totaling 8 points, where
st represents the sample interval, which in this work is 0.25. Note that when a dimension
of xij is sampled with points on the boundary, there will be fewer than 8 points in its
neighborhood. For example, if xi1 = 0.25, and 0.25-st = 0, but 0 is not in the collected
points.

Next, the FL in each sub-region needs to be analyzed. In each sub-region, most of
the SPs are theoretically close to each other in terms of fitness value. If there is a SP
with a large difference in fitness value from the rest of the SPs, the FL near that SP will
be considered to be relatively rough, and estimation using that SP will be considered as
inaccurate. Such SPs’ fitness values will be called outliers.

In order to find the outliers, the Boxplot method that can effectively analyze data is
used in this work. The specific process is as follows. First find the sub-region to be
analyzed, suppose that the fitness values of all SP s it contains are in ascending order
{f(sp1), f(sp2), ..., f(spn)}, where n is the number of SP s within that sub-region. Find
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the lower quartile Q1 of the whole set of data (i.e., the value corresponding to the quarter
position in the whole set of data. If the total number of data is even, the quarter position
is n/4; if the total number is odd, the quarter position is (n+1)/4) and the upper quartile
Q3 (i.e., the value that corresponds to the three-quarter position in the whole set of data.
If the total number of data is even, the quarter position is 3n/4; if the total number is
odd, the quarter position is (3n + 1)/4). Then the non-anomalous range can be seen
as: [Q1 − 1.5× IQR,Q3 + 1.5× IQR], where IQR represents the interquartile range and
IQR = Q3 - Q1. Fitness values that do not fall into this range can be considered outliers.
After that, given a new individual X, first find the SP closest to X and determine the

sub-region where X locates. Then find the second closest SP to X within that sub-region,
and if either of these two SP s’ fitness value is an outlier, the FL in which X is located
will be seen as relatively rough, then evaluate X exactly. If there are no outliers or HOS
in the fitness values of these two SP’s, this means that X can be estimated.

Suppose the two SP s found are SPfirst and SPsecond, their corresponding fitness values
are f(SPfirst) and f(SPsecond) respectively. Then the f-measure for individual X can be
calculated as follows:

f(X) = w1f(SPfirst) + w2f(SPsecond) (7)

where w1 and w2 represent the weights of f(SPfirst) and f(SPsecond), respectively.
Which can be calculated as Equation (8):

w1 = 1− d(SPfirst, X)

d(SPfirst, X) + d(SPsecond, X)

w2 = 1− d(SPsecond, X)

d(SPfirst, X) + d(SPsecond, X)

(8)

where d(SPfirst, X) and d(SPsecond, X) are represent the distance in the decision space
between X and SPfirst and SPsecond, respectively.
The Euclidean distance in Equation (9) which is a common method for calculating

the distance between two points in geometric space, is selected to calculate the distance
between two individuals:

d(I1, I2) =

√√√√ D∑
i=1

(I1i − I2i)2 (9)

where I1 and I2 represent two individuals, and D represents the dimensions of decision
variables.

4.3. Selection, Crossover and Mutation. Selection is for screening out some better
individuals from the current population as the next generation population using the fit-
ness function, which commonly include roulette-wheel selection, tournament selection,
truncation selection, Monte Carlo selection, etc. To ensure population diversity and the
better individuals will be selected with higher probability. We used roulette selection,
where the fitness of the individual is proportional to its probability of being selected.

Crossover is an important operation for ensuring populations’ diversity. Two individuals
in the are selected as parents for mating, i.e., their chromosomes are exchanged in a certain
way for some of their genes, thus forming new individuals. In this work, we selected
single-point crossover operation which is commonly used. A position on both parents’
chromosomes is first randomly selected as a crossover point, and then gene translocation
was performed on the paired chromosomes at that crossover position.
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Mutation aims to help the algorithm to jump out of the local optimum solution during
the optimization process. In this work, the common single point mutation was selected,
which means that a single bit from the gene sequence needs to be mutated. In binary
coding, changing 0 to 1 and 1 to 0.

5. Experiment.

5.1. Experimental Configuration. In this paper, the classic Benchmark and Anatomy
from OAEI [61] are selected to test the performance of EA-ADAM. OAEI is an interna-
tionally recognized platform for ontology alignment test and evaluation, aiming to pro-
mote the progress of ontology alignment by providing test datasets and giving evaluation
metrics to compare the performance of various matching systems and techniques.

Benchmark developed by OAEI is able to distinguish between different matching meth-
ods to a certain extent, and discover the shortcomings of the system under test in an
incremental way.The ontologies of Benchmark can be categorized into 1XX, 2XX, and
3XX according to the different heterogeneous types.1XX has the same ontology composi-
tion, and is usually used for conceptual testing; 2XX has ontologies with different lexical,
linguistic, or structural features that are usually used to compare different modifications;
and 3XX has ontologies developed by different organizations from the same domain in
the real world.

Unlike Benchmark, Anatomy has two parts: mouse anatomy ontology and human
anatomy ontology. The main characteristics of Anatomy are the larger size of the ontolo-
gies (the number of entities in both ontologies is around 3,000) and the higher difficulty
of the matching (these ontologies are described using techniques that use conceptualized
representations of natural language to a only limited extent), which will be challenges for
the matching quality and efficiency.

For the fair comparison, we set EA-ADAM and EA to the same parameters, i.e.:

• PopSize : 20,
• CrossoverP : 0.6,
• MutationP : 0.01,
• MGen : 250,

where PopSize represents population size which is related to of the decision variables’
dimension. In this work, the dimension n of the decision variable is 4. According to
existing studies [62], the range of PopSize should be in [4× n, 6× n], i.e. [16, 24]. If
PopSize is too large, the algorithm will be difficult to converge; if PopSize is too small,
the probability of early convergence will become high [63]. Combining the OMM is a
small-scale problem, PopSize is set to 20.

CrossoverP and MutationP represent crossover probability and mutation probability,
respectively. The suggested ranges are [0.6, 0.8] and [0.01, 0.05], respectively. Too small
a probability will reduce population diversity, and too high a probability will miss the
optimal individuals [64]. Considering the low dimension of the OMM problem, we set
CrossoverP and MutationP to 0.6 and 0.01.
MGen represents Maximum generation. If MGen is too small, it is difficult for the

population to converge. At later stages of evolution, when the results of the algorithm
hardly change, a larger MGen will lead to a waste of time and storage space. Combining
dimension n is set to 4, a relatively small maximum number of generations can be set,
and we set MGen to 120 which is robust enough in the experiments.

In this work, EA-ADAM and EA are compared from Table 1 in terms of recall, precision
and f-measure mentioned in Section 3.3 correspond to R, P and F in the table, respec-
tively. And the corresponding box-and-whisker plots in Figures 5-7. Then the running
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time in Table 2 are compared to demonstrate the efficiency of our method. Table 1 and
Table 2 show the average results of 30 independent runs of the algorithm. After that,
EA-ADAM and cutting-edge techniques from OAEI are compared in Table 3 and Table
4.

5.2. Experimental Results. As shown in Table 1, EA-ADAM and EA’s mean f-measure
are 0.865 and 0.866, respectively. In particular, for further measuring the closeness of the
results of the two algorithms, we calculated their mean difference, which is the mean of
the absolute values of the differences between the two algorithms on each testing case.
The results show that the mean difference of both methods is about 0.001, which indicates
that the results of them are very close. stDev represents the standard deviation of 30
independent results, which can show the stability of the matching system. For 1XX,
the f-measure of EA-ADAM can reach to 1.000, which shows the ability to perform the
matching task excellently under simple heterogeneous context. For the more complex
heterogeneous ontologies such as testing cases 2XX and 3XX and Anatomy, EA-ADAM
can also achieve great alignments using a linguistic-based similarity and two syntax-based
similarity measures. We need to point out that on testing cases 202, 265 and 266, the
f-measure of EA-ADAM is relatively low. This is due to the fact that in these matching
tasks, ontologies require the techniques using contextual information for finding high-
quality correspondences, yet EA-ADAM uses no context-based similarity measures. In
general, EA-ADAM demonstrated a acceptable degree of closeness to the EA results.
Additionally, the relatively low mean standard deviation indicates that ADAM is not only
effective in estimating the fitness of individuals, but also helps to enhance the stability of
the algorithm. Figure 4 illustrates the convergence of EA-ADAM and EA with increasing
number of iterations on Anatomy, where the red curve represents EA and the blue curve
represents EA-ADAM. As can be seen, the blue curve is close to the red curve, which
demonstrates the optimization ability of EA-ADAM and further illustrating the accuracy
of ADAM forecast. Although the optimized results are still slightly inferior to EA, the
running time of the algorithm can be reduced significantly (as will be explained later).

Figure 4. The convergence of EA-ADAM and EA.

Figures 5, 6, and 7 show three box plots for the two sets of data, corresponding to the
results of precision, recall, and f-measure, respectively. The three sets of plots show that
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Table 1. Comparison of EA-ADAM and EA on OAEI’s Benchmark and Anatomy.

Testing Case
EA-ADAM EA-ADAM EA-ADAM EA EA EA

P (stDev) R(stDev) F (stDev) P (stDev) R(stDev) F (stDev)

101 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
201 0.989 (0.000) 0.928 (0.000) 0.957 (0.000) 0.989 (0.000) 0.928 (0.000) 0.957 (0.000)
202 0.500 (0.000) 0.021 (0.000) 0.040 (0.000) 0.500 (0.000) 0.021 (0.000) 0.040 (0.000)
203 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
204 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
205 0.989 (0.000) 0.918 (0.000) 0.952 (0.000) 0.989 (0.000) 0.915 (0.005) 0.950 (0.003)
206 1.000 (0.000) 0.928 (0.000) 0.963 (0.000) 1.000 (0.000) 0.928 (0.000) 0.963 (0.000)
207 1.000 (0.000) 0.938 (0.000) 0.968 (0.000) 1.000 (0.000) 0.938 (0.000) 0.968 (0.000)
209 0.683 (0.013) 0.275 (0.005) 0.392 (0.003) 0.729 (0.008) 0.271 (0.005) 0.395 (0.005)
210 0.957 (0.027) 0.490 (0.007) 0.647 (0.003) 0.972 (0.017) 0.487 (0.004) 0.648 (0.002)
221 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
222 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
223 1.000 (0.000) 0.990 (0.000) 0.995 (0.005) 1.000 (0.000) 0.990 (0.000) 0.995 (0.000)
224 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
225 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
228 1.000 (0.000) 0.970 (0.000) 0.985 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
230 0.966 (0.025) 0.992 (0.007) 0.978 (0.010) 0.986 (0.000) 0.986 (0.000) 0.986 (0.000)
231 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
232 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
233 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
236 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
237 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.001) 1.000 (0.000) 1.000 (0.001)
238 0.990 (0.000) 0.990 (0.000) 0.990 (0.000) 0.990 (0.000) 0.990 (0.000) 0.990 (0.000)
239 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
240 1.000 (0.000) 0.970 (0.000) 0.985 (0.000) 1.000 (0.000) 0.970 (0.000) 0.985 (0.005)
241 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
246 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
247 1.000 (0.000) 0.970 (0.000) 0.985 (0.000) 1.000 (0.009) 0.970 (0.000) 0.985 (0.005)
248-2 1.000 (0.000) 0.794 (0.000) 0.885 (0.000) 1.000 (0.000) 0.794 (0.000) 0.885 (0.000)
249-2 1.000 (0.000) 0.794 (0.000) 0.885 (0.000) 1.000 (0.000) 0.794 (0.000) 0.885 (0.000)
250-2 1.000 (0.000) 0.788 (0.000) 0.881 (0.000) 1.000 (0.000) 0.788 (0.000) 0.881 (0.000)
251-2 1.000 (0.000) 0.796 (0.000) 0.886 (0.000) 1.000 (0.000) 0.796 (0.000) 0.886 (0.000)
252-2 1.000 (0.005) 0.794 (0.000) 0.885 (0.002) 1.000 (0.000) 0.794 (0.000) 0.885 (0.000)
253-2 1.000 (0.000) 0.794 (0.000) 0.885 (0.000) 1.000 (0.000) 0.794 (0.000) 0.885 (0.000)
254-2 1.000 (0.000) 0.788 (0.000) 0.881 (0.000) 1.000 (0.000) 0.788 (0.000) 0.881 (0.000)
257-2 1.000 (0.000) 0.788 (0.000) 0.881 (0.005) 1.000 (0.000) 0.788 (0.000) 0.881 (0.000)
258-2 1.000 (0.005) 0.796 (0.000) 0.886 (0.000) 1.000 (0.000) 0.796 (0.000) 0.886 (0.000)
259-2 1.000 (0.000) 0.794 (0.000) 0.885 (0.000) 1.000 (0.000) 0.794 (0.000) 0.885 (0.000)
260-2 1.000 (0.000) 0.793 (0.000) 0.885 (0.000) 1.000 (0.000) 0.793 (0.000) 0.885 (0.000)
261-2 1.000 (0.000) 0.788 (0.000) 0.881 (0.000) 1.000 (0.000) 0.788 (0.000) 0.881 (0.000)
262-2 1.000 (0.000) 0.788 (0.000) 0.881 (0.000) 1.000 (0.000) 0.788 (0.000) 0.881 (0.000)
265 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
266 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
301 0.980 (0.000) 0.814 (0.000) 0.889 (0.000) 0.980 (0.001) 0.814 (0.000) 0.889 (0.001)
302 1.000 (0.000) 0.604 (0.000) 0.753 (0.000) 1.000 (0.000) 0.604 (0.000) 0.753 (0.000)
303 0.889 (0.025) 0.821 (0.019) 0.853 (0.003) 0.895 (0.023) 0.821 (0.019) 0.856 (0.004)

Anatomy 0.941 (0.010) 0.784 (0.008) 0.855 (0.001) 0.944 (0.010) 0.783 (0.006) 0.856 (0.005)

Average 0.934 0.823 0.865 0.936 0.824 0.866
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the results of EA-ADAM and EA are relatively similar, as evidenced by the fact that the
upper and lower edges and the median of the two data sets in each plot are the same. The
mean values of EA-ADAM in all three figures are lower than EA(corresponds to the fork
in each plot), which indicates that there is still a difference between the results forecast
by the model and the real calculated results.

Figure 5. The Box-and-whisker Plot of precision.

Figure 6. The Box-and-whisker Plot of recall.

In Table 2, the average running time of EA-ADAM and EA are 1652 and 6556 millisec-
onds on Benchmark, respectively. And the improvement degree is 74.8%. For Anatomy,
EA-ADAM takes 77,286 milliseconds, while EA takes 504,156 milliseconds. The improve-
ment degree is 84.7%. In the classical EA-based OMM technique, the evaluation of in-
dividuals needs to be compared with reference alignment, which consumes much running
time. ADAM will reduce the number of fitness evaluations by estimating the individual’s
fitness and thus reduce EA’s running time.
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Figure 7. The Box-and-whisker Plot of f-measure.

Table 3 shows the comparison of EA-ADAM and other matching systems in terms of
f-measure on Benchmark. By comparison, it can be found that EA-ADAM’s results are
second only to CroMatch and Lily. Further analysis of matching process is necessary.
CroMatch proposed autoweight++ to aggregate multiple matchers, which enables a more
comprehensive analysis of the degree of similarity between entities. However, as the
number of matchers increases, the efficiency and memory of the system will be a concern.
Lily needs to do much processing on the data to achieve alignment. Before matching,
Lily reduces the impact of special test cases on the overall matching quality by means
of preprocessing. In the post-processing stage, Lily utilizes ontology mapping debugging
techniques to analyze and diagnose the mappings. In summary, CroMatch and Lily, need
to integrate additional matchers or increase the processing procedures to improve the
quality of the matching results, which increases its own size. EA-ADAM, although there
is a gap between the matching quality and that of CroMatch and Lily, however, there
is a greater advantage in terms of algorithmic lightweight. Compared to other matching
systems, EA-ADAM shows the advantage of matching quality. In summary, the above
results can illustrate the ability of EA-ADAM for obtaining satisfactory alignment.

Table 4 shows the comparison of EA-ADAM and other matching systems on Anatomy.
In particular, we chose matching system which is also based on surrogate-model for com-
parison, i.e., IM-HEA [65]. The results show that EA-ADAM achieves higher matching
quality. It has been found that IM-HEA does not add enough evaluation of the fitness
function in the matching process and also does not analyze the effect of FL on the model
forecast, which makes EA-ADAM perform better in the matching results. Compared with
11 other state-of-the-art matching systems, EA-ADAM ranks 5th, which indicates that
our approach can also achieve acceptable results when dealing with large-scale ontolo-
gies. The above test results reflect the high matching quality of EA-ADAM when facing
different sizes of ontologies.

6. Conclusions. Ontology is an advanced technology for describing domain knowledge.
However, there is no uniform standard for ontology construction, and the resulting het-
erogeneity problem greatly hinders the sharing and interaction of knowledge. OM has
become an advanced method for solving ontology heterogeneity. For EA-based OMM,
the fitness evaluation of individuals requires the comparison of the reference alignment,
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Table 2. Comparison of EA-ADAM and EA in terms of Running Time (millisecond).

Testing Case EA-ADAM EA

101 1299 7361
201 2719 7652
202 1524 7556
203 2210 7542
204 1670 7555
205 2139 7504
206 2337 7689
207 2910 7518
208 2303 7512
209 2224 7824
210 2232 7641
221 1440 7405
222 1451 7356
223 1598 7897
224 1342 7351
225 1446 7333
228 977 4793
230 1435 6284
231 1491 7425
232 1428 7468
233 961 7468
236 937 4914
237 1354 7461
238 1570 7450
239 907 4720
240 1047 4928
241 982 4852
246 1168 4660
247 1156 5398
248-2 2210 7776
249-2 2199 7630
250-2 1639 4805
251-2 2134 7422
252-2 2293 7600
253-2 2158 7696
254-2 1513 4812
257-2 1499 4982
258-2 2271 7830
259-2 2088 7696
260-2 1401 4753
261-2 1516 4983
262-2 1476 4869
265 848 4678
266 938 4556
301 1552 5894
302 2010 5311
303 1630 5515

Average 1652 6556
Anatomy 77,286 504,156

thus makes the algorithm computationally costly. For reasons of algorithmic efficiency,
we propose ADAM for approximating individuals’ fitness. We extract feasible solutions
and evaluate them with fitness function in the solution space using a grid design. Based
on this, ADAM is constructed for each individual with the approximation of its fitness
value using neighborhood. In addition, we analyze the local FL where the new indi-
vidual locates to determine whether to use ADAM. Experimental results illustrate the
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Table 3. Comparison among EA-IM and OAEI’s participants in terms of
f-measure on Benchmark.

Matcher F-Measure

AML 0.38
CroMatcher 0.89

Lily 0.89
LogMap 0.55
PhenoMF 0.01
PhenoMM 0.01
PhenoMP 0.01
XMap 0.56

EA-ADAM 0.87

Table 4. Comparison among EA-IM and OAEI’s participants in terms of
f-measure on Anatomy.

Matcher F-Measure

ALIN 0.85
LSMatch 0.76
AMD 0.86

SORBETMtch 0.91
Matcha 0.94
OLaLa 0.91
LogMap 0.88

LogMapBio 0.90
LogMapLite 0.83
StringEquiv 0.77
IM-HEA 0.84

EA-ADAM 0.86

ability of ADAM for helping EA to explore the feasible domain efficiently, thus determine
high-quality alignments.

For further improving EA-ADAM’s performance, we will attempt to adjust SPs’ number
according to the heterogeneous characteristics of the matching task. Additionally, we
will train different similarity measures for specific problems for further distinguishing
heterogeneous entities.
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