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Abstract. Both theoretically and practically, the study of super-resolution is of great
importance and has become one of the hotspots for research in related fields. However,
when image super-resolution reconstruction enlarges the pixels of an image by a larger
magnification, the image looks less smooth, which leads to the edges of the target object
in the interior of the image look blurred. Therefore, a super-resolution reconstruction
method based on self-attention mechanism and deep generative adversarial network is
proposed. First, in order to better utilize the low-level features in the deep generative
adversarial network, an improved generator network module is designed, which adopts a
dense connectivity structure to integrate the functions of each layer, and can make full
use of the functions of multiple layers. Then, a pixel self-attention module was designed.
The semantic dependencies on the spatial and channel dimensions are modeled, and the
upsampling and downsampling modules are redesigned to reduce the loss of image detail
information. Finally, the extracted shallow information is divided into three scales and
feature encoding-decoding reconstruction is performed at different scales. Experimental
results on three image super-resolution datasets, BSDS100, SET14 and Urban100, show
that the proposed method exhibits better performance in all metrics compared to multiple
existing super-resolution reconstruction algorithms.
Keywords: image super-resolution; deep learning; generative adversarial networks; self-
attention mechanism; multiscale

1. Introduction. Spatial resolution is a reflection of the quality of an image. High
spatial resolution images can provide more detailed information about the imaged scene
due to their high pixel density and high image quality. Super-Resolution (SR) of images
[1, 2] is the process of generating a high spatial resolution image about an imaging scene
based on one or more low-resolution images of the scene, and has become an active research
direction in the fields of computer vision and image processing.

Spatial resolution is an important metric regarding the quality description of digital
images [3, 4]. Higher spatial resolution of an image means higher pixel density of that
image, richer texture details and sharper image. The need for high spatial resolution
images is often faced for various fields based on image processing. Although it is possible
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to acquire digital images with high spatial resolution with the help of some hardware
techniques, this way of acquiring high resolution images will lead to high cost [5, 6]. For
the general image acquisition process, the limitations of the inherent resolution of the
imaging device’s own sensors, as well as the influence of different imaging environments,
make the image quality lower, and it is impossible to directly obtain high spatial resolution
images [7]. Super-resolution reconstruction of images is the process of combining one or
more low spatial resolution images of the same scene with high spatial resolution images
of the same scene based on signal processing theory by borrowing software technology.

With the wide range and depth of digital image application areas, it makes a wide
range of needs for how to improve image quality with the help of image spatial resolution
for existing images. For example, in mass entertainment, network video can be converted
between SD, HD, and Ultra HD images [8, 9] to satisfy the needs of the public with
videos of different resolutions. In medicine, based on super-resolution reconstruction,
existing medical images can be processed to obtain clearer results, which can help doctors
to accurately understand the patient’s situation, so that the patient can get timely and
accurate treatment [10].

However, there are many degradation factors in the imaging process of images, such as
the disturbance of atmospheric flow, the relative motion between the object and the imag-
ing device, the inaccurate focusing of the imaging device, the change of the surrounding
environment, and the own quality of the sensing instrument [11, 12]. These degradation
factors lead to the interference of noise in the whole imaging process, accompanied by
image distortion, distortion, etc. To recover the image and super-resolution reconstruc-
tion, it is necessary to analyze the basic principle of image degradation first. Due to the
complexity of the image degradation factors, it is difficult to use a perfect mathematical
model to accurately describe the degradation system, which is often approximated by
a linear system model. The goal of super-resolution image reconstruction is to recover
high-resolution images based on these observed images using some a priori knowledge and
assumed conditions of the image degradation model, which is the inverse process about
the imaging process of low spatial resolution images.

1.1. Related Work. With the popularization of digital image acquisition equipment and
the progress of technology, we can easily acquire a large number of image data. However,
due to the limitation of hardware equipment or other factors, sometimes we can only get
low-resolution images. This limits the details and clarity of the image and affects our
accurate understanding and analysis of the image [13]. Therefore, super-resolution image
reconstruction has become a hot research direction.

The significance of super-resolution image reconstruction lies in improving the vi-
sual quality and information richness of images. By converting a low-resolution image
into a high-resolution image, we can get more details and clarity, making the image
more realistic and true. For the classification of super-resolution problems, the related
super-resolution reconstruction algorithms can be roughly divided into three major cat-
egories: interpolation-based methods, reconstruction-based methods, and deep learning-
based methods.

(1) Interpolation-based approach. This method works by mapping all available low-
resolution images to a reference image, where each low-resolution image provides some
additional information about the imaged scene, fusing the available information from
different low-resolution images on the basis of alignment, and finally de-blurring the image.

Since single image interpolation algorithms do not produce high frequency components
that are lost during image acquisition, they do not deal well with the super-resolution
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problem, and the quality of the interpolated image obtained by such single image inter-
polation based methods is inherently limited by the information of the available data.
There are many kinds of interpolation methods that can be used. One of the simplest
algorithms is nearest neighbor interpolation, where each unknown pixel corresponds to
the luminance value of the pixel closest to it, as well as bilinear interpolation and cubic
interpolation algorithms, but these methods produce a very bad block effect. Haldar and
Setsompop [14] proposed a non-uniform interpolation algorithm that uses the generalized
multi-channel sampling theorem for a interpolation of a series of low-resolution images
with spatial transfer. The advantage of this method is that it is computationally small and
suitable for real-time applications. However, the optimality of the reconstruction cannot
be guaranteed because the interpolation error of the reconstruction process is not taken
into account. Liu et al. [15] proposed a polynomial approximation based on the motion
minimum squared error (MLS) to estimate the luminance value at each pixel of a high-
resolution image. Moreover, the coefficients and orders of this polynomial approximation
are adaptively adjusted for each pixel location.

Interpolation-based reconstruction algorithms are simple and fast, and therefore suit-
able for real-time applications. However, single-frame image interpolation is not good
enough to recover the detail information lost due to downsampling in the imaging process
of low-resolution images, and thus the interpolation-based reconstructed images do not
look real and believable.

(2) Reconstruction-based methods. This type of approach relies on observed low-
resolution image sequences to reconstruct high-quality, high-resolution images according
to a specific degradation model. The low-resolution image sequence contains different in-
formation about the same scene, and fusion of these different information about the scene
should result in an image with a more complete description of the scene information.
This method generally requires image alignment and sub-pixel accuracy. Liu et al. [16]
proposed an iterative inverse projection (IBP) algorithm, which is based on the difference
image between the observed low-resolution image and the simulated low-resolution image,
and obtains the high-resolution image with the help of iterative projection, which is in-
tuitive and easy to understand. However, this method does not obtain a unique solution,
and it is difficult to select the parameters of the operators used in the inverse projection
and to introduce a priori constraints.

(3) Deep learning based methods. This type of method obtains about the correspon-
dence between high and low resolution images (or image blocks) through a large number
of training samples. Then, the low-resolution input image (or image block) is recon-
structed in high resolution based on this relationship. Deep learning based methods
generally require the construction of sample libraries, and the size of the samples, and
their sample diversity are key factors affecting the quality of the reconstruction. One
of the challenges that the super-resolution reconstruction model needs to face is how to
get a more reasonable description about the structural content of high-resolution images
with the help of machine learning. In addition, some important application requirements
are often accompanied by more complex image degradation processes, and the need for
greater super-resolution reconstruction, such as super-resolution reconstruction of low-
quality/long-distance surveillance videos. Zhao et al. [17] proposed an end-to-end deep
convolutional neural network that can directly learn the representation of high-resolution
images. The network contains convolutional, nonlinear and reconstruction layers, which
can effectively recover the high-frequency details of an image. This method is a signifi-
cant improvement over previous methods and demonstrates the power of deep learning in
super-resolution tasks. Shi et al. [18] proposed a super-resolution generative adversarial
network (SRGAN), which contains a generator and a discriminator. The generator is
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used to reduce the high-resolution image and the discriminator is used to distinguish the
super-resolution image from the real image. Through realistic adversarial training, the
model can generate sharper and texture-rich results. SRGAN achieved the state-of-the-
art performance at that time.SRGAN adds the results of the discriminator network to
the loss function of the generator network, which makes the final trained high-resolution
image closer to the natural image.

1.2. Motivation and contribution. The SRGAN network model, although it will ob-
tain the most realistic visual perception, will reduce the PSNR value [19]. Therefore, the
larger the magnification of the pixels of the image, the less smooth the image looks (lower
value of PSNR), which results in the edges of the target object in the interior of the im-
age looking blurred. Therefore, in order to solve the problems of blurred details and low
contrast of SRGAN network models, this work proposes a super-resolution reconstruction
method SA-DGAN based on Self-Attention (SA) mechanism and Deep Generative Ad-
versarial Networks (DGAN).The main innovations and contributions of this work include:

(1) An improved generator network is proposed in order to fully utilize the rich sampling
block to increase the sampling rate of SR features at different depths. low-level features
in DGAN can potentially provide additional information to reconstruct high-frequency
details in high-resolution (High Resolution, HR) images in order to learn low resolution
(LR) and non-linear relationships in HR images. A dense connectivity structure is also
used to integrate the features of each layer, which can fully utilize the multi-level features.

(2) A pixel self-attention module is designed for capturing feature dependencies in
spatial and channel dimensions. The semantic dependencies in spatial and channel di-
mensions are modeled and the up-sampling and down-sampling modules of DGAN are
redesigned to reduce the loss of image detail information.

(3) In order to effectively avoid the superposition caused by errors in DGAN, the
extracted shallow information is divided into three scales by utilizing the idea of multi-
scale, and the newly designed coding and decoding units are used to perform feature
encoding-decoding reconstruction of the extracted shallow features at different scales.

2. Super-resolution reconstruction models and common structures.

2.1. Image degradation and reconstruction models. In the SR reconstruction pro-
cess, the image degradation model must be studied and mastered in detail in order to
realize an efficient reconstruction algorithm [20]. The degradation model mainly includes
four processes: motion degradation (generated by the relative motion between the data
acquisition device and the object), blurring, downsampling and noise, and the flow chart
is shown in Figure 1.

Figure 1. Image degradation process

The original HR image is XL1N1×L2N2 , where L1 and L2 are the downsampling factors of
the degradation process in horizontal and vertical directions, N1 andN2 are the dimensions
of the LR image. The degradation process of the image can be represented as:
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yk = DkHkFkX + Vk (1)

where yk denotes the kth degraded image, Dk is the downsampling operator corre-
sponding to the image, Hk denotes the blurring factor consisting of a series of factors, Fk

denotes the motion operator, X denotes the original HR image, Vk denotes the noise [21].
Image reconstruction techniques and image enhancement techniques are similar in that

their main task is to recover the original low-resolution image, but image enhancement
is subjective and evaluates the visual effect, while image reconstruction is objective and
evaluates the image with objective evaluation indexes. The principle of image reconstruc-
tion is to try to recover the original image through the a priori information obtained
in the degradation process, so the reconstruction technique is a reverse operation of the
degradation model to recover the original image [22]. The super-resolution process makes
the image recovery process irreversible due to the diversity of noise in the observation
process, and secondly, the low-resolution dataset in the reconstruction process is gener-
ally scarce, thus making the recovery of image quality with multiple uncertainties. At
the same time, the image degradation model is easily affected by external factors, which
makes the reconstructed image become extremely unstable, and if the original image con-
taining high-frequency noise is encountered, then the variation between the image pixel
points will be very large, resulting in a lack of continuity of the image [23].

2.2. Residual networks. The main reason for using Residual Network in deep learning
is to solve the problems of gradient disappearance and gradient explosion.

In deep neural networks, gradient disappearance and gradient explosion are two com-
mon problems. When information propagates in the network, with the increase of layers,
the gradient will gradually become very small or very large, which makes the optimiza-
tion process difficult and the network can not fully learn effective feature representation.
The residual network solves this problem by introducing ”jump connection”. Jumping
connection refers to introducing direct connection into the network and adding the input
directly to the output of the network. In this way, the network can gradually adjust the
output by learning the residual (the difference before and after skipping the connection)
instead of using the traditional forward propagation. By jumping connection, the residual
network can effectively transfer the gradient and avoid the disappearance or explosion of
the gradient in the deep network, as shown in Figure 2.
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x
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Figure 2. Structure of residual networks
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Theoretically, the learning form of residual network is expressed as follow:

y = F (x) + x (2)

where x and y are the inputs and outputs of the residual network, F represents the
residual feature mapping learned during network training.

A residual network containing two convolutional layers is expressed as:

F (x) = σ(W2σ(W1x)) (3)

where σ is the activation function and W is the representation bias.
Since jump connections introduce neither additional parameters nor almost no com-

putational complexity, yet they allow the network to converge more easily and solve the
degradation problem associated with increasing depth [24]. The goal of SR image recon-
struction is to improve the detail and clarity of the image. The residual network can
reconstruct an image by learning the residual between a low-resolution image and its cor-
responding high-resolution image. This means that the network mainly pays attention
to the differences of image details, and does not need to learn the representation of the
whole image from scratch [25]. In this way, we can learn and reconstruct images more
efficiently. Jumping connection in residual network allows fast information transmission
path, which can help the network capture the nonlinear transformation of images better.
For super-resolution image reconstruction, this means that the network can better model
the high-frequency details and texture information in the image.

2.3. Densely connected networks. Conventional convolution network can only cap-
ture local information, while dense connection can learn the global feature representation
of the image, thus improving the overall quality of the reconstructed image. Compared
with the network with a large number of convolution layers stacked, the densely con-
nected network has fewer parameters and is easy to train. Compared with the iterative
optimization algorithm, the end-to-end dense connection network converges faster and
the reconstruction results can be obtained quickly [26]. Generally speaking, the dense
connection network can effectively extract the global information of the image, and is
computationally efficient and easy to train and migrate, so it is very suitable for the task
of super-resolution image reconstruction.

Densely connected neural networks can solve the problem of information vanishing.
Unlike the summation operation of residual networks, the structure of dense connected
networks is shown in Figure 3.

In SR reconstruction, cascading convolutional layers have different receptive fields from
shallow to deep. This means that the convolutional layers at different locations are af-
fected by pixel points in different size ranges in the LR image. When extracting features
in different size ranges, localized features in small ranges are especially important for
recovering texture details in the HR image, but often the feature maps in the forward
position disappear as they flow through the whole network, resulting in the reconstructed
HR image being too smooth. By introducing dense connectivity, the forward-positioned
convolutional layer can be directly connected to the backward-positioned convolutional
layer and the up-sampling operator, and the information in the forward-positioned feature
maps can be directly applied to the process of feature extraction and up-sampling.

3. Super-resolution reconstruction based on SA-DGAN.
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Figure 3. Structure of densely connected networks

3.1. Improved generator network module. Two consecutive OctConv [27] are used
in DGAN for initial feature extraction. The kernel sizes are 3× 3 and 1× 1 for extracting
low and high frequency feature maps, respectively. In the first OctConv layer, the original
feature representation is converted to a multi-frequency feature representation. In the
second OctConv layer, feature maps are constructed for the low-frequency inputs and
high-frequency inputs, respectively, and the high-frequency feature maps will be used as
inputs in the next stage to understand the nonlinear relationship between the LR and HR
images. By skipping connections, the low-frequency feature maps are directly connected
to the reconstruction module. The expression of the output feature map Y = {Y H , Y L}
is shown as follow:

Y H = Y H→H + Y L→H = f(XH ;WH→H) + upsample(f(XL;WL→H), 2) (4)

Y L = Y L→L + Y H→L = f(XL;WL→L) + f(pool(XH , 2);WH→L) (5)

where XH is the high-frequency feature detail and XL is the low-frequency feature
detail.

The structure of OctConv is shown in Figure 4. X and Y denote the input and output
tensors, respectively. h and w denote the spatial dimensions, and the number of channels
is denoted by c.
After the initial feature extraction, this work utilizes four improved sampling blocks to

feed the proposed high-frequency features to the sampling, sample blocks, and connects all
the results from the intermediate blocks to the next block in a densely connected manner.
The sampling blocks in the module consist of up and down sampling operations [28]. In
this work, six sets of up and down sampling operations are chosen to be constructed for
the purpose of enriching the high-level representation and controlling the computational
effort at the same time.

The improved dense sampling network is shown in Figure 5. The input of the s-th
sampling block is F0, F1, . . . , Fs−1, Fs, where F0 is the high-frequency feature Y H extracted
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Figure 4. Structure of OctConv

from the previous module. First, the input image is concatenated and compressed by a
1× 1 convolution.

L0 = C0 ([F0, F1, . . . , Fs]) (6)

where C0 denotes the initial compression operation.
Then, let Ld denote the LR feature map obtained by the d-th upsampling group, and

Hd denote the HR feature map obtained by the downsampling group.

Ld = C↓
d ([H1, H2, . . . , Hd]) (7)

Hd = C↑
d ([L0, I1, . . . , Ld]) (8)

where C↓
d and C↑

d denote the downsampling and upsampling used in the d-th sample
block, respectively. The purpose of adding samples to the sample block is to reduce the
number of parameters and increase computational efficiency.

Finally, the LR features generated from each upper and lower sampling block are fused
using a 1× 1 convolution to facilitate dense connectivity of useful information. Fs repre-
sents the output of the sampling block.

Fs = Cs ([L0, I1, . . . , Ld]) (9)

Improved sampling blocks are tightly connected and used to create short paths between
layers and other layers. All feature mappings from the previous layer are first connected to
each other and then passed to all subsequent layers. Transferring elemental information to
deeper layers through the deep network increases the information flow, introduces multi-
stage feature extraction blocks for image super-resolution, and mitigates the problem of
gradient vanishing. In addition, dense connectivity can significantly reduce the number of
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Figure 5. Improved dense sampling networks

parameters through feature reuse, resulting in a dramatic improvement in computational
performance.

3.2. Pixel SA module. In this work, a pixel self-attention module consisting of a cas-
cade of a channel attention [29] and a spatial attention [30] is added to the DGAN gener-
ator to fuse multilevel cross-modal features to enhance the compatibility of the network
with the image features and to improve the extraction of high-frequency information from
the image. The structure of the pixel SA module is shown in Figure 6.

Figure 6. Pixel SA module
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The number of input and output channels does not change in the network, and the fea-
ture map learns the degree of dependence on each channel by global averaging and global
maximum pooling through channel attention, and subsequently improves the extraction
of high-frequency image feature information while making corresponding spatial trans-
formations of the information in the spatial domain to increase the diversity of feature
information.

The input feature map is first denoted by F . The feature map is compressed in the
spatial dimension. Complementarity in feature extraction is achieved by using average
pooling and maximum pooling. A total of two one-dimensional vectors can be obtained
after two pooling functions. Then the global average pooling is used for feature mean
extraction in terms of feature maps, so that the network has feedback for each pixel point
of the feature maps. The global maximum pooling is also a complement to the global
average pooling.

The obtained weight feature map MC(F ) after passing the channel attention is shown
as follows:

MC(F ) = σ
(
R1

(
R0

(
F c
avg

))
+R0 (R1 (F

c
max))

)
(10)

where F c
avg denotes the feature map after global maximum pooling computation, F c

max

denotes the feature map after global average pooling computation, R0 and R1 denote the
parameters in the multilayer perceptual model, and σ denotes the activation function.

The feature maps form the attention model on the channel. In order to make the
part of the input feature maps in the spatial dimension get higher weights accordingly,
so compression operations are done on the input feature maps in the channel dimension
by using average pooling and maximum pooling. The average and maximum sampling
operations were done on the input features in the channel dimension to obtain two 2D
feature maps respectively. Then a feature map with a channel number of 2 is obtained by
stacking them together in the channel dimension. Finally, to ensure that the final feature
map obtained agrees with the input feature map in the spatial dimension, a hidden layer
containing a single 7 × 7 convolutional kernel is used. A Sigmoid activation function is
used between this part of the convolutional layers.

3.3. Multi-scale and cross-layer connection. In order to effectively avoid the super-
position caused by errors in DGAN, the extracted shallow information is divided into
three scales by utilizing the idea of multi-scale, and the newly designed coding and decod-
ing units are used to perform feature encoding-decoding reconstruction of the extracted
shallow features at different scales

Considering that the coarse-scale information extracted from the image under the larger
sensory field is often able to assist the image in the smaller sensory field of the slightly
finer scale information extraction, the proposed network in this chapter combines the
reconstruction information obtained from the decoding under the finer scale with the
feature information obtained from the coding under the coarser scale, and jointly carries
out the decoding and reconstruction operation of the current (i.e., the finer scale layer),
which can better complete the reconstruction work. The output feature map of the coding
and decoding unit at the coarse scale is shown as follow:

Ide2(x) = fde2(fen2(Ien2(x))) (11)

where Ien2 is the coarse-scale input feature map, fen2 is the encoding unit in the 1/8
branch, and fde2 is the decoding unit in the 1/8 branch.

Ide1(x) = fde1(fen1(Ien1(x)) + Ide2(x)) (13)
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where Ien1 is the mesoscale input feature map, fen1 is the encoding unit in the 1/4
branch, and fde1 is the decoding unit in the 1/4 branch.

Ide(x) = fde(fen(Ien(x)) + Ide1(x)) (14)

where Ien is the fine-scale input feature map, fen is the encoding unit in the 1/2 branch,
and fde is the decoding unit in the 1/2 branch.
The proposed network fuses fine-scale feature information with slightly coarser size

feature information layer by layer from bottom to top, while the features at the coarser
scale also help to re-add some of the features at the finer scale that may have been lost
step by step.

3.4. Loss Function. DGAN needs to learn the mapping from X to Y . If the mapping
relation is set to G, then the learned image is GX . A discriminator is then used to
determine whether it is a real image or not to form a generative adversarial network. The
loss functions used include:

Ladv = EXLR
[logD(xHR)] + EXHR

[log(1−D(G(xLR)))] (15)

where xLR denotes low resolution image, xHR denotes high resolution image, G denotes
generator and D denotes discriminator.

The adversarial loss makes the generated image closer to the distribution of the real
high resolution image.

(2) Content loss.

Lcontent = EXHR,XLR
[∥xHR −G(xLR)∥1] (16)

Content loss minimizes the difference between the generated image G(xLR) and the real
high-resolution image xHR.
(3) Edge feature loss (Perceptual loss).

Lperceptual = EXHR,XLR
[∥ϕ(xHR)− ϕ(G(xLR))∥1] (17)

where ϕ denotes a pre-trained feature extraction network (e.g. VGG19). This preserves
the edge and texture features of the generated image.

Therefore, the total loss function is shown as follows:

Ltotal = λadvLadv + λcontentLcontent + λperceptualLperceptual (18)

where λ is used to balance the weight of each loss. The generated high-resolution image
can be obtained by minimizing this loss function.

4. Experimental results and analysis.

4.1. Experimental environment and experimental dataset. The experimental hard-
ware environment is: Intel Core i5 2.2GHz processor, 6G RAM, 400G hard disk, GTX1060
discrete graphics card. The experimental software environment is: Windows 7 operating
system, Matlab 2012 (R2012a) simulation software.

An objective quantitative assessment is performed based on the peak signal-to-noise
ratio (PSNR) and structural similarity metric (SSIM) between the reconstructed and
original high-resolution images. Three image super-resolution datasets, BSDS100, SET14
and Urban100, were used for the experimental dataset, and the main parameters are
shown in Table 1.

It can be seen that BSDS100 has the largest number of images with high resolution and
rich scenes. SET14 has a small number of images but contains a variety of resolutions.
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Table 1. Main parameters of the three datasets

Data set
Number of
pictures

Resolution
range

Scene type Hallmark

Bsds100 100 321Ö481∼481Ö321
Portrait of an animal,

nature Scenarios
High resolution

Set14 14
4 differentiation
per picture Hasty

Generic scenario
Large resolution

span

Urban100 100
4 differentiation
per picture Hasty

Urban architecture,
street view

Complexity
of detail

urban100 focuses on urban scenes and has a complex method of details. These three
datasets complement each other to comprehensively evaluate the recovery effect and gen-
eralization ability of super-resolution algorithms on different types of images. Researchers
often use these datasets simultaneously to compare and analyze image super-resolution
reconstruction algorithms.

4.2. Objective experimental results. In order to show the effectiveness of SA-DGAN
network more objectively, this experiment selects a variety of existing SR algorithms as
comparison methods, including Bicubic Interpolation, SRCNN, FSRCNN [31], VDSR [32]
and DBPN [33]. The 2x and 4x scaling experiments are performed on the three datasets,
and the experimental results are shown in Table 2 and Table 3.

Table 2. Results of 2x amplification experiments

Model
BSDS100 SET14 Urban100

PSNR(dB)/SSIM PSNR(dB)/SSIM PSNR(dB)/SSIM
Bicubic 26.59/0.7728 26.03/0.7495 25.76/0.7258
SRCNN 27.42/0.8063 27.06/0.7793 26.90/0.7706
FSRCNN 27.55/0.8130 27.20/0.7801 26.97/0.7741
VDSR 27.84/0.8409 27.48/0.7989 27.19/0.7760
DBPN 28.69/0.8833 28.13/0.8268 27.62/0.7900

SA-DGAN 29.15/0.9024 28.64/0.8405 28.15/0.7922

Table 3. Results of 4x amplification experiments

Model
BSDS100 SET14 Urban100

PSNR(dB)/SSIM PSNR(dB)/SSIM PSNR(dB)/SSIM
Bicubic 24.68/0.7237 24.12/0.7019 23.65/0.6667
SRCNN 25.51/0.7574 25.15/0.7202 24.71/0.7115
FSRCNN 25.64/0.7640 25.39/0.7310 24.86/0.7150
VDSR 25.93/0.7918 25.57/0.7498 25.38/0.7179
DBPN 26.78/0.8342 26.22/0.7774 25.81/0.7310

SA-DGAN 27.24/0.8533 26.73/0.7914 25.84/0.7331

We averaged the PSNR and SSIM data of the test sample set to derive the final results
for each evaluation metric. As can be seen from Tables 2 and 3, the super-resolution
effect decreases with increasing magnification. The experimental results show that the
experimental results of the deep learning-based methods are generally higher than those
of the traditional methods, and the SA-DGAN network generally outperforms the other
networks when tested on various types of datasets, and the SA-DGAN network also
exhibits better results in various metrics.
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4.3. Subjective experimental results. In order to visualize the reconstruction effect
of various super-resolution methods, a randomly selected image sample with rich texture
details from BSDS100 was used for the experiments in this work. The 4x zoom experi-
ments were conducted using six super-resolution methods respectively, as shown in Figure
7.

(a) Bicubic (b) SRCNN

(c) FSRCNN (d) VDSR

(e) DBPN (f) SA-DGAN

Figure 7. Results of subjective experiments

In subjective visual comparison, the images generated by SA-DGAN are clearer in terms
of texture, shadow, occlusion and pixel distribution.The images reconstructed by Bicu-
bic, SRCNN, FSRCNN and VDSR networks are distorted to varying degrees.The images
reconstructed by DBPN and SA-DGAN are almost free of distortion and have clearer
outlines.The images reconstructed by SA-DGAN contain more detailed information and
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the visual effect is closer to the original HR images. DGAN reconstructed images contain
more details and the visual effect is closer to the original HR image.

5. Conclusions. In this work, a super-resolution reconstruction method SA-DGAN is
proposed.First, an improved generator network module is designed, which uses a dense
connection structure to integrate the functions of each layer and can fully utilize the
functions of multiple layers. Then, a pixel SA module is designed. The semantic de-
pendencies on the spatial and channel dimensions are modeled, and the up-sampling and
down-sampling modules are redesigned so as to reduce the loss of image detail informa-
tion. Finally, the extracted shallow information is divided into three scales and feature
encoding-decoding reconstruction is performed at different scales. Experimental results
on three image super-resolution datasets, BSDS100, SET14 and Urban100, show that
SA-DGAN has higher PSNR and SSIM compared to multiple existing super-resolution
reconstruction algorithms.However, the self-attention is limited in its ability to model
remote dependencies, and it cannot integrate global information effectively. Therefore,
subsequent studies will try to use hierarchical self-attention structure to gradually expand
the sensory field through multiple iterations of inference.
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