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Abstract. Aiming at the feature of hydro generator excitation control system such
as large inertia, large hysteresis and unstable parameters, a hydro generator excitation
control on the ground of enhanced Genetic Algorithm (GA) and Radial Basis Function
(RBF) neural network is designed. Firstly, for the issue of convergence of GA, the com-
putational framework of GA is improved relied on the coarse-grained parallel computing
model, and at the same time, for the defects of GA, the adaptive strategy is adopted to
optimize the design of the main steps of the objective function, crossover, variation and
migration of the population evolution. Then, on the ground of the enhanced GA, the RBF
neural network learning model is selected, the neural network weights are coarsely and
finely tuned by gradient descent method and GA, respectively, and the internal and ex-
ternal perturbations of the system are estimated by the expanding state discover, and the
nonlinear state-error feedback manage law is combined with the excitation engine manage
strategy for the purpose of dealing with the issues of system inertia, hysteresis and per-
turbation. The simulation outcome indicates that in the excitation starting process, load
step and load dumping, the overshoots of the hydro generator excitation manage system
designed relied on the enhanced GA and RBF neural network in this paper are 16.94%,
7.14% and 23.83%, respectively, which are 2.57%, 2.47% and 2.91% lower than those of
the excitation control algorithm with the imposed disturbance observer, and the system’s
anti-disturbance capability and robustness are effectively enhanced.
Keywords: Hydroelectric generator; Excitation control; Genetic algorithm; RBF neural
network; Adaptive strategy

1. Introduction. With the increasing scale and complexity of the hydraulic system,
the requirements for the energy transmitting level of the hydraulic system are becoming
higher and higher, once the stability of the system operation is destroyed, it will lead
to the national economy to suffer a significant loss, and bring a significant impact on
people’s lives. Therefore, improving the security and constancy of system operation has
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become an increasingly important and urgent research topic [1, 2, 3]. The inflammation
system is the core of synchronal generator operation control has a direct impact on the
reliability, economy and other characteristics of generator operation. The inflammation
system is to adjust the inflammation voltage at both sides of the hydraulic generator, so
as to regulate the electric potential of the engine and achieve the purpose of stabilizing
the depot voltage. Aiming at guaranteeing the normal operation of the synchronous
generator, the inflammation system could stably offer the inflammation recent needed
by the synchronous generator from no-load to full-load and overload [4, 5]. During the
accident function procedure, the synchronous generator inflammation control system also
takes a very significant part: when the power system faults and the grid voltage drops,
the inflammation system could quickly force inflammation, to enhance the stability of the
system. When the synchronous generator short-circuit faults occur within the synchronous
generator, in order to rapidly eliminate the fault and make the fault confined to the
smallest possible range, it should be able to quickly extinguish the magnetization.

1.1. Related Work. The growth of hydroelectric generator excitation control theory
has gone through the process from single-variable to multi-variable, from linear to non-
linear, and finally to the direction of intelligent control. Xia and Heydt [6] proposed
a single-output-single-input excitation control method with proportional regulation ac-
cording to generator-side voltage deviation. However, Devotta [7] proposed Proportional
Integral Derivative (PID) restrain by generator-side voltage digression. Schaefer and Kim
[8] proposed that PID regulation improves the sluggish and temporary stability of the
system to a certain extent, but still fails to effectively solve the contradiction between
the regulation accuracy and stability. Galaz et al. [9] pointed out that both proportional
voltage regulation and PID regulation do not have a good control effect, and PID regu-
lation cannot actually enhance the active quality of the system and increase the stability
level of the system. Aiming at enhancing the contradiction between the precision and
stability of the PID excitation method and the lack of artificial damping, Malik [10] pro-
posed the auxiliary excitation control strategy using power system stabilizer based on the
phase compensation principle to form an excitation controller with the structure of ”AVR
+ PSS”. Maya-Ortiz and Espinosa-Pérez [11] proposed a combination of robust and
adaptive design method, PSS from the initial single-variable design to the dual-variable
feedback PSS. Fan et al. [12] developed a strongly excited excitation regulator, the intro-
duction of auxiliary feedback, the use of the ”D-domain division method” to determine
the parameters of the common stabilization domain. Univariable based control methods
usually only consider the relationship between a single input and a single output, and
ignore other factors that may affect the excitation control. The multi-variable based con-
trol method can consider the complex interaction of multiple inputs and outputs, so as to
achieve more precise control, but it also increases the complexity and calculation amount
of the control system.

As modern control theory and control practice developing, the research methods and
tools have been enhanced continuously. Fusco and Russo [13] proposed to apply the opti-
mal control theory to the hydraulic system. Saavedra-Montes et al. [14] firstly established
and perfected the theoretical system of linear optimal excitation controllers, which lacks
the sufficiently high voltage feedback and gain in comparison to the AVR/PSS-type ex-
citation controllers. Zhao et al. [15] started to apply the adaptive control theory to the
design of excitation controllers, the goal of which is to modify the controller parameters or
adjust the control strategy to achieve the best control effect. Roy et al. [16] relied on the
reference module of the adaptive excitation control system. Wang et al. [17] suggested a
way for the design of a nonlinear feedback decoupling controller for generator excitation
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in multi-machine power systems by using differential geometric control theory. feedback
decoupling controller design method. Nan et al. [18] proposed a nonlinear Terminal slid-
ing mode variable structure excitation controller on the classical sliding mode control, and
achieved better excitation results. Baesmat and Bodson [19] proposed the cloud model
approach, which is to introduce probabilistic statistical ideas on the traditional fuzzy set
theory, constituting a mutual mapping relationship between qualitative and quantitative.
Orchi et al. [20] proposed a nonlinear zero dynamic approach to achieve constant reactive
power and constant power factor control of small units. Kawabe et al. [21] proposed
the use of mamdani-type fuzzy control and fuzzy control in combination with PID for
excitation control, which is more effective. Erol [22] combined genetic algorithms and
sensitivity-based parsing approach, to Using PMU online data to identify the dominant
parameters of the excitation controller. Jankee et al. [23] introduced a synchronous gen-
erator inverse structure from the generator third-order model equations, combined with
a BP neural network to control the excitation of the generator, and the simulation effect
is better. Agarala et al. [24] proposed a doubly-fed excitation control scheme based on
a single neuron adaptive PID algorithm, which could the excitation of the doubly-fed
generator is adjusted according to the change of wind speed.

1.2. Contribution. The various excitation control methods mentioned earlier have their
own advantages and shortcomings, and each control strategy has good results in solving
a certain aspect of the problem, but often there are hard to deal with issues in the design
or control process. Therefore, this article suggests a hydroelectric generator excitation
control on the ground of enhanced Genetic Algorithm (GA) and Radial Basis Function
(RBF) neural networks. Firstly, the GA is optimized, with the help of parallel evolu-
tion of multiple populations, which can accelerate the search of variable space and can
increase the overall size of the population, as well as the evolutionary isolation of each sub-
population from each other, which can help to maintain the diversity of the population,
avoid falling into the locally optimum solution and improve the quality of the solution.
Then a hydro generator excitation control method on the ground of enhanced GA and
RBF neural network is designed, and the whole structure of RBF network is divided into
stimulus layer, defuzzification layer, fuzzy illation layer and output layer. To avoid using
too large a range of excitation control parameters, the slope declivity method is adopted
to correct the initial parameters, and then the improved GA is adopted to search for the
optimization around this group of parameters to enhance the whole performance of ex-
citation control. At last, the whole performance of the excitation control is enhanced by
analyzing the output stabilization value. Finally, this paper verifies the excitation control
effect through the output stabilization value, overshooting amount, regulation time and
vibration times. The outcome indicates that the excitation control mechanism suggested
can ensure the system stability and meet the load demand, thus verifying the effectivity
and feasibility of the suggested method and control strategy.

2. Theoretical Analysis.

2.1. RBF Neural Network. An RBF neural network is a two-level feedforward network
which contains one obscured level [25], [26], the structure of which is shown in Figure 1.
It adopts a radial reliable function to match the input directly to the obscured level, and
then the output level is obtained through weighting the obscured level, which broadly
behaves non-linearly. A Gaussian operation is used as the radial basis function since it
is radially proportionate and has random order derivatives. The l-th obscured neuron’s
response to the stimulant vector xj(j = 1, 2, ...,M) is:
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ψl(xj) = exp

(
−∥xj − dl∥2

2θ2l

)
(1)

where ∥ · ∥ is the Euclidean paradigm, dl is the focus vector, and θl is the broadness
of the l-th obscured neuron, attentively, and l = 1, 2, ..., L. The effective output of the
Gaussian function is distributed within a narrow window, beyond which it is close to 0.
The harvest of the network is produced by an easy linear function, and the output of the
Gaussian operation is in Equation (2):

yj = f(xj) =
L∑
l=1

hlψl(xj) (2)

where hl is the weight that connects the l-th obscured neuron to the harvest neuron.
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Figure 1. RBF neural network structure

The studying progress of RBF neural network makes up of two phases. The original
stage is to clump every instance on the ground of the Euclidean distance among the
stimulus and the center; the second stage is to achieve hl of the clustered samples based
on the Recursive Least Squares (RLS) method. The RBF artificial neural network starts
without neurons and adds novel neurons through the discipline progress.

(1) Suppose there are already q obscured neurons. Find the stimulus vector with the
largest Euclidean range cmax through focus vector dl(l = 1, 2, ..., Q). The farthest range
is denoted as follows.

cmax = max ∥xj − dl∥ = ∥xs − dt∥ (3)

where xs and dt are the farthest stimulus vector and focus vector, individually.
(2) Add an obscured neuron with a focus vector equivalent to xs.{

cq+1 = xs

θq+1 =
1
2

(∑2
i=1 ∥xs − di∥2

)1/2 (4)

where di are the two abutting focus vectors of the novel neuron, i = 1, 2.



2020 H.-Z. Liu, Y. Li, Z.-G. You, J.-Q. Ming and A. Liu

(3) The weights among the obscured level and the instance output level yj are recreated
by the RLS.

(4) The output yj of the network to xj is computed through Equation (3) and Equation
(4) to obtain the mean square error e as:

e =
1

M

(
m∑
l=1

∥yj − yl∥2
)1/2

(5)

If e is less than θ, cultivating is complete; otherwise, give back to Step (1).
Compared with other control algorithms, RBF neural networks are famous for their

nonlinear approximation ability. In the excitation control of hydrogenerator, the sys-
tem may involve complex nonlinear relations. RBF neural network can better fit these
nonlinear functions and provide more accurate modeling and control.

2.2. Hydro generator excitation system. The inflammation control system is one
of the main control links of the hydroelectric generator [27], which regulates the size
of the generator induced electromotive force by controlling the output of the excitation
power link, and stabilizes the generator output voltage when the load of the power system
changes. The hydro generator excitation controller model is indicated in Figure 2.
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Figure 2. The hydro generator excitation controller model

The meanings of the parameters in the figure are as follows: Us is the generator terminal
voltage; Is is the generator stator current; Ud is the measurement and comparison link
output voltage; Egc is the exciter output voltage; Ut is the integrated amplification control
link output voltage; Ur is the voltage feedback control quantity; Uq is the voltage feedback
link output quantity; Igc is the generator excitation current; Useg is the reference voltage
of the exciter; Uf is the excitation controller voltage deviation.

In the modeling process of the generator link, the first order inertial link is used to
represent the mathematical model of the generator.

Vv =
Lv

1 + SvT
(6)

The voltage measurement and comparison unit of the generator is divided into two
parts: measurement and comparison. Measurement link from the transformer to measure
the generator stator induced electromotive force, and then through the rectifier and fil-
tering link, the stator induced electromotive force will be converted into DC RMS value
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according to the proportionality relationship. Then, the DC RMS value will be input to
the comparison link, and then the divergence between the true value of the stator elec-
tromotive force and the rated value will be computed, and the difference will be taken as
the final output of the unit. The association between the output Ud of the unit and the
stator induced electromotive force is shown in Equation (7).

Ud = |U̇ + (Ld + ixd)| (7)

Expansion of the state observation unit through the input signal voltage deviation
signal amplification, and limiting control and other operations, to provide the synchro-
nous trigger unit with the required control signals, through the silicon controlled rectifier
regulating the output of the system, as shown in Equation (8).

GA(T ) =
LB

1 + SBT
· LL

1 + SLT
· LC

1 + SCT
=

LA

1 + LAT
(8)

where LA = LBLLLC is the scaling factor for the expansion state observation link, and
the time response factor SA = SC .

3. Improved Genetic Algorithm. Utilizing the natural parallelizability of GA, the
initial population is separated into multiple sub-populations, each sub-population per-
forms genetic operations concurrently without interfering with each other, and after a
certain number of generations the individuals of the sub-populations perform migration
operations, which not only promotes the transmission of good individuals among dif-
ferent sub-populations, but also enriches the variety of the population and reduces the
phenomenon of immature-as-corner [28]. The parallel genetic algorithm based on this
concept is suitable for solving complex multidimensional problems, and with the help of
parallel evolution of multiple populations, it can accelerate the search of variable space,
and can increase the overall size of the population, as well as evolutionary isolation of
sub-populations from each other, which helps to maintain the diversity of the population,
avoid falling into the native ideal solution, and improve the quality of the solution.

In this paper, the computational framework of GA is improved based on the coarse-
grained parallel computing model, and at the same time, for the defects of GA algorithm,
an adaptive strategy is adopted to optimize the design of the main steps of the objective
function, crossover, mutation, and migration of the population evolution. The flow of the
improved GA is shown in Figure 3. The coarse-grained parallel computing model is a kind
of parallel computing model, which is characterized by decomposing the whole computing
task into relatively large blocks or task units, and then processing these larger units in
parallel.

(1) Optimization of objective function. In order to better control the total amount of
water consumption, peak flow rate, and peak time, combined with the hydrological in-
telligence forecast specification, this paper takes the total amount of water consumption
qualification rate PSg, the peak flow qualification rate PSq, and the peak time qualifica-
tion rate PSt as the objective operation.

F = max(f1 ∗ PSg + f2 ∗ PSq + f3 ∗ PSt) (9)

where F is the objective function and is a positive indicator, which can be directly used
as the fitness function. f : f1, f2, f3 are the weights of the three objective functions.
(2) Crossover mutation. In order to avoid premature maturity of GA and enhance

the native seek ability and convergence of the algorithm, the adaptive strategy can make
the values of crossover and mutation processes more reasonable and effective. When
the population evolves to a certain stage, some individuals in the population gradually
converge to the optimal solution, a large number of identical individuals appear, and the
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population dispersion decreases. Thus, the population dispersion can be used to react to
the degree of evolution of the population. This paper designs the population dispersion
coefficient η with Equation (10).

ηs =

∑q
j=1

∑l
i=1

(
xij−lj

lj

)2
q

(10)

where s is the number of iterations of the current population, xij is the value of the
j-th variable for the i-th individual in the population, q is the population size, h is the
number of variables, and li is the mean value of the variable.

For the problem of early maturity of the population, combined with the population dis-
crete coefficients, this paper designed the adaptive genetic algorithm crossover probability
Pd and variance probability Pn.

Pd = l1 + l2
fmax − f ′

fmax − fmin

ηs
t0

(11)

Pn = l3 + l4
fmax − f

fmax − fmin

ηs
t0

(12)

where l1− l4 are the adaptive control parameters, f ′ is the larger of the fitness values of
the two individuals in the crossover operation, fmin and fmax are the smallest and largest
values of the fitness function, respectively, and ηs/t0 is the decrement function, which
gradually converges to 0 as the population evolves.

The Simulated Binary Crossover (SBX) method is used as the crossover operator and
is calculated as follows:

d1 = 0.5 ((1 + α)p1 + (1− α)p2) (13)

d2 = 0.5 ((1− α)p1 + (1 + α)p2) (14)

where p1 and p2 are the parents before crossover, and d1 and d2 are the offspring
generated by crossover. α is the distribution factor.

The Polynomial Mutation (PM) method is used as the mutation operator, which mainly
enhances the native search capability of GA and prevents premature convergence. It is
calculated as follows:

g′i = gi + θ(wi − ki) (15)

θ =

{[
2un + (1− 2un)(1− θ1)

(µn+1)
]1/(µn+1) − 1, un ≤ 0.5

1−
[
2(1− un) + (2un − 1)(1− θ2)

(µn+1)
]1/(µn+1)

, un > 0.5
(16)

θ1 =
(gi − ki)

(gi − ki)
(17)

θ2 =
(wi − gi)

(wi − ki)
(18)

where gi is the parent before mutation, g′i is the offspring generated by mutation, wi is
the upper limit of the variance, ki is the lower limit of the variance, θ is the coefficient of
variation, un is a random number in the interval [0, 1], and µn is the distribution index
of the variance.

(3) Migration. Based on the discrete degree and average fitness of the sub-population,
the topological direction of migration is decided adaptively, avoiding the blindness and
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Figure 3. Improvement of the genetic algorithm process

fixity of traditional parallel genetic algorithm migration. The degree of population dis-
persion is represented by the population dispersion coefficient η in Equation (10), and the
average fitness of the population is favg =

∑q
j=1 fj/q, where fj is a fitness value of the

j-th individual of the population and q is the size.
Finally, determine whether the sub-populations satisfy the migration conditions. If each

sub-population completes a migration communication operation, otherwise the genetic
operation is performed.

4. Hydroelectric generator excitation control based on improved genetic and
RBF neural networks.

4.1. Excitation control system RBF network structure establishment. Aiming
at the characteristics of hydroelectric generator excitation control systems such as large
inertia, large hysteresis, and unstable parameters, a hydroelectric generator excitation
control mechanism on the ground of an improved genetic and RBF neural network is
designed. The radial basis function (RBF) algorithm is chosen to recognize the model.
The gradient descent mechanism and the genetic algorithm (GA) are adopted to coarsely
and finely adjust the weights of the neural network, respectively. The internal and external
perturbations of the system are estimated by the expansion controller, and the nonlinear
state error feedback control law is combined with the excitation engine control strategy
to deal with the problems of system inertia, hysteresis, and perturbation. The control
system structure is implied in Figure 4.

The excitation control system RBF network structure is implied in Figure 5, where the
whole structure is divided into an input layer, a fuzzification layer, a fuzzy inference layer,
and an output layer. In Figure 5, xj denotes one water input.
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The original level is the stimulus level, that is assumed to have m nodes, and the nodes
are directly jointed in the stimulus components, and the output result for each j layer is:
hm(j) = xj.
The second level is the fuzzification layer; for the nonlinear characteristics of the hy-

draulic excitation control system, the Gaussian basis function is adopted as the affiliation
operation, and the affiliation function formula is as follows.

gusi =
−(h1(j)− dij)

2

(ai)2
(19)

h2(i, j) = exp(gusi) (20)

where dij denotes the mean value of the affiliation operation of RBF in the j-th fuzzy
set of the i-th stimulus t variable; ai denotes the standard deviation of the affiliation
function.

The third layer is the obscured illation level, the obscured illation level has a total ofM
nodes, and the output of every node is the product of the whole fuzzy sets of the node’s
inputs: h3(i) =

∏m
i=1 h2(i, j).
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The fourth layer is the output layer that realizes the output of the reasoning between
the rules: h4(m) = Gh3 =

∑M
i=1 v(m, i)h3(i).

4.2. Improving genetic algorithm fine-tuning parameters. For the purpose of
avoiding adopting the genetic algorithm to select too wide a range of parameters, the
initial parameters are modified by the gradient descent mechanism, and then the GA
improved in the previous section is used to search for the optimization around this set of
parameters.

(1) Gradient descent method for coarse tuning of initial parameters. The output layer
weights are first adjusted using the following equation.

∆W (l) = −µ∂E
∂w

= −µ ∂E
∂en

∂en
∂g

∂y

∂w
= µem(l)h3 (21)

(2) Next, the mean value of the affiliation function is adjusted.

∆dij(l) = −µ ∂E
∂dij

= −µ ∂E

∂gusi

∂gusi
∂dij

= µWem(l)h3
2(h1(j)− dij)

(ai)2
(22)

(3) The standard deviation of the affiliation function is then adjusted.

∆ai(l) = −µ∂E
∂ai

= −µ ∂E

∂gusi

∂gusi
∂ai

= −µWem(l)h3
(h1(j)− dij)

(ai)3
(23)

where µ is the learning rate and its value range is µ ∈ (0, 1).
At last, genetic algorithms are used to find the optimization.
Step1: Coding and initializing the population. The mean, standard deviation and

weights generated by the gradient descent method are divided by uniform distribution for
real number coding. Firstly, the main space is divided into T subspaces, secondly, each
subspace is quantized and N individuals are selected by using the uniform array, and
finally, from the T ×N individuals, the peculiars with the greatest fitness are selected as
the initial population. To reduce the error value between the excitation control system
model and the actual output, the output fitness function is chosen as the Euclidean
distance between the ideal value and the actual value, and the fitness function formula is
as follows.

C(x, j) =

√√√√ 1

M

m∑
S=1

(yn(lS)− yn(lS + S))2 (24)

Step2: Remove a definite amount of peculiars from the population each time (put-back
sampling) and select the greatest adapted one into the offspring population. Repeat this
operation until the novel population size reaches the innovative population size. The new
population set is: Q(j) = C∗(xj).
Step3: After the crossover is completed, the peculiars will be inverted by changing the

values of certain loci in the coding of the peculiars in the population with the credibility
of mutation. If the novel peculiar has a better fitness value than the original individual,
the novel individual will be retained, otherwise the original individual will be retained.

Step4: The optimized mean value d∗ij, standard deviation a∗i and weights ŵ of the final
genetic algorithm are substituted back into the Gaussian basis function of the RBF neural
network of the excitation control system.

4.3. Design of hydro generator excitation control strategy. The hydro generator
excitation control system consists of three parts: Tracking Differentiator (TD), Expansion
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State Observer (ESO) and Nonlinear State Error Feedback Control Law (NLSEF). The
TD equation is as follows: {

ẋ1 = x2

ẋ2 = Sx2 −Dsat(x1 − x2, θ)
(25)

where x1 is the output signal of primary air volume of tracking control system, x2 is the
change rate of the output signal x1, S is the filtering factor of excitation control model,
D is the change factor of control model, sat() is the saturation function to improve the
tracking differentiator, and θ is the switching variable of the output signal.

sat(x, θ) =

{
sign(x), |x| ≥ θ
x
θ
, |x| < θ

(26)

By designing the excitation control system expansion state observer for the actual
output y of the model, the object containing unknown perturbations within the system
is transformed into an integral object, and the equation of the expansion state observer
is as follows. 

ż1 = z2 − ξ1s(θ1)

ż2 = z3 − ξ2s(θ1) + Au(t)

ż3 = −ξ3s(θ1)
(27)

where s(θ) is the disturbance estimate of the excitation controller output, z1 and z2
implied the tracking signal and the various component of the tracking signal of the identi-
fied excitation control system output y, z3 is the observed value of the nonlinear function
of the excitation control system, and ξ1, ξ2, and ξ3 are the error correction gains.

With the known primary water quantity tracking output signals x1, x2 and the output
values z1, z2 of ESO, the tracking primary water quantity error signal of the construction
system is the Equation (28). {

e1 = x1 − z1
e2 = x1 − z2

(28)

Based on the error provided by Equation (28), the following nonlinear configuration is
designed to realize the control component of NLSEF.

u = ε1fal(e1) + ε2fal(e2) (29)

where εj is the adjustable parameter, fal(ej) is the control function.

5. Experiment and analysis.

5.1. Excitation control system immunity control simulation. To verify the effect
of the control algorithm in this article on the excitation control system of a hydroelec-
tric generator, MATLAB/SIMULINK software is adopted for simulation. The control
parameters of the excitation control system are selected with reference to literature [29],
the tracking differentiator model change factor D = 100, the expansion state observer
correction gain ξ1 = 50, ξ2 = 500, ξ3 = 1000, and the parameter ϑ = 0.05 in the Non-
linear State Error Feedback Sliding Mode Control Law (NLSEFSM). For convenience of
description, the literature [30] is denoted as PCPA and the algorithm in this paper is
denoted as HGEC.

The parameters of the GA-optimized RBF are a 0.1 learning rate, 0.3 momentum factor,
100 populations, 10 parameters per chromosome, 100 iterations, 0.1 initial crossover rate,
0.1 initial variance rate, and 0.001 target accuracy. A comparison of GA-optimized RBF
approximation image and traditional RBF approximation image is shown in Figure 6.
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From Figure 6, the mean-square sum of the errors of the GA-optimized RBF designed
in this paper is 0.6924, and the mean-square sum of the errors of the traditional RBF is
18.6247. The GA-optimized RBF algorithm has a mean-square sum of errors two orders
of magnitude lower than that of the traditional RBF algorithm, and it can approximate
the excitation control system model effectively.
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Figure 6. Comparison of Error

To simulate the system, the synchronous generator is made to run under the load
condition, and the load is made to produce a step change by changing the model param-
eters to compare the four control strategies, namely, series PID, sliding mode control,
self-immunity control, and HGEC control. Meanwhile, in order to observe the system’s
ability to resist disturbances, a 10% disturbance is applied when the system is running for
240 s. To verify the superiority of the HGEC algorithm in the face of strong disturbances,
the HGEC algorithm is designed to be compared with the similar PCPA control algo-
rithm. Under the condition of unchanged setting parameters, a positive 10% interference
is applied to the system at 240 s, and the comparison of control effect is shown in Figure
7.

As shown in Figure 7, when the control system models are the same, the overshoots of
PCPA and HGEC are 8.37% and 0% before applying the perturbation, and the regulation
times are 56.1 s and 45.3 s. After applying a forward step perturbation with an amplitude
of 10% for 240 s, the overshoots of PCPA and HGEC are 13.29% and 4.12%, and the
regulation times are 48.3 s and 36.9 s. Comparison shows that HGEC can respond faster
to the disturbance than the excitation control with disturbance observer, but both control
strategies can respond faster to the disturbance. 36.9 s. Comparison shows that the



2028 H.-Z. Liu, Y. Li, Z.-G. You, J.-Q. Ming and A. Liu

HGEC control strategy can respond faster than the excitation control with disturbance
observer, but the HGEC control strategy produces less overshoot and the system stability
is superior.
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Figure 7. Comparison of control effect

5.2. Analysis of experimental results. The results of the experiments were tabulated,
and the error between the outputs of the HGEC model and the PCPA model and the
output of the original model were calculated and expressed as a percentage. The results
were summarized in Table 1.

Table 1. Experimental results and error analysis.

Process Performance Indications Original model HGEC PCPA

impulse process

output stability value 1 1 1
overshoot 16.21% 16.94% 19.51%

adjusting time 13.59s 12.83s 17.63s
number of oscillations 1 1 1

load step

output stability value 0.8527 0.8591 0.9533
overshoot 7.63 % 7.14% 9.61%

adjusting time 11.95s 12.46s 15.93s
number of oscillations 3 3 4

load shedding

output stability value 0.9381 0.9452 0.9862
overshoot 23.19% 23.83% 26.74%

adjusting time 9.72s 9.62s 13.91s
number of oscillations 2 2 3
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By observing the results of the original model with the HGEC model and the PCPA
model, it can be found that the amount of oscillations in the dynamic performance of the
HGEC model and the original model are the same in the three simulation tests, and the
number of oscillations of the PCPA model in the load step and load dumping phase are 4
and 3, respectively, which are different from that of the original model. This is related to
the tracking differential regulation performance of the controller, and the optimized HGEC
model using genetic algorithm can quickly regulate the generator stator electromotive force
to within 5% error when the hydro generator excitation and load change. In contrast,
the overshooting error of the PCPA model is larger, which is related to the accuracy
of the algorithm. Since the excitation controller is a multi-link nonlinear dynamic link,
when the system dynamics changes, the error of the identification results of each link
parameter will have an impact on the dynamic performance of the system, especially the
overshooting amount, which correspondingly amplifies the output results of the system in
the perturbed state, resulting in a larger overshooting amount error between the PCPA
model and the original system model. The HGEC model optimizes the parameters and
improves the accuracy of the algorithm by improving the genetic algorithm, so that the
overshooting error is controlled within 1%, and the absolute value of the error is less than
1%, which is still more accurate in describing the dynamic performance of the system,
and it has a certain degree of applicability in evaluating the state of the hydro generator
excitation controller. The outcome of this experiment indicates that the HGEC model
suggested in this article has good accuracy and usability.

6. Conclusion. In this paper, a hydroelectric generator excitation control based on im-
proved genetic and RBF neural networks is proposed to address the problem of unstable
parameters of existing excitation control methods. Firstly, the genetic algorithm is op-
timized to take advantage of the natural parallelizability of GA to separate the initial
population into multiple sub-populations, and each sub-population performs the genetic
operation concurrently without interfering with each other, which helps to maintain the
diversity of the population, avoid falling into the locally optimal solution, and improve
the quality of the solution. Then a hydroelectric generator excitation control method
based on improved genetic and RBF neural networks is designed, which selects the RBF
algorithm to recognize the model, coarsely adjusts and finely adjusts the neural network
weights by gradient descent and genetic algorithms, respectively, and estimates the inter-
nal and external perturbations of the system by expanding the controller, and combines
the nonlinear state-error feedback control law and the excitation engine control strategy
in order to overcome system inertia, hysteresis and perturbation. The experimental re-
sults indicate that the method suggested in this article has low output stabilization value,
overshooting amount, regulation time and vibration number errors, and exhibits good
stability performance.

REFERENCES

[1] H. X. Zhang, and L. X. Miao, “Modeling and Experiment on Active Vibration Control of Hydraulic
Excitation System,” Applied Mechanics and Materials, vol. 187, pp. 130-133, 2012.

[2] W. Zhu, Y. Zheng, J. Dai, and J. Zhou, “Design of integrated synergetic controller for the excitation
and governing system of hydraulic generator unit,” Engineering Applications of Artificial Intelligence,
vol. 58, pp. 79-87, 2017.

[3] M. Taghizadeh, and M. Javad Yarmohammadi, “Development of a self-tuning PID controller on
hydraulically actuated stewart platform stabilizer with base excitation,” International Journal of
Control, Automation and Systems, vol. 16, pp. 2990-2999, 2018.



2030 H.-Z. Liu, Y. Li, Z.-G. You, J.-Q. Ming and A. Liu

[4] E. Rebollo, F. R. Blanquez, C. A. Platero, F. Blazquez, and M. Redondo, “Improved high-speed
de-excitation system for brushless synchronous machines tested on a 20 MVA hydro-generator,” IET
Electric Power Applications, vol. 9, no. 6, pp. 405-411, 2015.

[5] L. G. Scherer, R. V. Tambara, and R. F. de Camargo, “Voltage and frequency regulation of stan-
dalone self-excited induction generator for micro-hydro power generation using discrete-time adaptive
control,” IET Renewable Power Generation, vol. 10, no. 4, pp. 531-540, 2016.

[6] D. Xia, and G. Heydt, “Self-tuning controller for generator excitation control,” IEEE Transactions
on Power Apparatus and Systems, vol. 2, no. 6, pp. 1877-1885, 1983.

[7] J. B. Devotta, “A dynamic model of the synchronous generator excitation control system,” IEEE
Transactions on Industrial Electronics, vol. 6, no. 4, pp. 429-432, 1987.

[8] R. C. Schaefer, and K. Kim, “Excitation control of the synchronous generator,” IEEE Industry
Applications Magazine, vol. 7, no. 2, pp. 37-43, 2001.

[9] M. Galaz, R. Ortega, A. S. Bazanella, and A. M. Stankovic, “An energy-shaping approach to the
design of excitation control of synchronous generators,” Automatica, vol. 39, no. 1, pp. 111-119, 2003.

[10] O. P. Malik, “Amalgamation of adaptive control and AI techniques: applications to generator exci-
tation control,” Annual Reviews in Control, vol. 28, no. 1, pp. 97-106, 2004.
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