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ABSTRACT. The safety accidents caused by the illegal behaviors of the operators climb-
ing the equipment, climbing over the fence, smoking, stepping on the equipment, and
making phone calls during the electric power operation occur frequently, resulting in se-
rious casualties and economic losses. At present, there is no identification method for
the above wiolations of electric power operators, and the conventional spatio-temporal
map convolution method ignores the association of non-directly connected joints, with
poor temporal feature extraction and low identification accuracy. We propose an en-
hanced spatio-temporal graph convolutional power operator violation behavior recognition
method based on the dual-stream structure, firstly, we use the helmet, safety belt as the
features, and use YOLOwvS to detect the power operators. We enhance the spatial and
temporal features respectively, firstly using an adaptive graph convolution to enhance the
correlation of non-directly connected joints; then a multi-scale temporal convolution mod-
ule based on channel attention mechanism is proposed to extract the temporal features
of the wviolation behavior more adequately. Finally, considering that the direction and
length of bones also contain rich behavioral information, a dual-stream structure viola-
tion recognition model is constructed. Through experiments on the private dataset of
electric power operation, the method can accurately identify the violation behaviors of
electric power operators climbing equipment, overcoming fences, smoking, stepping on
equipment, and making phone calls, and the recognition accuracy reaches 94.7%, which
s a substantial improvement com-pared with the mainstream model, and it can effectively
reduce the safety risk of the electric power operation site and decrease the probability of
safety accidents.

Keywords: dual-stream structure, YOLOv5, enhanced spatio-temporal graph con-
volutional, electric power operation, violation recognition modeldual-stream structure,
YOLOV5, enhanced spatio-temporal graph convolutional, electric power operation, vio-
lation recognition model

1. Introduction. Electricity safety accidents and staff violations have a direct relation-
ship. Electricity operators safety awareness is weak, fatigue lax, the operation process of
climbing equipment, over the fence, smoking, stepping on the equipment, telephone vio-
lations occur from time to time, these behaviors have a direct impact on the operation of
the probability of accidents, once an accident occurs, it will result in significant property
damage and casualties.

At present, most of the supervision of electric power operators are from the perspec-
tive of personal protective equipment to determine whether the illegal operation, such as
whether to wear helmets, insulated gloves, safety belts and so on. There is no effective
method to recognize and control the illegal behaviors of electric power operators. There-
fore, we address the practical needs and propose a violation behavior recognition method
for electric power operators using the skeletal spatio-temporal characteristics of behavior.
The method can accurately identify the unruly behaviors of electric power operators in
terms of climbing equipment, scaling fences, smoking, stepping on equipment, and making
phone calls, which regulates the operation behavior, effectively reduces the probability of
accidents, and ensures the safe and normal operation of the power system. Our main
contributions are summarized below:

1. Characterized by the helmets and safety belts of power operators, use YOLOvV5 to
detect personnel and locate power operators.

2. An adaptive graph convolution is used to enhance the correlation of non-directly
connected joints such as hands and feet.

3. A multi-scale temporal convolution module based on the channel attention mecha-
nism is designed to more adequately extract temporal features of behavior.
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4. Considering that the direction and length of the skeleton also contain rich behavioral
information, a dual-stream structure violation recognition model is constructed to improve
the recognition accuracy of the violation.

2. Related Work. For behavior recognition, Chen and Guan [1] screened images with
representative actions from students’ classroom videos as samples, and used the YOLO
model to detect transient actions and then determine behaviors. YOLO is a target de-
tection method for behavior recognition, which can only determine the behavior by iden-
tifying a transient action, but not the whole coherent action, and the robustness is poor.

Compared with an instantaneous action, coherent action frames are more responsive
to real behavior. Wang and Schmid [2] proposed IDT (Improved Dense Trajectories) by
improving the traditional dense trajectory method, removing the interference caused by
the camera movement and using the appearance features of the moving objects for fil-
tering. However, with the development of deep learning, this traditional behavior recog-
nition method was gradually eliminated. Behavior recognition methods based on deep
learning are mainly divided into three branches according to the network structure: Two-
Stream method, 3D convolution method, and spatio-temporal map convolution method.
Simonyan and Zisserman [3] proposed T'wo-Stream Network, which adopts a two-branch
network architecture and captures the spatial and temporal information of the video
respectively. The spatial domain uses the RGB image as input to extract appearance fea-
tures, and the temporal domain uses the optical low information as input to extract timing
features, the two branches of the network judge the categories of the actions separately,
and finally the results of the two networks are fused to obtain the behavioral categories.
Feichtenhofer et al. [4] proposed a network architecture that can be more finely grained
to fuse spatial and temporal information, considering the fact that there is a certain con-
nection between the feature maps of the Two-Stream Network. fusion of spatio-temporal
information, which further improves the recognition accuracy. Berlin and John [5] used
joint entropy to calculate the optical flow features, which makes the optical flow feature
extraction more accurate and efficient. The dual-stream method has high recognition
accuracy, but the computation of optical flow features on the temporal sequence is large,
resulting in a slow overall network speed. Tran et al. [6] used 3D convolution for the
first time in behavioral recognition, which can better extract spatio-temporal features
by adding another temporal dimension to the original spatial dimension. Although 3D
convolution can capture both temporal and spatial information, it consumes too much
arithmetic and graphics memory, Qiu et al. [7] proposed a pseudo 3D convolutional layer
instead of the regular 3D convolutional layer, and constructed a deep network by using the
ResNet residual linkage method, which achieves the effect of parameter reduction. Feicht-
enhofer et al. [8] argued that the categorical attributes of a behavior are slowly changing,
while the process of a behavior is usually fast, proposed the SlowFast network with two
branches capturing semantic information at low frame rates and action information at
high frame rates to further improve the recognition accuracy of 3D convolution. As far as
the current research shows, both the dual-flow and 3D convolution methods mostly use
RGB images and optical flow as data modalities, and the 3D convolution method is not
as accurate as the dual-flow method for recognition.

Biological observations have shown that the positions of a small number of joints can
effectively represent human behavior even without appearance information. Skeletal fea-
tures have purer features and less noise compared to raw RGB images and optical flow
information. Since the human skeletal map conforms to the topological map structure,
Yan et al. [9] proposed a spatio-temporal map convolution method for behavior recog-
nition, which uses the first-order skeletal point coordinates to firstly extract the spatial
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features of the skeleton by map convolution, and then obtain the temporal features by
temporal convolution, and finally fuses the features to arrive at the classification results.
This method has high recognition accuracy and fast algorithm speed, which is the main-
stream recognition idea in the field of behavior recognition at present.

3. Method. The recognition method firstly uses YOLOv) to detect power operators,
then fully extracts the spatio-temporal features of violation behaviors through adaptive
graph convolution and multi-scale temporal convolution modules, and finally constructs
a two-stream structure recognition model of violation behaviors based on skeletal points
and skeletal ones. The overall research flow is shown in Figure 1:
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Figure 1. Research Flowchart.

3.1. YOLOv5-based detection method for electric power operators. In order
to accurately differentiate between power operators, the detection of people at the power
operation site is performed based on YOLOvV5. Firstly, the person in the image is detected,
then the helmet or seat belt is detected in the human anchor frame, if the helmet or seat
belt is detected and 90% of the anchor frame exists in the human anchor frame, the person
is judged as an electric power operator, and then the person is subjected to subsequent
behavioral recognition.

3.2. Adaptive graph convolution. In order to better represent the high-dimensional
mapping of the graph convolution, we use a spatial structure partitioning strategy that
conforms to the human body’s movement pattern. Different from the convolution kernel
of ordinary CNN, here the neighborhood with a distance of 1 from the node is used as
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Figure 2. Electricity Operator Testing

the sensory field of the graph convolution, as shown in Figure 3(a). The spatial structure
partitioning strategy is shown in (b), using the human center of gravity in the action as
a reference, the neighborhood with a distance of 1 from the node is divided into three
subsets, the blue centripetal subset near the center of gravity, the orange centrifugal subset
far from the center of gravity, and the green node itself. The average of the coordinates
of all joints in each frame of the skeleton sequence is taken as the center of gravity of the
human skeleton, and the division strategy is as follows:

0 if?"j:’f’i
lti(vtj) =<q1 if Ty <Ty (1)
2 if?“j>7”i

Where the distance of the node itself from the center of gravity of the body is r;, the
distance of the neighboring nodes from the center of gravity of the body is 7, l;; is the
label to which the node belongs.

(b)

Figure 3. Graph convolution partitioning strategy.

The topology of graph convolution in ST-GCN is constructed based on the physical
connections of human skeleton, and its graph convolution formula is:

Ky
fout = Z Wk‘ (f'mAk) © Mk (2)
k

where W}, is the weights, A, is the adjacency matrix, M), is the attention mask, and
K, = 3 is the number of subset categories. The mask M, is directly multiplied with the
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adjacency matrix by the elements of A,. If some of the elements inside the adjacency ma-
trix Ay are 0, then the final result is 0 regardless of the sum of the elements corresponding
to M}, so no new connections are created that do not exist in the original physical map.
So no new connection will be created that does not exist in the original physical map.
However, in human skeletal behavior recognition, motion features do not necessarily exist
only in the directly connected bones, but also between the joints of bones that are not
directly connected, such as climbing and overstepping, and there is a strong correlation
between hands and feet. We use the adaptive graph convolution shown in Equation (2)
[10], in which the neighbor matrix in the original graph convolution is improved, where
the neighbor matrix is mainly divided into three parts Ay, By, Ck:

K,
four = Wifin (Ax + Bi + Ci) (3)
K

The first part Ay is the same as Ay in Equation (2) and represents the physical structure
of the human body. The second part, By, is also an N x N adjacency matrix. Unlike
Ay, By is a trainable weight matrix whose values are not constrained, which means that
By, is a data-driven adjacency matrix completely learned from the training data, and can
represent not only whether two nodes are connected or not, but also the strength of the
connection. In contrast to M}, addition is used instead of multiplication, which in turn
creates new connections that do not exist in the original human physical connections. The
third part, C%, is a sample-based graph adjacency matrix, which is formed by embedding
a normalized Gaussian function to compute the similarity between two joints, as shown
in Equation (4):

ef(vi) T o(vi)

f(vh U]) = Zj\le e@(vi)Tﬁb(Ui)

(4)
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=

Figure 4. Structure of adaptive graph convolution.
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where N is the number of joints, when the input feature map is f;, € R€»*T*N ysing

two 1 x 1 convolutional embedding functions 6 and ¢, transform f;, into the embedding
space RE*T*N " transforming these two matrices into the matrix My, € RN*¢T and
matrix My, € RN where C, is the dimension of the embedding channel. The two
matrices are then multiplied. The two matrices are then multiplied to obtain a similarity
matrix Cy for N x N, where C} denotes the similarity between joints v; and v;, whose
value is normalized to between 0 and 1, is used as a soft connection between the two
joints. Since the normalized S matching has softmaz operations, Equation (5) is used to
compute Cj.

Cy, = softmax (fi, WaWer, fin) ()

where Wy and W, are the trainable parameters of the embedding functions 6 and ¢
respectively. The adaptive graph convolution model is shown in Figure 4, with graph
convolution kernel of size 1 and number 3, and K, = 3 denotes the number of subsets.

3.3. Multiscale temporal convolution module based on channel attention mech-
anism. From the time dimension, some complex behaviors are composed of consecutive
sub-behaviors, and the sub-behaviors at different stages have different weights on the
determination of the whole behavior, and there are also dependencies between the sub-
behaviors at the previous and previous stages. However, the size of the sensory field in
the standard temporal convolutional network is fixed, and if it is used for the extraction
of temporal dependencies, it can only represent the information in a time scale, and it
cannot fully extract the temporal information of behavior. However, if used to extract be-
havioral temporal dependencies, it can only represent information on a time scale, which
is not sufficient for extracting behavioral temporal information. Therefore, we propose a
multi-scale temporal convolution module based on the channel attention mechanism in
the temporal dimension, as shown in Figure 5, which uses parallel temporal convolution
[11] to extract temporal features at different scales, and dynamically adjusts the weights
of each branch by combining with the attention mechanism, and then superimposes them
in a nonlinear way to enhance the expressive ability of the feature map.
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Figure 5. Multi-scale time convolution module based on channel attention mech-
anism.
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The module uses three temporal convolutional branches with convolutional kernel sizes
(5 x 1,7 x 1,9 x 1) in parallel to capture the dependencies between skeleton frame se-
quences of different durations. The channel attention [12] is modified in the attention
branch by converting the dimensions of the RGB image feature maps (H, W, C) to the di-
mensions of the human skeleton frame sequence (T, V, C), i.e., replacing the height of the
image, H, and the width of the image, W, by the time step, T, in the sequence of skeleton
frames and the number of joints in the individual skeletons, V. The input feature maps
are convolved with the multiscale time convolution, and then multiplied by the attention
branch to adjust the branch weights, and finally the input feature maps are multiplied
with the attention branch to adjust the branch weights. The input feature maps are mul-
tiscale time-convolved, then multiplied with the attention branches to adjust the branch
weights, and finally the outputs of each time-convolved branch are summed to aggregate
the outputs of multiple parallel branches to obtain the fused multiscale spatio-temporal
feature map, and the outputs can be defined as follows:

fout = R (B (W5Conuvs(z) + W;Conv;(x) + WeConuvg(z))) (6)

Where z is the input, Conv,, n = 5,7,9 is the temporal convolution at three different
scales, W5+ W; 4+ Wy = 1 is the assigned attention weights, B, R are the normalized Bath
Normalization and ReLU activation functions, respectively.

3.4. A model for identifying violation behaviors of electric power operators.
Using the adaptive graph convolution and multiscale temporal convolution mentioned
above, a spatio-temporal graph convolution block was composed as shown in Figure 6,
where AGCN denotes adaptive graph convolution and MSTCN denotes multiscale tempo-
ral convolution based on the channel attention mechanism, with an intermediate Dropout
layer with a dropout rate of 0.5 added.

AGCN BN ReLU Dropout MSTCN

A A | L~
Ll _,G_)_.

Figure 6. Spatio-temporal map convolution block

As shown in Figure 7, the spatio-temporal graph convolutional network consists of a
stack of 9 spatio-temporal graph convolutional blocks as described above, and the number
of output channels of each block is 64, 64, 64, 128, 128, 128, 256, 256 and 256. BN layer
is added at the beginning to normalize the input data, and then global average pooling
is per-formed to pool the feature maps of different samples to the same size. Then global
average pooling is done to pool the feature maps of different samples to the same size and
finally Softmax classifier is passed to get the prediction.

The coordinates of the bone joints are first-order information. Considering the second-
order information of the bones, the length and direction also contain the behavioral
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Figure 7. Convolutional network of spatio-temporal maps.

characteristics, a two-stream structure is designed to enhance the effect of behavioral
recognition, as shown in Figure 8.
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Figure 8. Model for recognizing violation behaviors of electric power operators
with dual-flow structure.

Since a skeletal edge consists of two joints connected together, the joint near the center
of gravity of the skeleton is defined as the source joint and the joint away from the center
of gravity is defined as the target joint. Each skeletal edge is represented by a feature
vector pointing from the source joint to the target joint, which contains both length and
direction information. Assuming that the source joint v; = (z1,y;) and the target joint
vy = (Z2,Y2), the vector of skeletal edges can be expressed as by,,, = (r2 — 21,2 —41). In
the human skeleton graph, the number of joints is one more than the number of skeletal
edges. A 0-valued bone vector is added so that each bone edge corresponds to a joint,
and in this way the network of bone streams can be designed in the same way as the joint
streams. Using the skeletal and joint streams to represent the network of input joints and
skeletal edges, respectively, the Softmax scores of the two streams are added together to
obtain a fusion score and predict the action labels.

4. Experiments and Analysis. We conducted ablation experiments on a private dataset
of electric power work sites and compared the experiments with other current state-of-
the-art methods.

4.1. Environment Configuration. The experiments were performed on a server con-
sisting of Ubuntu 18.04 with Linux kernel, python 3.7, pytorch 1.5.04-cul01, and an
NVIDIA Tesla T4 GPU.
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4.2. Datasets. The private dataset consists of 600 self-recorded videos of violation be-
haviors in the power operation scenarios, including 100 videos of smoking, talking on
the phone, climbing over fences, climbing and stepping on equipment, and 100 videos of
normal behaviors, captured by the deployment ball. Each behavior is captured from 8
angles, with 0° facing the human body and every 45° in clockwise direction. The dataset
was divided into training and testing sets according to 7:3, with a training learning rate
of 0.1 and an epoch of 100.

4.3. Assessment of Indicators. The evaluation index is the accuracy rate of behavior
recognition, i.e., the percentage of correct classifications among all classifications, and the
higher the accuracy rate is, the better the recognition performance of the method is. The
accuracy rate is calculated as follows.

Number of correctly categorized samples

Accuracy = Full sample size (M)
4.4. Results. In order to prove the effectiveness of each module in the model, ablation
and comparison experiments were conducted. Firstly, an ablation experiment was carried
out on the adaptive graph convolution in the model, as shown in Figure 9. Adaptive
graph convolution improves the overall accuracy of the behavior recognition model by
0.7%, among which the recognition accuracy of climbing equipment is 1.7% higher, and
the recognition accuracy of fence crossing is 1.3% higher, which indicates that adaptive
graph convolution increases the flexibility of the model graph structure, strengthens the
correlation of the human body’s non-physical connections, and improves the recognition
accuracy.

95.5
95.1
95 ) 94.8 94.8 94.7 94.7
94.5 s [ [
- 94.5 94.4 017 943
=
o 94 o3g -
@
o
3 93.5
2 93.1
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92.5
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913 N 1 Climbi Crossing th Steppi
orma Smoke Phone Hmbing rossmg the eppme Total
behavior equipment fence onequipment
m Original graph convolution 93.8 94.4 94.8 93.1 92.9 94.3 93.9
m Adaptive graph convolution 94.5 94.6 95.1 94.8 94.2 94.7 94.7

Figure 9. Comparison of adaptive graph convolution ablation experiments.

In order to illustrate the effectiveness of adaptive graph convolution, the connection
strengths between (a) the right hand for climbing equipment and (b) the right foot for
fence crossing at layer 9 of AGCN and other joints are visualized in Figure 10, where
red is the result of the adaptive adjacency matrix and blue is the result of the original
adjacency matrix. Each circle represents a joint, and its size represents the connection
strength between a joint and other joints. For (a) the climbing behavior, it can be seen
that the adaptive map convolution makes the right hand connected to other joints that
are not physically connected, while the original map convolution makes the right hand
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connected to the right elbow only. For (b), the behavior of crossing the fence, it can be
seen that the adaptive graph convolution also connects the right foot to other joints that
are not physically connected, whereas the original graph convolution connects the right
foot to the right knee only. Therefore, the global adaptive graph convolution shows the
potential dependence on the behavioral and kinematic relationships between the global
joints of the skeleton. Compared with the predefined neighbor matrix based on the a priori
knowledge of the human body, the non-physical structure of the joints in the neighbor
matrix of the global adaptive graph convolution is strengthened, so that the strength of
the global joints can be calculated automatically from the input skeleton data, and the
strength of the global joints can be calculated in the network training, so that the joints
of the human skeleton will realize the node weights of the human skeleton as the network
level is deepened. In the network training, the joints of human skeleton are dynamically
updated with the deepening of the network hierarchy to realize the node weights.

qg-f

Figure 10. Visualization of joint strength.

When using different sized convolutional kernels to capture contextual information at
different time scales, the recognition results will be affected by the different scales of the
contextual information. The larger the convolutional kernel, the larger the sensory field,
and the more contextual information can be captured, but some irrelevant contextual
information will also be captured. In order to find a suitable combination of convolu-
tion kernels, several combinations of different convolution kernel sizes (3x1,5x1,7x1),
(5x1,7x1,9%1), (7x1,9x1,11x1), and (9%x1,11x1,13x 1) are set up in the multiscale tem-
poral convolution module to address the above problems. The experimental results are
plotted in Table 1.

Table 1. Comparison experiments of different convolutional kernel combinations.

Convolution kernel size Accuracy/%

3x1, bx1, 7x1 92.1
5x1, 7x1, 9x1 94.7
7x1, 9x1, 11x1 93.1
9x1, 11x1, 13x1 92.3

The experimental results show that when the convolutional kernel combination in this
module is (5x1,7x1,9x1), the recognition accuracy is the highest on the private dataset
of electric power operation. By analyzing the accuracy of various behaviors, the accu-
racy degradation for convolutional kernel combinations of (3x1,5x1,7x1) is due to the
confusion of smoking, talking on the phone, and touching the face in normal behaviors.
The subject defines the smoking behavior as the action of lowering the arm vertically



2058 Y. Xi, Z.-H. Zhang, H. Wang, S.-Y. Meng, J. Fu, Z.-Y. Wu and J. Cao

and then bringing the cigarette to the mouth to smoke twice; the phone call behavior is
defined as lowering the arm vertically and then bringing the phone to the ear all the time.
The consecutive skeleton frames contain relevant information in the time domain, and the
first half of these three behaviors are the same, all of them are the arm is vertically low-
ered, and then the phone is brought to the face. If the sensory field is small, the context
information of the skeleton frame sequences in the time domain can not be extract-ed
sufficiently, and it is not possible to extract the whole process of the behavioral features.
When the convolution kernel combinations are (7x1,9x1,11x1) and (9x1,11x1,13x1),
the receptive field is larger, which ignores some details in the skeleton frame sequences
and extracts some irrelevant information, resulting in a decrease in the overall accuracy
of the recognition of various behaviors.

In summary, multiple TCN branching modules are used to extract the dependencies
between different durations, and smaller convolutional kernels are used to extract features
in shorter time periods, and larger convolutional kernels are used to extract features in
longer time periods. The last step is to utilize the features in a more efficient way. In
order to better utilize these features, the features of different durations are finally fused to
solve the dependency problem between different durations and improve the performance
of the model.

In order to verify whether the introduction of the channel attention mechanism can
improve the recognition accuracy, ablation experiments were also conducted, and the
experimental results are shown in Table 2.

Table 2. Comparison of recognition accuracy with and without attention branch-
ing.

Methodologies Accuracy/%
Attention included 94.7
Attention not included 93.9

The experimental results show that the recognition accuracy is higher with the attention
branch, and the recognition accuracy is improved by 0.8% on the private dataset of electric
power operations, which proves that the addition of the attention mechanism is effective.
The added attention branch can dynamically adjust the weights of each TCN branch
according to the input feature maps, and sum up the output feature maps in a non-
linear way, so that the output feature maps have stronger expressive ability, effectively
differentiate between different action categories, and improve the recognition accuracy.

In order to verify the effectiveness of the second-order skeletal information on behav-
ior recognition, joint flow, skeletal flow and dual-flow methods are used for comparison
experiments, as shown in Table 3, the dual-flow meth-od is better than the single-flow
method.

Table 3. Comparison of recognition accuracy for different input methods.

Methodologies Accuracy/%

Stream of bone 92.6
Stream of joint 93.2
Two-stream 94.7

In order to prove the overall performance of the model, a comparison experiment with
other graph convolution-based behavior recognition methods was conducted on a private
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Table 4. Comparison of recognition accuracy of different methods.

Methodologies Accuracy/%

ST-GCN 86.7
2S-AGCN 92.8
AS-GCN 90.5

Ours 94.7

dataset of electric power operations, and the pro-posed method has the highest recognition

accuracy, as shown in Table 4.

Figure 11 shows the visualization results of behavior recognition, and three represen-
tative frames of various behaviors are selected for display. It can be seen that five kinds
of illegal behaviors, such as climbing equipment, climbing over fences, smoking, stepping
on equipment and making phone calls, can be accurately recognized by operators at the

electric power operation site.

climbing equipment

climbing equipment

(a) climbing

climbing equipment

equipment
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Figure 11. Visualization results of power operator violation identification
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5. Conclusion. Electricity is the lifeblood of the country, and it is of great significance
to standardize the operation, and the safety of the project is a matter of life and death.
We propose a recognition method based on enhanced spatio-temporal graph convolution
with dual-flow structure for the violation behaviors of electric power operators. Firstly,
we use YOLOvV5S to detect electric power operators, and then we construct a violation
behavior recognition model with dual-flow structure by using adaptive graph convolution
and designing a multi-scale temporal convolution module. The method can accurately
identify the violation behaviors of electric power work personnel climbing equipment,
climbing over fences, smoking, stepping on equipment, and making phone calls, which
effectively reduces the probability of accidents at the work site. At present, the regulation
of personal protective equipment for electric power operators has tended to be perfect, and
this paper also proposes a new regulatory approach from the perspective of identification of
violations by operators, but with the continuous complexity of the electric power system,
the standardization of the operation process of the operators has also put forward higher
requirements, the next step is to prepare for the combination of electric power operation
tools for the installation of insulating brackets, hanging high-voltage grounding wires and
other complex operational processes to design identification and scoring methods.
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