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ABSTRACT. To minimize the propagation of redundant data in wireless sensor networks,
conserve energy, and extend network lifespan, we propose an algorithm (R-IEHOBP) that
combines radial clustering and an elephant swarm neural network. Initially, we suggest
employing the radial clustering routing protocol to address the issue of uneven enerqgy
consumption in nodes caused by the majority of current data fusion algorithms based on
the LEACH clustering routing protocol. In the radial clustering protocol, we first divide
candidate cluster heads into clusters of different sizes, and then we screen the cluster
heads based on the number of required cluster head nodes in the sub-cluster, the remain-
ing energy of the candidate nodes, distance from the center of gravity, and the number of
nearby one-hop nodes. Secondly, we improve the elephant swarm optimization algorithm
by introducing chaotic sequences, elite strategies, adversarial learning, and guided substi-
tution principles. Next, we use the elephant group algorithm to select the initial matrices
of weights and thresholds for the neural network to avoid the impact of unsuitable ini-
tial parameters on the final convergence speed and output accuracy. Addressing issues
in single-stage neural network data fusion, such as incomplete data processing and large
errors in the fused data, this paper proposes using a second-stage neural network to fuse
the wnitial data received by the cluster head node and output it to the aggregation node.
Finally, we establish a WSN data fusion model based on the radial clustering routing
protocol by combining the radial clustering structure of wireless sensor networks with the
neural network structure. Simulation experiment results demonstrate that the algorithm
exhibits better redundant data rejection ability compared to similar algorithms, with lower
energy consumption and higher data fusion accuracy.

Keywords:WSN, Radial clustering, Elephant herd optimization algorithm, Neural net-
works, Data fusion

1. Introduction. WSN (wireless sensor networks) is a self-organized network system
consisting of multiple sensor nodes with multi-functions such as communication, data ac-
quisition, and processing [1]. Sensors are powered by dry batteries carried by themselves,
and in most application environments, the batteries cannot be replaced. Therefore, the
efficient utilization of node energy and the reduction of the average node’s network energy
consumption have become hot issues currently studied by various scholars [2]. To ensure
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the comprehensiveness and real-time nature of the monitoring data, the staff tends to con-
struct the monitoring and early warning network by throwing sensor nodes in high density.
A large amount of redundant data in the system mainly comes from two aspects, one of
which is the high density of sensors in some areas, which leads to the repeated collection
of the same location data by different sensors. The other is the invalid transmission data
generated by the negligible fluctuation of some data during uninterrupted data collection
[3]. Theoretical analysis demonstrates that the most energy-intensive stage in the opera-
tion of wireless sensors is the data transmission phase. Consequently, the pivotal aspect
for extending the longevity of nodes and the overall operational lifespan of the network
lies in the effective reduction of redundant data transmission within the system [4].

1.1. Related work. The following content provides a concise literature review of the
method proposed in this paper. There is an essential difference between data fusion
and classical signal processing methods, data fusion deals with more complex forms of
multi-sensor information and is possible at different information levels, where each level
represents a different degree of fusion process on the data, and this information abstrac-
tion levels contain data level, feature level and decision level. The corresponding fusion
methods are also mainly data level, feature level, and decision level fusion [5]. The re-
search goal of this paper is feature-level data fusion, so the rest of the data fusion levels
will not be covered. Feature-level data fusion belongs to the intermediate level of data
fusion, and the main advantage is that it compresses the original data and reduces the
propagation of redundant or interfering data, which is advantageous in real-time data
processing and has high accuracy. The methods usually used in feature-level fusion are
cluster analysis, Bayesian estimation, information entropy, weighted average, voting and
neural network methods, etc. Since neural network technology has the same character-
istics as data fusion technology, a large number of scholars have carried out research on
WSN data fusion based on neural network technology [6, 7] .

Wang et al. [8] introduced a BP neural network data fusion model based on the TEEN
protocol. The model initially filters redundant data by setting the TEEN threshold and
then conducts data fusion with the neural network. Results indicate a reduction in com-
munication and energy consumption in WSNs, enhancing data collection efficiency. Never-
theless, challenges include uneven energy utilization among nodes and an unstable model
convergence speed. Wang et al. [9] proposed a hybrid approach, combining rough sets
and neural networks. Rough sets are employed to simplify network inputs, improving the
training speed. However, the implementation process is influenced by the accuracy of the
original decision table. Ayhan et al. [10] suggested optimizing neural network weights
and structure using genetic algorithms, creating a data fusion model. While extending the
network’s lifespan to some extent, this approach faces limitations in processing scale and
stability. Sun et al. [11] presented a wireless sensor network data fusion algorithm based
on BP neural networks. The algorithm, integrated with the LEACH routing protocol,
utilizes neural networks for feature extraction from data collected by cluster members.
The aggregated data is then transmitted to the convergence node, effectively reducing
data transmission traffic and node transmission energy. Notably, the sensitivity of initial
values in BP neural networks introduces a challenge, potentially leading to locally optimal
solutions.

The inherent sensitivity of neural networks to initial values poses a challenge; an inaccu-
rately chosen threshold matrix initial value can significantly impede the model’s iteration
speed. Intelligent optimization algorithms, a category designed for swift convergence to
optimal values, serve as a remedy for this neural network shortcoming. Scholars have
ingeniously proposed employing these intelligent algorithms to optimize the selection of
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weights and initial matrices for neural networks [12]. Cao et al. [13] proposed a WSN
data fusion algorithm based on the improved Gray Wolf algorithm optimized BP neural
network, which improves the data fusion accuracy under different datasets and reduces
the node energy consumption to some extent. Yu et al. [14] introduced a data fusion
algorithm that combines an improved ant colony approach with a BP neural network.
This innovative method employs an enhanced ant colony algorithm to optimize the per-
formance of the BP neural network, specifically tailored for deep well scenarios. Koutini
et al. [15] proposed a neural network data fusion algorithm that was carefully tuned
by applying the Tennessee Whisker algorithm. This optimization not only improves the
accuracy of data fusion but also speeds up the convergence of the network. However, a
noteworthy limitation is that the algorithm neglects the delicate balance between local
optimization and global search, and fails to address the problem that particle swarms are
prone to fall into local optima.

1.2. Main contribution. Faced with a series of problems encountered by various intelli-
gent optimization algorithms in fusing BP neural network models, such as low convergence
of the algorithms, the search process is very easy to fall into the local optimal solution,
there is still a large amount of redundant data in the fusion process, as well as the high
complexity of the actual operation process, this paper proposes the radial distribution-
based hierarchical cluster neural network data fusion algorithm (R-IEHOBP). The main
contributions of our work are as follows:

(1) We combine the radial clustering structure of wireless sensor networks with the neu-
ral network structure to establish a radial clustering-based data fusion model for wireless
sensor networks [16, 17]. The problem of uneven energy utilization of nodes caused by
traditional neural network-like data fusion algorithms based on LEACH clustering routing
protocol is solved to avoid the generation of energy voids, which can effectively extend
the network lifetime.

(2) We propose to improve the classical elephant swarm optimization algorithm using
chaotic mapping, guided substitution principle, and elite strategy. It enhances the diver-
sity of the initial population of the elephant swarm, enhances the global search ability of
the elephant swarm algorithm, prevents the elephant swarm algorithm from falling into
local optimal solutions, and speeds up the iteration speed of the algorithm.

(3) We use the improved elephant swarm optimization algorithm to select the initial
weights and threshold matrix of the neural network, which avoids the adverse effects of
wrong initial values of the biblical network on the iterative process [18].

(4) We advocate a two-step approach in the data fusion process, employing a two-
layer neural network structure. The initial layer of the neural network undertakes data
preprocessing, forwarding the processed data to the second layer for fusion operations.
This design departs from a single-layer neural network data fusion model, addressing issues
related to inadequate data processing and low fusion accuracy through optimization [19].

2. Radial Cluster Protocol. In this paper, a radial distribution-based cluster head
selection protocol (RACH) is used. Its advantage lies in abandoning the previous way
of directly selecting cluster heads in the whole network, dividing the network into arches
of different sizes, determining the number of required cluster head nodes in the arched
according to the arc length and radius of each arched, and then scattering the cluster head
campaigning process in each arched. RACH not only reduces the energy consumption
during cluster head campaigning but also solves the problem of energy wastage caused
by too little cluster head node selection when the cluster head consumes a lot of energy
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and is prone to node death when too many cluster head nodes are selected. The RACH
structure diagram is shown in Figure 1.
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Ficure 1. RACH structure diagram

In the cluster head selection phase, the number of cluster heads needed in the region
is first determined according to Equation (1). and then the node weights are calculated
according to the number of neighboring junctions, the remaining energy of the node, and
the distance from the center of gravity of the region for each candidate cluster head, and
the cluster head nodes are selected according to the weights, as shown in Equation (2).

S; = Trunc(P;/R; x 4) + 1 (1)

{ Doy = /(X, = X + (v, — V) 2
W(s) = ET(S) + N(S) — Ds,i/lOO

Where P; is the arc length of the ith sector, R; denotes the radius of the ith sector,
S; represents the optimal number of cluster heads needed in the ith arch, represents the
distance of node s from the center of gravity of the region in which it is located, wy)
represents the weight of node s, D ; is the residual energy of the node, and Er(s) is the
number of one-hop nodes of the node in the same region.

3. Improvement of EHO.

3.1. Improved initialization algorithm. Owing to the pronounced uncertainty associ-
ated with the randomly generated initial population in the standard EHO algorithm, it can
readily impart adverse effects on the iterative process. Consequently, this article presents
a novel approach by introducing an initial value generation algorithm rooted in chaotic
mapping and Opposition-based Learning (OBL) [20]. Chaotic mapping has the charac-
teristics of pseudo-randomness, ergodicity, and unpredictability, which can be utilized to
map the randomly generated initial positions in the algorithm into the chaotic space to
make the initialized population positions more uniform, thus increasing the population
diversity. Numerous studies have shown that Tent mapping has significant advantages in
terms of traversal consistency, so we use Tent mapping to map the initial value positions
of object groups. Firstly, the classical elephant swarm algorithm initializes its population



WSN Data Fusion Algorithm Based on Radial Cluster and Elephant Swarm Neural Networks 2141

through a random uniform distribution that is shown in Equation (3), subsequently, we
apply the chaotic mapping to these initial values according to Equation (4). Then the
opposite solution of the initial elephant group after chaotic mapping is generated by OBL,
as shown in Equation (5). Eventually, the better-adapted individuals are selected to join
the initial population.

Teij = lb; + (ubj — 1bj) X rand (3)
) 2260 S 26 j <05
Leij+1 = { 2(1 - $ci,j)0'5 < Teiyg <1 (4>

Teij = (ubj — b)) — xei (5)

ci,j
Where z.; ; represents the generation position of the ci th elephant in the jth dimension
of the randomly generated, and z.; ;11 Represents the value of z.; ; after Tent mapping,
and xgw stands for the opposite value of z; ;, and ub; and (b; denote the upper and lower
bounds in the space, respectively, where rand € [0,1].

3.2. Optimizing the outlier approach. The classical elephant swarm algorithm evicts
the elephant with the lowest fitness in each separation step, which not only affects the di-
versity of the elephant swarm but also easily leads to the overall search results falling into
local optima. Certain scholars suggest incorporating randomly generated new elephant
individuals to substitute for the least fit individuals. However, this may not yield effec-
tive optimization results during the algorithm’s iteration and could potentially cause the
algorithm to iterate in an incorrect direction. This article proposes a guiding replacement
strategy related to the position of the worst common elephant and leader, replacing the
classical elephant outlier algorithm. As shown in Equation (6).

x _ Lhest + 701(xbest - :Cworst) + 702(%'1 - :CQ)v r > 05 (6)
new Laworst + Tl(xbest - xworst) + T2<x1 - x2)7 r < 05

Where .., Represents newly generated replacement elephant individuals, r; and 7y are
the random values that between 0 and 1, x; and x5 are randomly removed individual
elephants in this clade and z; # x5 .

3.3. Improving random parameter sequences. Chaotic sequences are a type of sto-
chastic process that maintains the unpredictability of random numbers while also pos-
sessing non-periodicity and other characteristics. The population initialization, search,
update, and crossover processes involving chaotic sequences can achieve better results
than random sequences. Tuba et al. compared the effect of Circle mapping and Si-
nusoidal mapping in the hierarchical swarm optimization algorithm through simulation
experiments, and the experimental results show that the hierarchical swarm optimization
algorithm with Circle mapping has the optimal results under the same initial environment
[21]. In order to avoid the population iteration falling into the local optimum and to speed
up the algorithm to search for the global optimum solution, Circle mapping is introduced
in this paper to replace the pseudo-random value generator, that shows in Equation (7).

b
Sk+1 = mod (sk +a— gy sin(2msg), 1) (7)
™

Where si,1 represents a newly generated chaotic sequence, used to replace the random
value generator in the text, with values between (0,1), when a = 0.2 and b = 0.5, the
generated chaotic sequence lies within (0,1).
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3.4. Introducing Elite Strategies to Optimize EHO Leader Update Operations.
In order to solve the problem of leader reverse updating in the standard elephant swarm
algorithm, this paper introduces an elite strategy in the leader updating process. By
comparing the fitness of the current herd leader X, ; with the new leader X;* jl generated
in subsequent iterations, the one with the highest fitness is selected as the new leader.

The elite strategy can be abstracted as shown in Equation (8).

t+1 ijliffit(ijl) < fit(X} ;)
Xci7j = t" s t+1 : t (8)
Xeajif Fit(Xey) = fit( X5 5)

ct,j

Where X, ; represents the current herd leader, and X, oy jl represents new leaders created

during subsequent iterations, represents fitness calculation function.

4. Data Fusion Core Ideas.

4.1. WSN model structure. The WSN model in this paper adopts a two-stage neural
network structure. The first-level neural network is mainly applied to the preliminary
processing of monitoring data in the cluster nodes, which includes data normalization
and extraction of data feature values. The second-level neural network is located in the
cluster head node, which is mainly responsible for processing the normalized feature data
extracted by the first-level neural network. After the data is processed by the implicit
layer, the cluster head node delivers the fused data to the base station. The structure of
the secondary neural network is shown in Figure 2.

Sink node
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F1GURE 2. Two-stage neural network structure diagram
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4.2. Redundant data elimination. The main sources of redundant data in the system
are data collected repeatedly due to excessive sensor density, and data that fluctuates less
than the monitoring error. So in this paper, redundant data elimination is carried out in
two parts, firstly the intra-cluster nodes perform preliminary culling of the received data
and pass the preliminary culled feature data to the cluster head node for further processing
of the data. The experiment proves that the secondary processing of the collected data can
significantly reduce the redundant data in the system. The process of data normalization
is to calculate the mean value of the current data group by Equation (9), then the mean
value is brought into Equation (10) to solve the standard deviation of the data group,
and finally the two parameters are brought into Equation (11) to normalize the data.

D=3 dw) o)

std(D) = ! Z (d(z1) — D) (10)

d(;)
h std(D) (11)

where d(x;) denotes the set of data to be normalized, and D denotes the mean value
of the set of data, std(D) denotes the standard deviation of the data for the group, G;
represents the final result after normalization of the data. In this paper, we extract
eigenvalues by eliminating combinations of data with fluctuations within the permissible
range. Specifically, we do not process data that exhibits fluctuations between the pre-set
values 6. In a one-level neural network, the normalized data is passed to the cluster head
node through the hidden layer, determine whether to continue processing the data or
discard it by comparing the |d(z;41) — d(z;)| difference to 0. If d(Ax;) > 6, the data
fluctuates beyond the permissible range, and the data is involved in the next processing
as characterization data. The feature data extraction method can be abstracted as shown
in Equation (12).

Gi = N(d(z;))

d(Ax;) = |d(ziy1) — d(;)]
d((lfi_,_l), d(A(L’z) >0

Where f(d(z;),0) denotes the feature data extraction function, d(z;) and d(x; + 1) rep-
resents the continuous data passed by the nodes in the cluster, and d(Ax;) represents
the absolute value of the difference between two consecutive pieces of data, then 6 is the
threshold set at the hidden layer node of the first neural network layer.

4.3. Data fusion. The purpose of data fusion is to take the monitoring data collected by
the WSN and output a single packet that can represent all the current information through
the optimization of the neural network implicit layer function. Since the energy consumed
for transferring information between sensors is directly proportional to the transmission
distance and the size of the information packet, this approach reduces the amount of
energy consumed by the cluster head nodes for transferring data. The data fusion process
occurs in the second level of neural network structure. The normalized feature data
extracted above are used as input values and handed over to the optimization function in
the input-implicit layer for further processing. The processed data is then further fused
as an input value by the optimization function in the implied-output layer to obtain the
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final fused data, which is passed to the convergence node. The optimization function in
the input-implicit layer is shown in Equation (13), and The optimization function in the
implicit layer-output layer is shown in Equation (14).

Hy=f(>_wijRi —aj),j=1,2...,p
i=1

flo) ==

(13)

p
Ty = Hjwp — b k=12 ..n (14)

j=1

Where f(z) is the Tanh excitation function (hyperbolic tangent function), H; and T}
represent the value output from the implicit layer and the value output at the end of
the forward data transfer process, respectively. w;; and wj; are the randomly given link
weights, a; and by, are the given thresholds at the implicit and output layers, respectively.

4.4. Data Fusion Steps and Flowchart. In this paper, a WSN data fusion algorithm
based on radial clustering and IEHOBP is proposed, and the specific implementation
steps are as follows:

(1) Sensor nodes in the WSN exchange identity information with each other.

(2) Divide and determine the number of sensors required for each region according to
Equation (1), and finally calculate the fitness of each node with Equation (2) and select
the cluster head node step by step.

(3) The nodes in the cluster normalize the data listened to during the working period
according to Equation (9, 10, 11), and then the eigenvalues of the normalized data are
extracted by Equation (12).

(4) The intra-cluster node passes the current eigenvalue data collected by various sensors
to the cluster head node.

(5) The cluster head node will send the output fused data to the aggregation node after
optimizing the received data as an input to the neural network by the implicit layer. The
implicit layer function is optimized as shown in Equation (13, 14).

(6) Determine whether the remaining energy of the cluster head node satisfies the
condition to continue to serve as the cluster head, and if not, reselect the cluster head
according to Equation (2).

(7) The nodes in the cluster continue to normalize the data listened to during the work
and the eigenvalue extraction is performed on the normalized data by using Equation
(11).

The flowchart of the R-IEHOBP algorithm proposed in this paper is shown in Figure
3.

5. Experimental results and analysis. In this paper, we conducted simulation exper-
iments using MATLAB R2021a, focusing on coal mine gas concentration monitoring as
the application scenario. We applied the R-IEHOBP algorithm to process data collected
by sensor nodes positioned beneath the mine, capturing parameters such as CO and CH4.
The study utilized 674 sets of methane gas and CO emission monitoring data gathered at
the working face of a coal mine in Jincheng, Shanxi Province, in 2022. Table 1 presents
selected data on methane gas concentration for specific experimental choices.

In this paper, the number of elephant population populations used is 20, the maximum
number of iterations is 20, the number of function evaluations is 5, etc., and the number
of hidden layer nodes in the neural network is 16. The remaining network simulation
parameters are shown in Table 2. Ultimately, the R-IEHOBP algorithm introduced in
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Ficure 3. RACH structure diagram

TABLE 1. The partial methane concentration data

CH4 (m?’/t) tl tg t3 t4 t5 t6 t7 tg
T 2.19 2.06 2.24 2.31 2.53 2.87 2.82 3.53
T 2.23 2.21 2.28 2.35 2.42 2.59 297 3.41
T3 2.17 2.33 2.58 2.68 2.83 3.03 3.58 3.68
T4 2.21 2.32 2.58 2.68 2.83 3.03 3.58 3.68
Zs5 2.23 2.46 2.51 2.45 2.73 2.92 3.25 3.23
T 2.18 2.15 2.17 2.24 2.49 2.78 2.87 3.56
X7 2.12 2.29 2.46 2.55 2.62 277 2.86 3.38
xs 2.23 2.26 2.29 2.37 2.65 2.73 2.69 3.54

this paper is subjected to a comparative analysis with algorithms presented in existing
literature (references 22-24). The evaluation is conducted through simulation experiments,
focusing on key metrics such as the number of valid packets received, data transmission
accuracy, and the average residual energy of the nodes, as reported in references [22, 23,
24].

5.1. Comparison of valid packets received by aggregation nodes. In this paper,
we evaluate the efficacy of various algorithms in identifying valid packets by comparing the
number of valid feature packets transmitted to the base station nodes. This comparison
is conducted under an equal number of iteration rounds, considering both the absolute
count of valid packets and their growth rate. A higher number of valid data received
by the aggregation node within the same number of rounds indicates better algorithm
performance.
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TABLE 2. The simulation parameter settings for the network

Simulation parameter categories Simulation Value Setting
Network Emulation Scope /m? 100 x 100
Number of nodes 200
Node initial energy/.J 0.5
Transmission 45
consumption/(nj - bit 1)
reception consumption/(nj - bit~') 30
Maximum simulation rounds 2000
packet size/(bits) 64
simulation time/s 500
55
5 50F
=
g 45 -
2
40}
= 3.0
g 2.5
30
ﬁ 20
S 15} —=— RIEHOBP
Sl —e— LEACH-C
ol —— DFA-IACOBP
> 05} —v— ACOBP
0.0 ' |

0 250 500 750 1000 1250 1500 1750 2000
Number of iterations

F1GURE 4. Comparison of redundant data rejection capabilities

In Figure 4, the number of featured packets received by the aggregation node is depicted,
comparing the usage of the R-IEHOBP algorithm with the other three fusion algorithms.
As shown in the figure, the number of valid packets received by the aggregation node
using the R-IEHOBP algorithm is more than the aggregation node using the other three
algorithms at any given time. The R-IEHOBP algorithm demonstrates notable superiority
in packet reception compared to the ACOBP algorithm. Specifically, when the iterations
reach 250 times, the R-IEHOBP algorithm receives 2.57 times more valid packets than the
ACOBP algorithm. Moreover, with iterations extended up to 1250 times, the R-IEHOBP
algorithm achieves a number of valid packets similar to the final count. In comparison,
the other three algorithms have to go to 1450, 1600, and 1200 times to achieve the same
result. The final results indicate that the algorithm proposed in this paper outperforms
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the remaining three algorithms in both the final number of received packets and processing
speed.

5.2. Data Accuracy Comparison. Ideally, a wireless sensor network should work with
100% data accuracy, but the pursuit of high accuracy means that the rest of the nodes
in the network have to bear a higher load. Due to the special characteristics of the
working environment in the air-mining zone, the lower the accuracy of the data after the
final fusion of the nodes, the higher the possibility of triggering safety problems, so it is
necessary to strictly control the accuracy of the data while considering the life cycle of
the system in the complex under-mining environment.

100

Accuracy rate of data/%

—=— R-IEHOBP

—e— LEACH-C
es |- —a— DFA-IACOBP
—v— ACOBP
50 1 1 1 1 1 1 1

0 250 500 750 1000 1250 1500 1750 2000
Number of iterations

FIGURE 5. Data Accuracy Comparison

As shown in Figure 5, the data accuracy of the R-IEHOBP algorithm in the wireless sen-
sor network simulation experiment is finally maintained at about 95%, while the average
accuracy of the LEACH-C algorithm is 88.3%, the average accuracy of the DFA-IACOBP
algorithm is 74.5% and the average accuracy of the ACOBP algorithm is 66.7%. The
results show that the data accuracy of the R-IEHOBP algorithm is consistently better
than the other three algorithms during the simulation experiments.

5.3. Comparison of average residual energy of nodes. Wireless sensor nodes carry
limited battery energy and are not equipped to recharge or replace batteries. The death
of a node creates a blind zone for monitoring, leading to incomplete information collection
by the system. The energy hole created by node energy depletion will create an additional
workload for other nodes. So the level of node energy consumption is one of the important
indicators for evaluating the performance of WSN, the more the average remaining energy
of the nodes under the same working time and working environment, the lower the energy
consumption of the system under the algorithm and the longer the life cycle of the system.
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FiGURE 6. Comparison of average residual energy of nodes

As shown in Figure 6 when the simulation time is carried out for 500 seconds, the
average residual energy of the nodes of each algorithm is R-IEHOBP algorithm (0.18j),
LEACH-C algorithm (0.085j), DFA-IACOBP algorithm (0.065j), and ACOBP algorithm
(0.025j). The algorithm proposed in this paper has more residual node energy for the
same operating time. And with the simulation experiment, the remaining three algo-
rithms’ node residual energy decreases faster, this is because, with the increase of node
energy consumption, the WSN needs to replace the cluster head node frequently in or-
der to achieve a more uniform utilization of individual node energy. and the simulation
experiments proved that the R-IEHOBP can utilize the nodes of each node more evenly.
Simulation experiments demonstrate that R-IEHOBP can utilize the energy of each node
in a more balanced way, with lower average energy consumption and longer overall net-
work lifetime than the remaining three algorithms.

6. Conclusion. Aiming at the problem that wireless sensor networks have a large amount
of redundant data in the working process, which reduces the service life of the network.
In this paper, we combine the radial clustering structure of wireless sensor networks with
the neural network structure and propose a WSN data fusion algorithm based on radial
clustering and swarm neural networks. The algorithm uses the improved EHO algorithm
to optimize the initial threshold of the neural network, and then uses the faster conver-
gence speed of the hierarchical neural network to perform the secondary processing of the
data, and finally delivers the fused data to the convergence node.

Simulation experiment results show that the R-IEHOBP algorithm proposed in this
paper reduces the propagation of redundant data in the network, improves the accuracy
of the fused data, and extends the network lifetime. Subsequent tests confirm that the R-
IEHOBP algorithm proposed in this paper still maintains good data fusion capability, high
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data accuracy and fast data uplink speed when dealing with real-time monitoring systems
constructed by multiple monitoring devices. Uncertainty in the selection of thresholds in
the two-level neural network leads to fluctuations in the accuracy of the fused data, and
the single-quadrant outlier approach still fails to satisfy the demand in the global search,
so this is a direction for future research.
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