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Abstract. In the process of handling bulky items, a single robot has limitations in
motion control. Multiple robots, through collaboration, can perform complex operations
that are difficult for a single robot to complete. However, multiple robots are affected by
many nonlinear factors coupled with each other when they work together, and it is very
difficult to establish its accurate mathematical model. Therefore, this paper proposes a
deep neural network-based trajectory calculation method for cooperative handling robots.
Firstly, the kinematics of industrial handling robots are analysed from the point of view
of spatial description and transformation, including single and dual robots. Then, an
improved RBF neural network based on Shuffled frog leaping algorithm is proposed. The
RBF neural network weights are used as individual frogs, so as to randomly generate
a frog population consisting of multiple weight combinations. Secondly, a collaborative
dual-robot trajectory estimation method based on improved RBF is designed, and the
trajectory calculation model and RBF neural network controller are given. The RBF
neural network is used to approximate and compensate the four parameters in the dual-
robot dynamics model individually, which reduces the model error while avoiding the
influence of mutual coupling between the error functions. The simulation results show
that the average tracking errors of joint 1 and joint 2 can be stabilised at 0.8285 ° and
0.7185 °. The average tracking errors of the SFLA-RBF neural network are lower than
those of the RBF neural network throughout the iteration process.
Keywords: Dual robot system; trajectory planning; cooperative handling; RBF neural
network; dynamics modelling

1. Introduction. With the transformation and upgrading of the manufacturing indus-
try, the application fields of industrial robots are getting bigger and bigger, and the robots
are always better able to complete the tasks in workpiece handling, collaborative assem-
bly, parts welding, and item sorting. However, with the expansion of application fields
and the emergence of more and more complex tasks, many problems have arisen in the
application of industrial robots [1, 2, 3]. For example, the handling of heavy or bulky
objects, the need to process workpieces with complex trajectories and the need to move
a large working range.

Research on multi-robot collaboration originated from the limitations of single robot
capabilities and the need to achieve more efficient and intelligent task execution [4, 5]. In
the field of factory automation, multi-robot collaboration can increase productivity, reduce
production costs, and enable flexible production line layouts and task assignments. Multi-
robot collaboration can also be applied to assist assembly, material handling and packaging
[6, 7]. Multi-robot collaboration can be used in automated warehousing, material handling
and order processing to improve logistics efficiency, reduce labour costs, and improve the
precision and safety of warehouse management.

Multi-robot collaboration refers to the nature of multiple robots working together with
each other when completing the same task [8. 9]. For complex tasks, such as handling
irregularly shaped or larger and heavier objects, when a single robot is unable to complete
the handling task due to its own limitations, multiple robots can replace a single robot
to complete the task through collaborative work, which also improves the efficiency of
the robotic system in the process of the operation, and enables the multi-robot system to
solve more practical application problems.

The problem of determining the relationship between the base coordinate systems of
two robots by some means or method is the problem of studying the calibration of the
relationship between the base coordinate systems of a two-robot base coordinate system
[10]. The relationship between the base coordinate systems of the robots is represented
by a chi-square matrix containing position vectors and rotation matrices. Since the Z-
axis of the robot’s base coordinate system is generally located inside the robot, it is not
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possible to obtain the relationship between the base coordinate systems of the two robots
by direct measurements [11], and therefore it can only be done by indirect measurements
or measurements with the help of advanced equipment.

Robot trajectory planning has a very important role in the control of industrial robots,
which directly affects the rapidity and accuracy of robot control. The planning of the
robot contains three parts in total [12]: task planning, action planning, and trajectory
planning. Trajectory planning is to design the target motion trajectory according to the
requirements of the robot operation task, and to describe its curve trajectory and motion
line. If two robots or multiple robots instead of a single robot work together to complete
a task, the problem can be solved with high quality and efficiency. However, multiple
robots are affected by many non-linear factors coupled with each other when they work
together, and it is very difficult to establish an accurate mathematical model for it.

With the advances in artificial intelligence, sensors, and communication technologies,
research on multi-robot collaboration has been better supported [13, 14]. For exam-
ple, the development of technologies such as distributed intelligence algorithms, machine
learning, and sensor networks provides more possibilities for the realisation of multi-robot
collaboration. Therefore, the research objective of this work is to propose a dual-robot
collaborative handling trajectory computation method to improve the efficiency and ac-
curacy of the robots, so as to solve the problem of precise synchronisation of dual-robot
handling.

1.1. Related Work. trajectory planning for dual robotic systems is one of the more
researched problems in robotic systems in recent years, where robots are controlled to
complete complex tasks through trajectory planning and collaboration between robots.

Multi-robot cooperative problem is one of the hot issues in the field of robotics research,
in the early 80’s, the research of multi-robot cooperative was in the initial stage, how to
maintain the movement of multi-robots is the key problem of multi-robot cooperative
must be solved, Vergnano et al. [15] pointed out that in the multi-robot cooperative op-
eration, the movement cooperation is the most basic form of operation, and the dynamics
cooperation problem should be considered according to the needs of cooperative oper-
ation. However, there are few systematic studies on kinematic constraint analysis and
path planning methods for complex cooperative motions. Antonelli and Astanin [16] in-
vestigated the kinematic constraints in cooperative welding and cooperative handling and
demonstration methods for cooperative trajectory planning. During the robots’ collabora-
tive following motion, the schematic teaching method of the slave robot end motion path
can be obtained based on the known master robot end motion path, and the results show
that the master robot end pose remains consistent during the motion. This strategy lays
a certain foundation for the development of next-generation robot controllers with collab-
orative functions. Čáp et al. [17] addresses the multi-robot motion coordination planning
problem and proposes an asynchronous decentralised prioritized planning It highlights the
limitations of existing decentralized prioritized planning algorithms, which contain syn-
chronization points that all agents must pass synchronously, and demonstrates that the
proposed method can converge faster than both synchronous decentralised and centralised
algorithms. Ahmadzadeh and Masehian [18] presents a planning system that enables par-
allelisation of complex task and motion planning problems by iteratively It combines
optimisation methods to jointly solve for manipulation constraints with a sampling-based
bi-directional space-time path planner, allowing for cooperative multi-robot manipulation
with arrival unknown. It combines optimisation methods to jointly solve for manipula-
tion constraints with a sampling-based bi-directional space-time path planner, allowing
for cooperative multi-robot manipulation with unknown arrival-times.
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Guo et al. [19] proposed a real-time cooperative control of multiple robots using syn-
chronised visual feedback controllers. Zhang et al. [20] proposed a distributed scheduling
method based on a local priority strategy, which achieves rational scheduling and coop-
erative operation of individual robots by assigning time slots and principles to a swarm
of robots. However, the robots need to perform predefined tasks in relatively fixed en-
vironments, which may have some limitations in practical applications. Jin et al. [21]
proposed a novel multi-robot coordination method, which enables a group of distributed
robots to reach a coherent state quickly by using a consensus algorithm. However, the
approach focuses on robot coordination in a specific network environment, and thus may
be problematic in the absence of a network or when communication links are broken.

Neural network control is a control method gradually developed at the end of the 20th
century, its biggest advantage is that it can approximate any complex nonlinear system,
and is often used as a controller or a discriminator, which is able to solve some control
problems of complex systems.

1.2. Motivation and contribution. Deep neural networks can effectively learn and
approximate complex, highly nonlinear system dynamics models [22, 23]. In dual-robot
cooperative trajectory planning, the system often has a variety of complex nonlinear fac-
tors, and deep neural networks can better capture these factors and improve the accuracy
and robustness of trajectory planning [24]. Therefore, in order to solve the problem of
difficult control when dual robots work together, a deep neural network-based trajectory
calculation method for cooperative handling robots is proposed. The main innovations
and contributions of this paper include:

(1) The kinematic model of dual robot trajectory synchronisation is investigated as an
example of dual robot cooperative handling task, and the mutual expression equations of
dual robot cooperative motion are given.

(2) In order to improve the training efficiency and performance of Radial Basis Func-
tion (RBF) neural network [25], Shuffled Frog Leaping Algorithm (SFLA) [26] is used to
optimise the weights of RBF neural network. The training of RBF neural network usu-
ally needs to be done by optimisation algorithms such as gradient descent to continuously
adjust the weights, while the SFLA algorithm can find effective parameter combinations
more quickly by means of group intelligence.

(3) A collaborative dual robot trajectory estimation method based on SFLA-RBF is
designed, and the trajectory calculation model and RBF neural network controller are
given. The SFLA-RBF neural network is used to approximate and compensate the four
parameters in the dual-robot dynamics model individually, which reduces the model error
while avoiding the influence of mutual coupling between the error functions.

2. Kinematic analysis of industrial handling robots.

2.1. Spatial description and transformation. In order to realise complex manipula-
tion tasks, robots are usually composed of a series of connecting rods and corresponding
kinematic attachments. Therefore, describing the relative motion relationships between
robot links, as well as between them and the manipulated objects, plays an extremely
important role in the study of the robot’s motion and mode of operation. In describing
the orientation relations of a rigid body, a coordinate system is first specified, relative
to which the positions of points can be represented by three-dimensional column vectors.
The orientation of a rigid body can be represented by a 3Ö3 rotation matrix. And a 4Ö4
chi-square transformation matrix can unify the orientation description of the rigid body.
Until now, a uniform description of the robot’s position has been given in the form of a
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uniform chi-square coordinate matrix, on the basis of which subsequent kinematic studies
and analyses have been realised.

1) Location Description.
The right-angle coordinate system

∑
i is used to describe the position, and the position

of any point P in space can be represented by a 3× 1 column vector AP , i.e., the position
vector.

AP =

Px

Py

Pz

 (1)

where Px, Py, Pz are the three coordinate components of point P in the coordinate
system

∑
i.

2) Orientation description.
Set up a right-angled coordinate system

∑
A connected to a rigid body A in space.

Use the three principal vectors XA, YA, ZA of the coordinate system
∑

A to form a 3× 3
matrix.

B
AR =

(
BXA

BYA
BZA

)
=

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2)

where B
AR is called the rotation matrix and the superscript B represents the selected

reference coordinate system
∑

B.
Since the three column vectors XA, YA, ZA are unit principal vectors and are perpen-

dicular to each other, the nine elements of the rotation matrix satisfy the following six
constraints (also called orthogonality conditions):{

BXA ·B XA =B YA ·B YA =B ZA ·B ZA = 1
BXA ·B YA =B YA ·B ZA =B ZA ·B XA = 0

(3)

Thus, the rotation matrix B
AR is unit-orthogonal and the inverse of B

AR is the same as its
transpose with a determinant value of 1. Typically, position vectors are used to describe
the position of a point, while rotation matrices are used to describe the orientation of an
object.

In order to describe the position and attitude of the robot end-effector, a reference
coordinate system

∑
A is chosen. The end-effector is defined to be solidly connected to a

coordinate system, called the end-effector coordinate system
∑

B. The Z-axis is located
close to the object and the X-axis is determined according to the right-hand rule. Thus,
the orientation rotation matrix of the end-effector is shown below:

A
TR = (n, o, a′) (4)

where a′ is the approach vector, n is the normal vector, and o is the orientation vector.
We use the position vector P to describe the position of the end-effector, then the end-
effector’s bit position can be described by four vectors (n, o, a′, P ).

2.2. Kinematics modelling of single robot. Any robot configuration can be modelled
using the D-H method. In addition, it can be used to represent any possible combination
of robot joints and linkages.

The total transformation matrix of the robot is obtained by connecting all the trans-
formations of the robot starting from the bottom base until the last joint to each other in
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order [27]. Figure 1 represents the three joints of the linkage (joints n, n+ 1, and n+ 2)
in relation to each other, each of which is rotatable or translatable.

Figure 1. D-H representation of the universal joint-link combination

In order to model the robot linkages and joints using the D-H algorithm, a local refer-
ence coordinate system needs to be specified for each joint. Therefore, for each linkage
joint of the robot, a z-axis and an x-axis must be specified, and generally the y-axis is
not specified because the y-axis can be derived from the right-hand rule and the direction
is always perpendicular to the z-axis and the x-axis. The transformation matrix A is
represented as six right-multiplication matrices. Since all transformations are transfor-
mations with respect to the current coordinate system, all matrices are right-multiplied.
On the base at the bottom of the robot, the first joint is transformed sequentially to the
end joints and finally to the robot end-effector by means of matrix positional transfor-
mations. If each matrix transformation is defined as An+1, many A matrices representing
the transformations are obtained. The total transformation between the bottom base of
the robot and the arm is shown below:

RTH =R T−1
1 T 2

2 T3, . . . , Tn = A1A2A3, . . . , An (5)

where n is the number of robot joints. For a six-axis robot, there are six A matrices.
In summary, the end spatial attitude of the six-axis robot is obtained by kinematic

orthogonal solution of the six-axis robot and coordinate transformation with given D-H
coordinate parameters, and any position in the range of the robot’s workspace can be
represented by the end attitude, which lays a foundation for the subsequent dual-robot
trajectory planning and collaboration.

Robot inverse kinematics is the basis for robot motion planning and trajectory control.
Since solving the kinematic equations is a nonlinear problem, it is difficult to study the in-
verse kinematic solution problem, and the existence of its solutions and multiple solutions
must be considered. Algebraic solution method in robot inverse kinematics equations is
convenient for real-time control, fast computation and high efficiency, so algebraic solu-
tion method is used as an example to solve the problem. In the process of robot inverse
kinematics calculation, it is learnt that when the robot’s end position is fixed and kept
unchanged, the solution is the existence of multiple solutions, in other words, the robot
inverse kinematics has multiple solutions. A solution closest to the current robot can be
selected as the optimal solution.
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2.3. Kinematics analysis of dual-robot. In the process of dual-robot synchronous
motion operation, there must exist certain constraint relationship between the two robots,
when the two robots start to move at the same time, the relative positions and attitudes of
their end-effector remain unchanged, so a strong synchronisation between the two robots
is required.

For example, when a two-robot system is handling a larger and heavier box, in order to
keep the relative position constraints at the end of the two robot’s constant, the two robots
need to keep their motions in a synchronised state. In this paper, we will study the dual-
robot synchronous kinematics model as an example of the dual-robot cooperative handling
task. Figure 2 shows an example of two-robot cooperative and synchronous handling of
a box.

Figure 2. Example of synchronised handling dual-robot

After modelling the kinematics of a single robot, a kinematic model of a dual robot
is required to study the cooperative motion of the dual robot. When modelling the
kinematics of the two-robot system, only the relationship between the base coordinate
systems of the two robots needs to be investigated as the kinematic model of each single
robot has been established previously. As the two six-axis robots are handling the box,
the positional relationship of their end-effector needs to be represented in their respective
base coordinate systems, which will increase the computational complexity. Therefore,
the kinematic equations between the two robots need to be established on the basis of
the forward kinematics as well as the inverse kinematics of a single robot, so that the
computational relationship between the two is determined in the same base coordinate
system. It is assumed that the end-effector attitude of the robot under study does not
change.

The world coordinate system is the absolute coordinate system of the system indepen-
dent of the base position. The coordinate transformation of the base coordinate system of
master robot ① with respect to the world coordinate system is indicated by AE

1 , and the
coordinate transformation of the base coordinate system of slave robot ② with respect to
the world coordinate system is indicated by AE

2 .

OE = AE
1 ·O1 (6)

OE = AE
2 ·O2 (7)

When the world coordinate system is selected to coincide with O1, the relative position
relationship between robot ① and robot ② can be obtained.
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O1 = AE
2 ·O2 (8)

A−1
2 = O1 ·O−1

2 (9)

When the base coordinate system of the master and slave robots is known, Equation
(9) can be used to find out the position transformation array A−1

2 of the base coordinate
system of the slave robot relative to the base coordinate system of the master robot. In
order to distinguish it from the transformation array of the joint coordinate system, the
transformation array of the base coordinate system is denoted as T12. Solving T12, the
relative motion relationship between robot ① and robot ② is established, which completes
the mutual expression of the cooperative motion of the two robots.

3. Improved RBF neural network design.

3.1. RBF neural network. RBF neural network is an important type of deep neural
network. RBF neural network is characterised by a radial basis function, which simulates
nonlinear relationships through a series of nonlinear transformations. The network usually
consists of three layers [27]: an input layer, a hidden layer and an output layer, as shown
in Figure 3.
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Figure 3. Structure of the RBF

Compute the Euclidean distance between the input vector x and each centre vector cj
of the network.

Dj = ∥x− cj∥ (10)

where Dj is the distance between the input and the centre of the j-th RBF neuron.
This distance is transformed using a radial basis function to get the output of that

neuron. The most commonly used radial basis function is the Gaussian function. The
activation function for the j-th RBF neuron is shown as follows:

hj = exp(−βj ·D2
j ) (11)

where βj is the width parameter of this neuron.
The output of the RBF neural network can be obtained by summing the weights of the

output layer and the outputs of all the neurons in the hidden layer. The output of the
RBF neural network is shown as follow:

y =
∑

(wj ∗ hj) (12)
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Unlike many other types of neural networks, RBF neural networks are typically trained
in a two-stage approach. The centre vector and width parameters are fixed first, and then
the output weights are trained. For example, we can train the weights using the least
squares method with the objective function shown as follow:

E =
∑

(t− y)2 (13)

The minimum error is obtained by taking the derivative of the objective function and
making the derivative equal to zero. Using the mean square error as the loss function.

E =
1

2

K∑
k=1

(tk − ok)
2 (14)

where tk is the target output of the training sample.
Once the centre cj and the width parameter βj are fixed, the minimisation of the

objective function E can be achieved simply by adjusting the weights wj of each neuron,
thus completing the training process of the RBF neural network.

RBF neural network is a neural network based on radial basis functions [28], which
models nonlinear relationships through nonlinear transformations, and has better ap-
proximation performance and nonlocal generalisation ability for pattern recognition and
prediction in a variety of problems.

3.2. Shuffled frog leaping algorithm. The SFLA is a new heuristic population evo-
lutionary algorithm [29] with efficient computational performance and excellent global
search capability.

SFLA divides the population into m subpopulations S = S1, S2, ..., Sm, each subpopu-
lation is of size n, then the population size is m×n. The position of each frog is updated
in the following way:

xij = xij + rand(−1, 1) ∗ (xij − xkj) (15)

where xij denotes the position of the ith frog in the j-th dimension, xkj denotes the
position of the other selected frog in the corresponding dimension, and rand() is a random
number.

By doing this, the frog’s position is updated based on the position of another frog
and a random factor is introduced to increase the diversity of the algorithm. For each
subpopulation Si, the frog’s fitness is calculated as shown as follow:

fitnessi = f(xi) (16)

The fitness of each frog is calculated based on the objective function f(x) defined by the
problem. The fitness is used in the SFLA algorithm to measure how well the frogs fit the
optimisation problem, which in turn affects the frog’s position update and selection in the
next iteration. By introducing the global optimal information to guide the local search
to achieve the global search, the hybrid frog hopping algorithm combines the advantages
of population global search and local search.

3.3. SFLA-RBF. There are two main ways to optimise RBF neural networks, one way
is parameter optimisation. The structure and performance of the RBF network can be
optimised by adjusting the parameters such as the number and distribution of the centre
vectors, the width of the basis function, and the weights from the hidden layer to the
output layer. Commonly used methods include feed-forward RBF networks, regularisation
techniques, Bayesian training methods, etc.
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Another way is structural optimisation. The performance can be optimised by changing
the connection structure of RBF network, such as adding shortcut connections, using
cascade structure, etc. These structural optimisations can reduce the training error and
prevent overfitting. These structural optimisations can reduce the training error and
prevent overfitting. In this work, parameter optimisation of RBF neural network is chosen.
The steps of the proposed SFLA-RBF neural network are as follows:

1) Initialising a group of frogs: first, we need to initialise a group of frogs, each rep-
resenting a possible combination of weights in the RBF neural network. These initial
weights can be randomly generated or a set of weights chosen based on experience and
prior knowledge.

2) Calculate the fitness: next, for each frog, we need to calculate its fitness based on
the performance metrics of the RBF neural network. This can be done by calculating the
prediction error of the neural network or other performance metrics.

3) Position update: The position update of frogs can be performed by Equation (15),
which increases the diversity of the algorithm and the global search capability.

4) Selective updating: at the end of each iteration, the weights are selectively updated
according to the frogs’ adaptability, and the frogs with high adaptability are kept and
their positions are updated. This step-by-step iteration can finally get the optimised RBF
neural network weight combination.

The pseudo-code of the proposed SFLA-RBF neural network is shown in Algorithm 1.

Algorithm 1 SFLA-RBF Neural Network

Input: Number of nodes in RBF input layer, number of nodes in hidden layer, number
of nodes in output layer; Population size, subpopulation size, and number of iterations

for SFLA
Output: Optimized RBF network weights (center vector, variance, and weights from

hidden layer to output layer)

1: Encode the RBF network weights into a frog (position vector)
2: Initialize the position of the n frogs in the SFLA population
3: Divide the population into m subpopulations, each with n/m frogs
4: while iterations not reaching maximum number of iterations do
5: for each subgroup do
6: Calculate the fitness of each frog (error of the corresponding RBF network)
7: Find the best and worst frogs within the subpopulation Xbest, Xworst

8: for each frog do
9: Generate new positions according to Equation (15)

10: if Xnew is better than Xold then
11: Replace Xold with Xnew

12: end if
13: end for
14: end for
15: Regroup populations and disrupt sequences
16: end while
17: Return the best frog position, i.e., the optimal weights of the RBF network

4. Improved RBF-based computation of trajectory estimation for collabora-
tive dual robots.



DNN-Based Trajectory for Collaborative Handling Robots 2161

4.1. Establishment of trajectory calculation model. Based on the mathematical
model of dual robot kinematics in Equation (8) and Equation (9), the mathematical
model of dual robot kinematic position can be introduced as follows:

M(q)q̈ + C(q̇)q̇ +D(q̇)q̇ + g(q) = τ − τd (17)

where q(t) denotes the real-time position of the underwater robot; M(q) ∈ R6×6 denotes
the matrix of inertia coefficients of the dual robot; C(q̇) ∈ R6×6 denotes the matrix of
centripetal force coefficients; D(q̇) ∈ R6×6 denotes the matrix of damping forces; g(q) ∈
R6×6 denotes the combined moments of gravitational and frictional forces; τ ∈ R6×1

denotes the output control moments; τd denotes the external disturbance.
Define the expected value of the dual robot running trajectory at the moment t as qd(t)

and the actual value of the dual robot running trajectory as q(t), then the trajectory error
e(t) is shown as follow:

e(t) = qd(t)− q(t) (18)

f = M(q)(q̈d +∆e) + C(q̇)(q̇d +∆e) +D(q̇)(q̇d +∆e) + g(q) (19)

The four parameters M(q), C(q̇), D(q̇) and g(q) are often unknown in real engineering,
so in order to estimate the sub-error functions in the model more accurately, this work
adopts four RBF neural networks to approximate each of the four parameters in f in-
dividually, which improves the accuracy of the motion control model while avoiding the
mutual coupling among the sub-error functions of the model effectively.

4.2. SFLA-RBF Neural Network Controller Design. In general, Gaussian function
is chosen for the basis function of the RBF neural network and its approximation algorithm
is shown as follow:

hi = g

(
∥x− ci∥2

b2i

)
, i = 1, 2, . . . , n (20)

y = wTh(x) (21)

where x, y are the inputs and outputs of the RBF neural network; hi denotes the output
of the i-th hidden layer unit; ci denotes the centre of the Gaussian function; bi denotes
the width of the Gaussian function; h(x) = [h1, h2, . . . , hn]

T is a column vector consisting
of the outputs of each hidden layer unit; w denotes the weights of h(x) mapped to the
output layer.

From the approximation algorithm of the RBF neural network, it can be seen that the
input layer of the RBF neural network and the hidden layer mainly rely on the Gaussian
function to achieve a nonlinear mapping relationship. The hidden layer and the output
layer mainly rely on the linear sum relationship implemented by the weights, and this
linear relationship greatly accelerates the learning speed of the network. In addition, the
parameter w is adjustable, so there always exists an ideal vector of weights, which makes
the error value of the RBF neural network approximating the continuous function f(·)
converge to a very small number.

max
∥∥∥f(·)− f̂(·)

∥∥∥ ≤ ε0 (22)

f = wTh+ η(x) (23)

where η denotes the neural network estimation error.
In the proposed SFLA-RBF adaptive controller, assuming the existence of ideal weights

W , the ideal network output is shown as follow:

f = W Th (24)
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The estimated output of the SFLA-RBF neural network is shown as follow:

f̂ = Ŵ Th (25)

where Ŵ is the estimated weights, the estimation error of SFLA-RBF neural network
ξ(x) = |f − f̂ |.

For the mathematical model in Equation (17), the estimated output of the error function
of the SFLA-RBF neural network is shown as follow:

M(q) = M0(q) + EM

C(q̇) = C0(q̇) + EC

D(q̇) = D0(q̇) + ED

g(q) = g0(q) + Eg

(26)

where EM , EC , ED and Eg are the approximation errors of the SFLA-RBF neural network
for the four parameters, respectively. The calculations for estimating the four parameters
using RBF neural network are shown as follow:

M̂(q) =
[
ŴM

]T
· hM(q)

Ĉ0(q) =
[
ŴC

]T
· hC(q)

D̂0(q) =
[
ŴD

]T
· hD(q)

ĝ0(q) =
[
Ŵg

]T
· hg(q)

(27)

whereWM , WC , WD, andWg denote the ideal weights of the approximation error subfunc-
tions of the SFLA-RBF neural network; hM(q), hC(q), hD(q), and hg(q) are the output

matrices of the implicit layer; and {ŴM}, {ŴC}, {ŴD}, and {Ŵg} are the estimated
values.

5. Cooperative handling simulation tests.

5.1. Experimental setup. In order to verify the performance of SFLA-RBF neural
network for trajectory control of collaborative dual robots, simulation tests were carried
out as an example of collaborative handling of boxes by dual robots.

The SFLA-RBF neural network is used to implement the cooperative dual robot trajec-
tory control to achieve the horizontal handling of rectangular box. The sampling frequency
of the experimental data is set to 500 ms, the length of time is set to 60 s, and the linear
accuracy of displacement sensor is 0.1%. The roadmap of the horizontal handling of the
box by the dual robots is shown in Figure 2. The size of the box is 150 mm × 100 mm ×
60 mm.

①

②
A B

200 mm

Figure 4. Roadmap of horizontal handling box motion for dual-robots
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Let the target angles of joint 1 and joint 2 be q1d(t) and q2d(t), respectively, as shown in
Equation (28) and Equation (29). Derive the above 2 target angles to obtain the target
angular velocities q̇1d(t) and q̇2d(t) respectively.

q1d(t) =


0.5 cos(0.1t), 0 < t ≤ 20π

0.5 cos(0.3t), 20 < t ≤ 30π

0.5 cos(0.5t), 30 < t ≤ 40π

(28)

q2d(t) =


0.8 cos(0.1t), 0 < t ≤ 20π

0.8 cos(0.3t), 20 < t ≤ 30π

0.8 cos(0.5t), 30 < t ≤ 40π

(29)

5.2. Tracking accuracy simulation. RBF neural network and SFLA-RBF neural net-
work are used to simulate the target angle of joint 1 and joint 2 of the robot respectively,
and the tracking error is used as the evaluation criterion. The simulation results are
shown in Table 1. From Table 1, it can be seen that with the increase of network size, the

Table 1. Tracking angle error of dual-robots motion track

Nodal
Number of hidden

layer neurons
Maximum

tracking error/°
Average

tracking error/°
3 7.0884 3.2416
5 4.1350 2.1248

1 8 2.3387 1.3311
10 1.9375 0.8285
15 1.9371 0.8285
3 7.0475 3.3424
5 4.6347 2.0562

2 8 2.3460 1.1134
10 1.1381 0.7185
15 1.1386 0.7185

angular tracking error of robot node 1 and node 2 gradually decreases and the tracking
accuracy increases. Moreover, when the number of hidden layer neurons reaches 10, the
average tracking error degree reaches a stable value and no longer decreases with the in-
crease of the number of neurons, this is because the maximum angle tracking error degree
of the two nodes varies very little when the number of hidden layer neurons is 10 and 15,
respectively. Eventually, when the average tracking error no longer varies, it reaches a
stable value of 0.8285 and 0.7185 respectively.

The following trajectory tracking simulations are performed for RBF and SFLA-RBF,
respectively, with the number of hidden layer neurons set to 10, and the error tracking
results are shown in Figure 5.

As can be seen in Figure 5, the two curves represent the variation of the average tracking
error with the number of iterations for the RBF neural network and the SFLA-RBF neural
network, respectively. The red solid line represents the RBF neural network, and it can
be seen that this curve decreases rapidly from some higher value and smoothes out to
converge to some lower level. The black dashed line represents the SFLA-RBF neural
network, and this curve starts from the same starting point, but declines more rapidly
than the red curve, and quickly stabilises to a level lower than the red curve. It can be seen
that the average tracking error of the SFLA-RBF neural network decreases faster at the
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beginning of the iteration but slower at the later stages, while the average tracking error
of the RBF neural network decreases slower throughout the iteration. This indicates that
the SFLA-RBF neural network has a faster learning speed at the beginning but slower
at the later stages, while the RBF neural network learns slower throughout the learning
process.

It can also be seen that the average tracking error of the SFLA-RBF neural network
is lower than the average tracking error of the RBF neural network throughout the it-
erations. This indicates that SFLA-RBF neural network has better tracking accuracy.
In summary, under the same neural network size, SFLA-RBF neural network has bet-
ter tracking accuracy and faster learning speed, which is a more suitable network for
collaborative dual robot motion planning.

Figure 5. Roadmap of horizontal handling box motion for dual-robots

6. Conclusion. In order to solve the problem of difficult control when dual robots work
together, a deep neural network-based trajectory calculation method for cooperative han-
dling robots is proposed. Taking the two-robot cooperative handling task as an example,
the kinematic model of two-robot trajectory synchronisation is investigated, and the mu-
tual expression equations of two-robot cooperative motion are given. SFLA is used to
optimise the weights of the RBF neural network, and the SFLA algorithm finds effective
combinations of weight parameters more quickly by means of group intelligence. The
SFLA-RBF based trajectory estimation method for collaborative dual robots is designed,
and the trajectory calculation model and RBF neural network controller are given. The
SFLA-RBF neural network is used to approximate and compensate the four parameters
in the dual robot dynamics model individually. The simulation results show that the
SFLA-RBF neural network has better tracking accuracy and faster learning speed under
the same neural network size, and is a more suitable network for cooperative dual robot
motion planning.
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