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Abstract. Traditional image data classification algorithms often pull the original im-
age into vectors, resulting in the destruction of spatial structure, which leads to poor
classification accuracy. Aiming at the above problems, this paper offers an image data
classification algorithm on the ground of Spatial Degradation & Structural Information
(SDSI). Firstly, for the traditional Multilinear Principal Component Analysis (MPCA)
algorithm ignoring the problem of data mean value information, the feature space repre-
sentation model and projection direction of all data are obtained through model merging,
so as to optimize MPCA. then based on the above optimized MPCA algorithm, spatial
dimensionality reduction is performed on image data, using the matrixed Euclidean dis-
tance of the image to directly pre-embed the spatial structural information on the original
image, combining with the image restructuring, and introducing the bilateral filter image
smoothing method is introduced as the image smoothing strategy, and for the reorganized
and downsized image matrix, the intra-class scatter is minimized while the inter-class
scatter is maximized to separate the different classes as much as possible and ensure the
global optimality of the solution. Finally, the performance of the algorithm is estimated
on the FERT dataset, and the experimental results indicate that the accuracy, precision,
and recall of the SDSI algorithm are 0.925, 0.948, and 0.927, respectively, which effec-
tively improves the accuracy, precision, and recall of classification.
Keywords: Image classification; spatial dimensionality reduction; structural informa-
tion; image reorganization; bilateral filtering

1. Introduction. With the maturity of artificial intelligence technology, people’s lives
are changing day by day with unprecedented changes. The era of big data is generating
a huge volume of image data information every moment, and a variety of image data
information fills every corner of our life. Image data classification has a wide range of
applications, whether in the field of transportation, security, or medicine, image data
classification can help people live conveniently and quickly [1, 2]. Traditional image data
classification techniques often use a combination of principal component analysis and
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support vector machine, but the image is two-dimensional or three-dimensional data, if
the traditional way to classify these image data for research, the data need to be pulled
into the form of vectors and then processed [3]. This processing not only produces high-
dimensional vectors, but also destroys the inherent higher-order structure and intrinsic
correlation in the image data, which leads to poor classification accuracy and small sample
problems. Therefore, the research work on how to make full use of spatial structure
information to improve image classification performance is of great research significance.

1.1. Related Work. For image spatial structure information utilization strategy, Wang
et al. [4] proposed an IMED classification algorithm by embedding spatial structure in-
formation into Euclidean distance. Di and Crawford [5] extended IMED by using it for
multi-angle gender classification and obtained higher classification accuracy. In order to
maintain the spatial structure information between pixel points as much as possible, Wang
and Chen [6, 7] designed a series of classifiers by bilinear projection [8, 9] of images. Ding
et al. [10] designed a bilinear support vector machine (bilinear SVM) by factorizing the
regression matrix into two low-rank matrices. Hou et al. [11] utilized the multi-rank left
and right projection vectors to construct decision boundaries and create interval functions
to propose a multi-rank multi-linear SVM (MRMLSVM). Hossain et al. [12] improved
it by proposing a similar bilinear framework for image classification, which improved the
classification accuracy. Zheng et al. [13] utilized the matrix kernel paradigm as a con-
vex approximation of the matrix rank to propose a new model SupportMatrix Machines
(SMM) for matrix classification problems. Kramer et al. [14] used mapping ordered infor-
mation to corresponding values to derive a distance-sensitive, predictive ordered labeled
image classifier. Lei et al. [15] made a theoretical study of ordered regression and applied
the principle of structural risk minimization to image classification. Sun et al. [16] intro-
duced linear discriminant analysis in the framework of ordered regression, and proposed
a discriminative method based on ordered regression. Tian et al. [17] summarized the
existing strategies of utilizing the spatial structural information at that time and embed-
ded them into the platform of ordered regression, but the accuracy rate of classification
was low.

So far, spatial dimensionality reduction methods have been successfully extended to
the field of image data classification. Scholars used Principal Component Analysis (PCA)
algorithms to first pull tensor data into vectorial data and then perform dimensionality
reduction on them. To address this problem, Yang et al. [18] proposed a 2DPCA-based
image data classification algorithm to reduce the dimensionality of the second-order vector
data of the image matrix. Huang et al. [19] combined the Multilinear Principal Com-
ponent Analysis (MPCA) algorithm with the support of higher-order vector machines to
propose an MPCA-based image data classification algorithm. Han et al. [20] combined
online learning with MPCA algorithm and proposed an online multilinear principal com-
ponent analysis algorithm, thus solving the problem of long running time of the algorithm.
However, Zhao and Du [21] pointed out that this method only partially utilizes the spa-
tial information of the image in the same row or column, and does not make full use of
the spatial information in the whole image. Gao et al. [22] proposed a face recognition
method based on the Euclidean distance of the image with the Two-Dimensional Max-
imum Local Variation (2DMLV), obtaining higher classification accuracy than 2DPCA.
Zhu et al. [23] proposed an Implicit Spatial Regularization (ISR) strategy that is differ-
ent from the explicit spatial regularization, but it is computationally expensive, and also
does not guarantee the global optimality of the solution, resulting in poor classification
accuracy.
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1.2. Motivation and contribution. Although most of the existing spatial dimension-
ality reduction methods have been applied in the field of image data, however, almost
none of them consider the utilization of spatial structural information of the image when
they operate on the image directly. To address the above problems, this paper proposes
an image data classification algorithm based on Spatial Dimensionality and Structural In-
formation (SDSI). Firstly, for the existing MPCA (two-dimensional principal component
analysis) algorithm which cannot handle multiple data simultaneously and ignores the
mean value information of data, the MPCA algorithm is optimized by describing the data
space with multiple feature space models. Then in order to overcome the inadequacy of the
utilization of the existing spatial structure information, based on the optimized MPCA,
implicit regularization restructures the original image divisions to reflect the smoothness
of the column vectors, which implicitly utilizes the spatial structure information of the
image and ensures the global optimality of the understanding. Secondly, feature extrac-
tion is performed on the reorganized image data to maintain its smoothness property
while extracting features in the row direction. Finally, the results of simulation experi-
ments show that the SDSI algorithm has higher classification performance and efficiency
compared with the comparison algorithms.

2. Relevant theoretical analysis.

2.1. Multilinear principal component analysis. MPCA is a specialized method for
spatial dimensionality reduction and feature extraction in image form [24]. In the process
of feature extraction, MPCA can not only preserve the high-dimensional structure of the
data, but also reduce the arithmetic memory requirements, especially in the processing
of high-order vector data, it can get a very good effect of dimensionality reduction.

Create the set of N vectors x1, x2, . . . , xN used for training, assuming each vector xn ∈
RI1×I2×···×IM , where Im is the dimension of the m-th mode of the vector. The purpose of
MPCA is to find a multilinear transformation:{

Ṽ (m) ∈ RIm×Qm , Im ≥ Qm,m = 1, 2, . . . ,M
}

(1)

Then map the original vector xj in space RI1×I2×···×IM to space RQ1×Q2×···×QM , where
Im is the dimension of the m-th mode of the vector.

yj = xj ×1 Ṽ
(1)T ×2 Ṽ

(2)T × · · · ×M Ṽ (M)T (2)

Finally, the reduced vector yj is obtained, where the vector yj captures the main changes
in the original vector data that can be observed in RQ1×Q2×···×QM -space. In other words,
the purpose of MPCA is to find M projection matrices Ṽ (m) to maximize the scatter of
the new vector set ϕy.

{
Ṽ (m) ∈ RIm×Qm , Im ≥ Qm,m = 1, 2, . . . ,M

}
= argmax

{
Ṽ (1), Ṽ (2), . . . , Ṽ (M)

}
ϕy (3)

For Equation (3), the MPCA algorithm uses alternating iterations to solve the pro-
jection matrix, i.e., first fix Ṽ (1), . . . , Ṽ (m−1), and then add the solved Ṽ (m) to the fixed
sequence to solve Ṽ (m+1). In this way, the iterative updating is continuous until conver-
gence, and then M projection matrices maximizing the dispersion of the new vector set
ϕy can be obtained.
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2.2. Subspace smooth learning method. Spatial learning methods are relied on the
vector pattern of the image, and thus ignore the spatial structure information inherent
in the image matrix [25]. Structured Sparsity Learning (SSL) is a regularized subspace
learning model, which uses regularization to penalize the relevant objective function,
so as to make the optimization result of the objective function as spatially smooth as
possible, thus compensating for the loss of spatial information caused by vectorization.
The objective function in a general image classification algorithm is as follows.

argmax
b

bTXZXb

(1− α)bTKXKT b+ αL(b)
(4)

where b is the projection vector to be optimized, the regularization factor 0 ≤ α ≤ 1
controls the smoothness, and L is a discrete Laplacian regularization function.

L(B) = ∆ · b2 = bT∆T∆b (5)

The discrete approximation ∆ ∈ Rs×c of the two-dimensional Laplacian operator in
Equation (6) can be expressed as follows:

∆ = D1 ⊗ I2 + I1 ⊗D2 (6)

where I1 and I2 are the unit matrices of s × s and c × c, respectively; ⊗ denotes the
inner product; D1(D2) is a s× s(c× c) second order gradient smooth operator or matrix
in the image row (column) direction.

Di =
1

w2
i

(
−1 ...
... 1

)
(7)

where w is the width of the sample matrix in the horizontal (vertical) direction.

3. Optimized spatial dimensionality reduction algorithm on MPCA. In this
paper, the large-scale image data is decomposed into many small-scale data, some kind of
representation model related to the dimensionality reduction algorithm is built on each
small-scale data, and then the models are merged to get the total representation model
that can represent all the data, and finally the desired projection direction is found. The
improved MPCA process is shown in Figure 1. Firstly, the storage space occupied by the
representation model should be as small as possible; secondly, the representation model
should be easy to be merged and analyzed; and finally, the projection direction can be
easily and efficiently solved by using the representation model. After obtaining the final
total representation model, the final optimal projection direction is obtained using the
final total representation model to realize the dimensionality reduction and subsequent
classification of large-scale image data.

3.1. Feature space representation modeling. Assuming that there are M training
samples, denoted as Xj, j = 1, 2, . . . ,M , and each training sample is represented as an
image matrix of n×m, the eigenspace model of the observed training samples is denoted
by {M, n̄,Q, V }, where M denotes the number of training samples; n̄ denotes the mean
vector after averaging by columns of the image mean matrix X̄ ∈ Rn×m, where X̄ =
(I/M)

∑M
j=1Xj; V = diag(µ1, µ2, . . . , µc) ∈ Rc×c denotes the covariance matrix’s first

c largest eigenvalues; Q = [q1, q2, . . . , qc] ∈ Rn×c denotes the covariance matrix’s first c
largest eigenvalues of the covariance matrix.
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Figure 1. Improved MPCA framework

3.2. Merging of feature space representation models. Assuming that there are two
subrepresentation models of MPCA, denoted by x and y, respectively, their feature space
models are denoted as {Mx, n̄x, Qx, Vx}, {My, n̄y, Qy, Vy}, yielding the merged sample
numbers and mean vectors as follows, respectively.

Mz = Mx +My, n̄z =
Mxn̄x +Myn̄y

Mz

(8)

Next, the combined eigenvector matrix Qz and the eigenvalue diagonal array Vz are
computed, assuming that Dz is the total covariance matrix representing the two sets of
data, which obviously satisfies Dz ≈ QzVzQ

T
z , with the significant eigenvalues taken. The

equation is as follows.

Dz ≈
Mx

Mz

QxVxQ
T
x +

My

Mz

QyVyQ
T
y +

m2MxMy

M2
z

(n̄x − n̄y)(n̄x − n̄y)
T (9)

where m is the number of columns in each image sample.
To obtain Qz and Vz, direct eigendecomposition of the covariance matrix Dz may be

very time-consuming or even impossible due to the dimensionality. So, we have censored
the eigenvalues and retained only a small number of meaningful larger eigenvalues and
their corresponding eigenvectors. We use this feature to convert the problem into a small-
scale problem, i.e., an eigendecomposition problem of a small-scale matrix, which can
greatly reduce the computational complexity. Assume the following equation.

φ1 =

√
Mx

Mz

Qx (Vx)
k
2 , φ2 =

√
My

Mz

Qy (Vy)
k
2 , Φ = m

√
MxMy

Mz

(n̄x − n̄y) (10)

Then the covariance matrix Dz can be expressed as follows.

Dz = [φ1φ2Φ][φ1φ2Φ]
T = AAT (11)

Let B = ATA, then we have B ∈ Rs×s, sz = cx + cy + 1. Obviously the size of the
B matrix is much smaller than the covariance matrix Dz, and the eigendecomposition
of the matrix B is easy. Let the eigenvector matrix and eigenvalue diagonal matrix of
B obtained after selection be QB ∈ Rs×cz and VB ∈ Rcz×cz , respectively, then we have:
ATAQB = QBVB.

Multiply both sides by A to left, and you get AATAQB = AQBVB, which is DzAQB =
AQBVB.
Thus the eigenvector matrix and eigenvalue diagonal array of the covariance matrix Dz

can be derived as follows, respectively.



2192 D.-H. Zhang and L.-Z Ye

Qz = AQB (VB)
1
2 , Vz = VB (12)

In this way, we obtain a new feature space representation model by merging the two
subrepresentation models, in which the column vector of Qz in the representation model
represents the feature direction of the merged feature space, i.e., the optimal projection
direction of the two sets of data after merging.

4. Image data classification algorithm based on SDSI.

4.1. Smooth structural information of the original image. The main problems
in the current image data classification algorithms are: (1) although one of the bilat-
eral MPCA reaches the best current results of similar methods, its objective function is
non-convex, and it can only be solved by using an alternating iteration optimization algo-
rithm, which is computationally expensive, and at the same time does not guarantee the
global optimum of the solution; and (2) the implicit method of divisional reorganization,
although it intuitively better maintains the local spatial structure of the image smooth,
its space is still undersmoothed due to the lack of explicit smoothing enforced by it.

To overcome the shortcomings in the above classification methods, this paper designs an
efficient image data classification algorithm based on SDSI, using the matrixed image Eu-
clidean distance to directly pre-embed spatial structural information on the original image,
combined with image restructuring, spatial dimensionality reduction of the restructured
data based on the optimized MPCA algorithm mentioned above, and the introduction of
the bilateral filter image smoothing method as the image smoothing strategy, which not
only greatly reduces the computational complexity, and also ensures global optimality of
the solution. The flow of SDSI is shown in Figure 2.
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Figure 2. The flow of SDSI algorithm

In this paper, Bilateral Filter (BLF) [26] is introduced to process the gray values of
neighboring pixel points of image data, which takes into account the geometric spatial
proximity and similarity in gray values, and the blurred edge information can be main-
tained while the image is smooth.

The original image Ak is smoothed by bilateral filtering to obtain the image Âk. The
gray value Âij of the pixel at spatial coordinate (i, j) is transformed as follows:

Âij =

∑
p,q∈Ti,j

h(p, q)f(p, q)∑
p,q∈Ti,j

h(p, q)
(13)
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where Ti,j denotes the neighborhood of size (2N +1)2 with (i, j) as the center point, N
is the half-width of the filter, and the larger the value of N , the stronger the smoothing
effect. h(p, q) is the weighting coefficient at (i, j), which consists of the product of two
factors: h(p, q) = hr(p, q)ht(p, q). Among them, the spatial proximity factor hr(p, q) and
the gray value similarity factor ht(p, q) are expressed as follows:

hr(p, q) = exp

(
|p− i|2 + |q − j|2

2ϑ2
r

)
(14)

ht(p, q) = exp

(
−|A(p, q)− A(i, j)|

2ϑ2
t

)
(15)

where r and t control the degree of attenuation of hr(p, q) and ht(p, q), respectively.

4.2. Image data segmentation and reorganization and spatial dimensionality
reduction. A given smooth image of size s × d is partitioned into LL spatial windows
of the same size n × m, LL = sd/nm, and each spatial window is sequentially pulled
into vectors thereby forming a new matrix of dimension nm × LL. The matrix is then
reorganized by dividing and reorganizing the spatial windows into columns. By dividing
and reorganizing, the columns of the new matrix (the corresponding spatial windows) are
usually smooth, and the implicit local spatial relations are highly and fully preserved.

The optimized MPCA algorithm is then adopted to spatially downscale the restruc-
tured image matrix while merging multiple feature space models. Assume that there are s
feature space representation models: Kj = {Mj, n̄j, Qj, Vj|j = 1, 2, . . . , s}, while merging
these representation models to obtain the total feature space model fn = (Mfn , n̄fn , Qfn , Vfn).
The total number of samples Mfn with the total mean vector n̄fn is as follows.

Mfn =
s∑

j=J

Mj, n̄fn =
J

M

s∑
j=J

Mjn̄j (16)

The total covariance matrix Dfn is shown below.

Dfn =
s∑

j=J

Mj

M
QjVjQ

T
j +

s−k∑
j=J

j+J∑
j=J+i

n2MiMj

M2
(n̄i − n̄j)(n̄i − n̄j)

T (17)

In the same way, we order:

φj =

√
Mj

Mfn

Qj(Vj)
k/2, j = 1, 2, . . . , s (18)

Φij =
m
√

MiMj

Mfn

(n̄j − n̄i), j = 1, 2, . . . , s− 1, j = i+ 1, . . . , s (19)

W = [φ1, φ2, . . . , φk, . . . ,Φ(s−1)s] (20)

Then we have Dfn = WW T , the eigen decomposition of WW T can get the main
eigenvalue Vw and the main eigenvector Qw, and finally get the main eigenvalue diagonal
array of Dfn and the corresponding eigenvector matrix as follows.

Vfn = Vw, Qfn = WQw(Vw)
k/2 (21)

The total representation model is obtained after merging all the feature space rep-
resentation models, and the column vectors of the feature vector matrix in the total
representation model represent the projection direction.
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4.3. Image data feature extraction and classification. For the reorganized and
dimensionality reduced image matrix, feature extraction method is used to extract the
features. Let Â′ = [Â′

1, Â
′
2, ..., Â

′
M ] be a set of dimensionalities reduced image matrices

divided into L classes. Class i contains mi image samples. Construct an undirected
weighted graph G′ = [Â′, H ′] with Â′ as the vertex set, where the element H ′

i,j of the

weight matrix H ′ is the similarity between the fixed points Â′
i and Â′

j, and V is the
diagonal matrix with diagonal elements Vi,i =

∑
i,j H

′
i,j. Let Y = [Y1, Y2, ..., YM ] be the

extracted feature set, and its objective function can be expressed as follows:

min
∑
i,j

∥Yj − Yl∥2H ′
i,j (22)

In this paper, features are extracted based on Linear Discriminant Analysis (LDA)
[26]. LDA maximizes the inter-class scatter by minimizing the intra-class scatter while
maximizing the inter-class scatter in order to separate the different classes as much as
possible. The weight matrix H ′ is as follows:

H ′
i,j =

{
1
ms , if λi = λj = s

0, otherwise
(22)

The matrix Â′ obtained after the above steps is smooth in the column direction, while
maintaining its smoothness, the features are extracted in the row direction using Yj =

Â′
jV , and brought into Equation (22) to obtain the objective function.

min
∑
i,j

∥Yi − Yj∥2H ′
i,j = min

∑
i,j

∥Â′
jV − Â′

iV ∥2 (24)

By a simple transformation of the formula, the above equation is rewritten as follows.

max tr

(
V T
∑
i,j

H ′
i,jÂ

′
iÂ

′
j

)
V (23)

Compute the eigenvectors Q1, Q2, ..., Qc corresponding to the first C largest eigenvalues.
The optimization of the projection matrix U can be found by solving the eigendecompo-
sition problem of Equation (26).∑

i,j

H ′
i,jÂ

′
iÂ

′
jU = λ

∑
i

(
viÂ

′
iÂ

′
i

)
U (24)

Given a test image matrix Q, spatial smoothing and dimensionality reduction are per-
formed to obtain a new matrix Q̂′, after which LDA is used to extract features from it:
F = Q̂′V . Assuming that Y1, Y2, ..., YM is the feature matrix of the corresponding training
sample, using the nearest neighbor classifier algorithm [27], the image Q is discriminated
to the class to which the training sample image Ys belongs if dis(Ys, F ) = min(dis(Yj, F )),
for all j = 1, 2, ...,M .

Define the distance between the identity matrix Y1 = [y11, y
2
1, ..., y

c
1] and the identity

matrix Y2 = [y12, y
2
2, ..., y

c
2] as follows:

dis(Y1, Y2) =
c∑

j=1

∥yj1 − yj2∥2 (25)

5. Algorithm performance testing and analysis.
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5.1. Analysis of downscaling results. To estimate the performance of the SDSI algo-
rithm designed in this article, this article compares it with other existing algorithms for
simulation and experimentation, and all the experiments are done on Python platform in
personal computer. The computer configuration is as follows: Windows 10 operating sys-
tem, 8GB RAM and Intel I7 processor. The experiments were performed on the FERET
face database and the algorithms compared were FGIA [12], FETD [21], and RESM [28].
We selected a portion of data from the FERET face repository [29] for our experiments.
This part of the data contains 1400 images of 200 individuals, 7 images per person. The
images of each person were taken at different times, lighting and facial expressions. All
images were cropped to 32 × 32 size. Figure 3 shows some of the images of two people.
For ease of description, the accuracy is denoted as Acc and the recognition rate is denoted
as Rec.

Figure 3. The flow of SDSI algorithm

In the FERET database, we randomly select 4 images for each class as training samples
and the rest as test samples, and repeat the process 100 times as well. Table 1 lists the
average recognition rate and standard deviation of the SDSI algorithm and the comparison
algorithm designed in this paper. We can see that the average recognition rate of the SDSI
algorithm is 92.78%, and the FGIA, FETD, and RESM algorithms are 78.16%, 87.41%,
and 82.95%, respectively, and the SDSI algorithm is higher than the other three 2D
algorithms, and in the actual updating of the existing model, since our algorithm can
handle multiple new samples at a time, while the FGIA, FETD, and RESM algorithms
can only handle one new sample at a time, which makes our algorithm significantly reduce
the number of updates to the model.

Table 1. Average Recognition Rate and Standard Deviation for SDSI and Com-
parison Algorithms

Algorithm SDSI FGIA FETD RESM
Recognition Rate (%) 92.78 78.16 87.41 82.95
Standard Deviation (%) 0.35 0.42 0.47 0.40

Then the dimension sizes derived above are applied to the following experiments to
compare the effects of the original data and the data after dimensionality reduction by
the SDSI algorithm on the classifier training time and accuracy, respectively, where the
training set is 50 samples and 150 samples, and the test set is 200 samples. The results
are shown in Table 2 below.

From the perspective of training time, the original data contains more information, so
the training time is longer; for the SDSI algorithm, the data is downsized, the redundant
information is removed, and the data information is compressed to 98% of the original,
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Table 2. Comparison of experimental results with different number of training
samples

Training samples’ number Method Training time (s) Acc (%)
50 original data 517 78.93
50 SDSI+original data 41 88.16
150 original data 3194 81.42
150 SDSI+original data 492 93.28

so the data dimensions become smaller, and therefore the training time of the classifier
in training the model is inevitably shortened. This also shows the advantage that the
SDSI algorithm can significantly reduce the training time after dimensionality reduction
of the data. From the accuracy point of view, the accuracy rate obtained by using the
SDSI algorithm exceeds that obtained by the original data classification, and even exceeds
about 5% when the training sample is 150.

As can be seen from Figure 4, we can find that both SDSI algorithm and FETD
algorithm converge to the MPCA projection direction in the end, but compared with
algorithm FETD, our incremental algorithm converges faster and has better convergence
effect. This may be because our algorithm is based on the combination of group data.
Compared with FGIA algorithm and RESM algorithm, one sample is updated once. Our
method reduces the number of updates, thus reducing the cumulative error in the updating
process, and making the projection direction correction faster in each model update, thus
speeding up the convergence.
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Figure 4. Comparison of the convergence on the FERT library in the projection
direction

5.2. Classification Performance Comparison. This experiment records the results of
training time, classification accuracy, and classification recognition rate of 200 test samples
under 400 training sample numbers under four algorithms. The data after dimensionality
reduction using the multilinear principal component analysis algorithm has a core vector
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dimension size of 13*14*12 when using Tucker decomposition. The outcome is indicated
in Table 3 below.

Table 3. Comparison of experimental results of four algorithms

SDSI FGIA FETD RESM
Training time (s) 34 153 109 76

Acc (%) 92.51 75.42 85.16 78.34
Rec (%) 95.82 79.14 87.65 83.91

As shown in Table 3, under different numbers of training samples, compared with the
comparison algorithms, the SDSI algorithm used in this paper has lower training time and
higher classification accuracy for image classification, and the FGIA algorithm has the
longest training time and the lowest classification accuracy and recognition rate, which is
due to the fact that a large amount of time is spent on the selection of feature vectors in
the downscaling of dimensionality decomposition to obtain the inner product of vectors.
the classification accuracy of the FETD algorithm performs better than the other two
algorithms. performs better than the other two algorithms, probably because the data in
tensor form is pulled into vector form, which leads to too high data dimensionality, and at
the same time, the number of training samples is relatively small, and the model captures
too little feature information, which leads to longer training time.The recognition rate of
the RESM algorithm performs poorly, which is due to the fact that it doesn’t take into
account the structural information inside the image, which leads to bias in the recognition.
Therefore, SDSI algorithm is more advantageous for image data classification problem.

Figure 5. Comparison of error rate of different algorithms

Figure 5 shows the misclassification rate of SDSI algorithm compared with the com-
parison algorithms.The results after 100 random sampling experiments show that,when
the number of samples of each type is 10,the misclassification rate of SDSI is 13%, FGIA
31%, FETD 20% and RESM 27%.S therefore locally structured smooth SDSI algorithm
achieves optimal classification performance over FGIA, FETD and RESM algorithms for
all the training divisions.
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6. Conclusion. Aiming at the issue of low accuracy of existing image data classification
methods, this paper proposes an image data classification algorithm based on spatial
downscaling and structural information. The method first optimizes the MPCA algorithm
by obtaining the feature space representation model and projection direction of all data
through model merging. Then, based on the above optimized MPCA algorithm, spatial
dimensionality reduction is performed on the image data, multiple feature space models
are merged at the same time, and combined with the spatial smooth structure information,
the original image is divided and reorganized by implicit regularization to reflect the
smoothness of the column vectors, and the spatial structure information of the image
is implicitly utilized to ensure the global optimality of the understanding. Finally, the
experimental results show that the method proposed in this paper effectively improves
the accuracy, precision, and recall of classification, and can be better applied to the field
of image data classification.
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