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Abstract. To meet the social demand for the design details and accuracy of 3-dimensional
human animation, the reconstruction algorithm based on B spline is constructed to im-
prove the smoothness and fidelity of the traditional model. In addition, the study uses
generative adversarial networks to build back texture generation algorithms to solve the
missing information in traditional models. Finally, the 3-dimensional body animation
design method is constructed based on the modified human model reconstruction algo-
rithm and the back texture generation algorithm. The improved algorithm is empirically
analyzed. The average fitting error of the human body model reconstruction algorithm is
4.6*10-4. The average fit error is 3.2*10-4 lower than the traditional splicing-fusion algo-
rithm, which is 0.8*10-4 smaller than the T-spline algorithm, and 1.2*10-4 smaller than
the splice algorithm based on T-spline value. The improved algorithm for back texture
generation has a peak signal-to-noise ratio of 25.6 dB, which is 1.8dB higher than the back
texture generation algorithm based on variational auto-encoder and 9.6dB higher than the
back texture generation algorithm based on auto-encoder. The quality of the generated
images is higher than the comparison algorithm. In addition, performance comparison
experiments are conducted on the 3-dimensional human animation design method based
on B-spline difference and generative adversarial network. The action matching accu-
racy of this method is 87.8%, which can meet the requirements of correct matching of
3-dimensional animation action. Based on the above results, the 3-dimensional human
animation method can meet the social needs and improve the quality and authenticity of
animation generation.
Keywords: generative adversarial network; b-spline difference; 3D human body model;
animation design; back texture generation
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1. Introduction. In recent years, with the rapid development of computer graphics and
computer vision, human animation design has become a highly focused research field. The
goal of human animation design is to simulate and present the actions and expressions
of human bodies, making them more realistic in virtual environments [1, 2]. Realistic
human animation can improve the immersion, interaction and visual effects in the virtual
environment, expanding the application field of human animation. This is important for
improving the user experience, creating more attractive virtual scenes, and meeting the
needs of game development, movie production, virtual reality, and architecture and indus-
trial design [3]. However, due to the complexity and diversity of human movements, and
the requirements for animation details, traditional animation design methods are prone
to problems, including unnatural human form, incoherent movements and low generation
quality. Therefore, to realize high-quality human animation design, the study proposes
functional improvement in traditional animation design to improve the authenticity and
quality of human animation generation. B-spline difference is a commonly used method for
curve and surface reconstruction, which has good smoothness and approximation. Based
on a large amount of collected human body data, high-precision human body models can
be obtained through B-spline difference processing [4]. The Generative Adversarial Net-
work (GAN) is a machine algorithm composed of generators and discriminators, which
has wide applications in realistic image generation and conversion. However, currently,
research on GAN for solving 3D human animation design is limited [5, 6]. Based on this,
B-spline difference is used to reconstruct a 3D human model and infer the complete back
texture through GAN, thereby achieving more realistic and vivid human animation de-
sign. The research can be used in game development, film making, virtual and augmented
reality, and architectural and industrial design, providing higher quality, more realistic
and smoother human animation effects. It can also improve user experience, enhance
visual and emotional experience, and improve production efficiency and quality.

The first section elaborates on the current development status of B-spline difference,
GAN, and 3D animation. The second section constructs a human model reconstruction
algorithm based on B-spline difference. Then the back texture generation algorithm based
on GAN and the 3D human animation synthesis method based on B-spline difference and
GAN are constructed. In the third section, empirical analysis is conducted on the proposed
human model reconstruction algorithm, GAN back texture generation algorithm, and 3D
human animation synthesis method based on B-spline difference and GAN. The fourth
section is the conclusion and future research directions.

1.1. Related Work. The traditional 3D human animation methods mainly include man-
ual modeling, key-frame animation and motion capture techniques. Manual modeling re-
quires high modeling skills and experience for modeling teachers. It is also time-consuming
and prone to unnatural action effects. Key-frame animation requires the animator to man-
ually set key-frames and adjust curves, but requires a lot of time and effort for complex
human movements. Motion capture technology can provide highly realistic motion ef-
fects, but requires a large amount of equipment and venues. There may be inaccurate or
missing data for complex movements and scenarios. Therefore, new methods need to be
developed to improve the fidelity and fluency of 3 D human animation to meet the needs
of animation production.

B spline interpolation is a mathematical method for curve and surface fitting, which
can be used to realize curve and surface dynamics in animations. GAN is a machine
learning model that can generate more realistic data through constant adversarial and
learning. GAN is widely used in image generation and video generation. When B spline
interpolation and GAN are combined and applied to 3D animation, smooth animation
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curves and surfaces can be generated based on B spline interpolation. Then more realistic
and smooth animation content is generated by GAN. The latest progresses of B spline
interpolation, GAN and 3D animation are as follows.

(1) With the rapid development of computer technology, B-spline difference and GAN
are widely used in various fields. To improve the numerical simulation accuracy of signifi-
cant deformation problems, Sun et al. [7] constructed a large deformation solid mechanics
calculation method using high-order continuous B-spline difference. Through effectiveness
analysis, it significantly improves the simulation accuracy and convergence of significant
deformation solid mechanics problems compared to traditional methods. To expand the
Chebyshev space and dimensions, Hiemstra et al. [8] constructed a B-spline basis method
using matrices. The expansion efficiency and reliability of this method are superior to
the classical B-spline basis method, which has practical application value. To address the
detail loss in super-resolution reconstructed images, Zhu et al. [9] utilized GAN to con-
struct an improved single image super-resolution reconstruction method. The generated
super-resolution image peak signal-to-noise ratio (PSNR) and structural similarity visual
effects of this method are superior to other comparison methods. Its image reconstruction
performance exceeds other comparison methods, which has practical application value. In
the map construction model of remote sensing images, land surface observations are af-
fected by cloud light transmission and scattering. Chen et al. [10] proposed a thin cloud
removal method for land surface observation based on GAN. Empirical analysis shows
that this method performs better than other comparative methods in restoring texture of
remote sensing images. It can be applied in practical image rendering.

(2) With the further deepening of computer technology research, its application in 3D
animation design research is also increasing. To meet the understanding needs of crystal-
lographic concepts, Aristov et al. [11] used Blender to construct a 3D model library of
crystallography. This model library can assist users in learning crystallographic concepts,
quickly understanding abstract crystallographic concepts and meeting educational needs.
To assist surgeons in making quick anatomical decisions during cervical mediastinal lymph
node resection, Ishida et al. [12] proposed a 3D CG animation based on Light-Wave for
cervical upper mediastinal esophageal dissection. The 3D CG animation has high quality,
which is similar to real surgery. It can provide auxiliary support for clinical doctors in
actual cervical upper mediastinal esophageal dissection surgery. The concepts related to
metabolism in biochemistry and life sciences are highly abstract and difficult for students
to understand. Therefore, Long et al. [13] utilized 3D animation to introduce metabolic
related concepts. This method improves learning engagement and enhances students’
confidence in understanding concepts, which has practical application value. To improve
the efficiency of animation production, Dvoroňák et al. [14] constructed an animation
production method using 3D inflation and a novel rigid protection layered deformation
model. The performance and effectiveness of this method are verified. Compared to tra-
ditional methods, it has better production efficiency and effectiveness. This can improve
the efficiency of animation production.

(3) To address the different challenging tasks of complex pose accuracy in robotics,
human-computer interaction, and character animation, Sebastian et al. [15] proposed
a new rapid etiology evolution algorithm. The validity of the algorithm can be solved
with multiple end actuators and target complete constraint general inverse kinematics. It
can be used for Unity3D and robot operating system. To optimize the shape adaptation
of the grid in the animation or deformation, Zhou et al. [16] proposed a quadrilateral
mesh scheme that utilizes the one-to-one relationship of oil pumps to generate non rigid
objects. The effectiveness of the scheme is verified. The model can effectively avoid
the under sampling problem of the grid and reduce artifacts effectively. To improve the
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diagnostic efficiency of medical rehabilitation patients, ACS JD et al. [17] proposed a
projection animation method based on virtual technology. From the results, the method
can scan the facial and oral patients. Combined with relevant information, a noninvasive
and reliable diagnostic method is provided for clinical results prediction. To improve
the learning interest, Singla et al. [18] constructed a cell environment animation method
based on tetrahedral structural blocks. An empirical experiment is conducted on the
animation. The results show that teachers and students are highly satisfied with the
educational animation, which can improve students’ understanding for cell characteristics
and function information.

1.2. Motivation and contribution. From the above analysis, the combination of GAN
and B spline interpolation can generate high-quality animation while ensuring the fluency
and authenticity of human body animation.

Therefore, to effectively improve the quality of human animation, this work based
on skeleton driven parametric human parkin (Skinned Multi-Person Linear eXpressive,
SMPL-X), B spline difference and the back texture generation algorithm based on GAN,
achieving high-quality 3D human body animation design. The human model reconstruc-
tion algorithm and human model reconstruction algorithm steps are introduced in detail.
The method is tested and the corresponding experimental results are compared. The
main innovations and contributions of this work are as follows.

(1) The GAN is used to generate human models with realistic appearance and movement
characteristics. The integrating B spline difference technology is used to smooth the action
of the manikin, making it more natural and smooth, and improving the fidelity of the
body animation.

(2) The GAN and B spline difference can automatically generate a realistic human body
animation, saving the production time and cost. Then it is also improves the efficiency
and quality of animation production, and expands its application field. In virtual reality
and game development. A realistic character animation can be created more quickly to
improve user experience.

2. 3D human animation design based on fusion generative adversarial network
and B-Spline differences.

2.1. Improved human model reconstruction algorithm based on B-Spline dif-
ference. Skinned Multi-Person Linear eXpressive (SMPL-X), B-spline difference, and
GAN based back texture generation algorithm are designed to achieve high-quality 3D
human animation design. With the development of technology, the requirements for the
fidelity and authenticity of human models are becoming increasing. The SPML-X model
is used to extract parameters from the 3D human body information of the input image,
generating a 3D human body model with both sides. In addition, to further improve
the realism and accuracy of the model, a model stitching and fusion algorithm based
on B-spline difference is studied to complete the replacement and fusion of each model.
The human model reconstruction algorithm based on B-spline difference proposed in the
research is shown in Figure 1.

In Figure 1, the proposed improved human model reconstruction algorithm based on
B-spline difference can be divided into two parts. They are human generated models
based on SMPL-X, as well as model stitching and fusion based on B-spline differences.
In the generation of human body models based on SMPL-X, firstly, posture parameters,
morphological parameters, and expression parameters are extracted from human body
images to obtain 3D human body front and back models. Then, the hand geometry of
the model is cropped based on joint points to obtain the boundary point data set. The
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Figure 1. Modified human model reconstruction algorithm

hand data is combined with the human body 3D model data. The boundary points are
matched and concatenated using a B-spline difference based stitching fusion algorithm.
A realistic human body parameterized model reconstruction is completed. The SMPL-X
model is shown in Figure 2.

Figure 2. The SMPL-X model

The SMPL-X model uses a hybrid deformation algorithm based on vertex linear hybrid
skin, which can express human actions and emotions. The vertex set of the SMPL-X
model is shown in Formula (1).{

M(
−→
θ ,

−→
β ,

−→
ψ , ϕ) : R|

−→
θ |×|−→β |×|−→ψ | → R3N

ϕ =
{
T ,W, S, J, P, E

} (1)

In Formula (1), M represents the vertex set of the SMPL-X model.
−→
θ represents

the pose control parameter,
−→
β represents the shape control parameter,

−→
ψ represents the

expression control parameter, and ϕ represents the known parameters after training. T
represents the initial set of fixed points, W represents the mixed weights after training,
S represents the orthogonal principal component of human body shape deviation, J rep-
resents the transformation matrix between vertices and human joint points, P represents
the pose offset matrix, and E represents the principal component of facial expression
changes. The vertex set of the SMPL-X model is transformed, as shown in Formula (2).
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(2)

In Formula (2), Tp(
−→
θ ,

−→
β ,

−→
ψ ) represents the set of vertex positions for the initial pose.

Bs(
−→
β ) represents the vertex displacement caused by morphological parameters, Bp(

−→
θ )

represents the vertex displacement caused by pose parameters, and BE(
−→
ψ ) represents the

morphological differences influenced by facial expression parameters. The mixed shape
parameter of the expression is shown in Formula (3).{

BE(
−→
ψ ;E) =

∑|
−→
ψ |
n=1 ψnϵn

E = [ϵ1, ϵ2, . . . , ϵn], n = 10
(3)

In Formula (3), E represents the set of principal components for expression changes,
and ϵn represents expression changes. At this point, the vertex position change of the
SMPL-X model is shown in Formula (4).

t⃗i =
K∑
k=1

Wk,iGk(
−→
θ , J(

−→
β ))(ti + bs,i(

−→
β ) + bp,i(

−→
θ )) + bE,i(

−→
ψ ) (4)

In Formula (4), bS,i(
−→
β ) represents the offset of vertex i in bS(

−→
β ) caused by shape,

posture, and facial expression parameters. bS,i(
−→
β ) also includes the cumulative effect of

these parameters on the vertex position. After constructing the front and back models
of the human body, the models are spliced and fused. B-spline difference, a commonly
used interpolation method, can describe complex shapes using only a small number of
control vertices, enabling efficient reconstruction of human body data [15,16]. To enhance
the authenticity and accuracy of the model, a human body model stitching and fusion
algorithm is constructed based on B-spline differences. The implementation process of
this algorithm is shown in Figure 3.

Figure 3. Implementation process of manikin splicing fusion algorithm

In Figure 3, firstly, the boundary point set of the model to be spliced is extracted for
data. To ensure the smoothness and naturalness of model stitching and fusion, a model
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stitching and fusion algorithm based on cubic B-spline difference is studied. Based on
the boundary points, four cubic uniform B-spline curve is generated. Then the boundary
vertices are collected, as shown in Formula (5).

P (u) =
n∑
i=0

PiBi,k(u), u = [uk−1, un+1] (5)

In Formula (5), ui represents the node value. Pi is the control vertex. Bi,k(u) represents
the cardinality of k-th order N-splines. The recursive formula is shown in Formula (6). Bi,k(u) =

{
1, ui < u < ui+1

0, otherwise

Bi,k(u) =
u−ui

ui+k−1−ui
Bi,k−1(u) +

ui+k−u
ui+k−1−ui

Bi+1,k−1(u)
(6)

In Formula (6), the support interval of Bi,k(u) is [ui, ui+k]. The definition interval of
a B-spline curve is [uk−1, un+1]. The control vertices on the B-spline are independent
of each other. The influence interval is [ui, ui+k]. The spatial control point is Pi,j (i =
0, 1, 2, . . . ,m; j = 0, 1, 2, . . . , n). Subsequently, the boundary vertices are used to inverse
the control vertices of the B-spline curve. The node vector based on the parameter axis
is used to define the B-spline surface. Then the cubic B-spline surface is constructed, as
shown in Formula (7).

P (u, v) =
m∑
i=0

n∑
j=0

Pi,jNi,p(u)Nj,q(v);u ∈ [up−1, um+1], v ∈ [uq−1, un+1] (7)

In Formula (7), u and v represent the parameter axes of the B-spline difference. Pi,j
represents the control grid. Ni,p(u) represents the basis of the B-spline derived from u
based on the parameter axis. F represents the basis of the B-spline derived from v based
on the parameter axis.

2.2. Back texture generation algorithm based on adversarial generation net-
work. After constructing the human body 3D model, further refinement for human tex-
ture information is carried out on the basis of the 3D model. However, due to the occlusion
of the input image, the input image generally has complete human body texture infor-
mation on the front, but lacks human body texture information on the back. Due to
the similarity of the front and back textures, it is feasible to derive the back texture
information of the human body based on the front human texture information [19, 20].
GAN is a machine learning model composed of generators and discriminators, which is
used to generate realistic data samples [21]. GAN is used to construct a back texture
generation algorithm. This algorithm completes the back texture image output based on
front texture derivation through training the generator and discriminator network. The
basic structure of GAN is shown in Figure 4.

In Figure 4, the GAN structure includes two parts, a generator and a discriminator.
The goal of the generator is to generate as realistic a sample as possible. A random
noise vector z is received as input. By learning the feature distribution Pdata(x) of real
data x, a false sample similar to the real sample is output. The probability distribution
Pz(x) and Pdata(x) of random noise z are fitted as much as possible. The generator can
continuously optimize network parameters, so that the generated false samples can be
judged by the discriminator. The goal of the discriminator is to distinguish difference
between the false sample G(z) generated by the generator and the real sample x. Like
generators, discriminators can accurately distinguish between real and false samples by
continuously optimizing network parameters. Therefore, the GAN training is a game
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Figure 4. Basic structure of GAN

process. Generators and discriminators compete and influence each other. The loss
function of the discriminator is shown in Formula (8).

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))] (8)

In Formula (8), E represents mathematical expectation. x ∼ Pdata(x) represents ran-
domly extracting real data from a real data set. D(x) represents the discriminant score of
the discriminator for real data x. D(G(z)) represents the discriminator’s discrimination
score for false data G(z). The loss function of the generator is shown in Formula (9).

min
G
V (D,G) = Ez∼Pz(z)[log(1−D(G(z)))] (9)

In Formula (9), z ∼ Pz(z) represents false data extracted from the generator data set.
The generator improves the quality of generated samples by minimizing the discrimination
probability. The discriminator improves its accuracy by maximizing its ability to distin-
guish real samples and generate samples. The final GAN function is shown in Formula
(10).

max
D

min
G
V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))] (10)

In Formula (10), the generator and discriminator gradually reach a dynamic equilibrium
point during the training process. The generator can generate false samples that are close
to real samples. Discriminators have also become increasingly difficult to distinguish the
real samples and generated samples. GAN is applied to generate back texture. Then a
back texture generation algorithm based on GAN is constructed. The structure of this
algorithm is shown in Figure 5.

In Figure 5, the input human frontal texture image is segmented to obtain the binary
mask of the image. Subsequently, the human frontal texture and binary mask are input
into the data generator to output the predicted human back texture. The output human
back texture is shown in Formula (11).

Îb = G(If , Sf ) (11)

In Formula (11), If represents the frontal texture image of the human body. Sf repre-
sents a binary mask for human body images. G represents the generator. To ensure the
correct matching between the generated back texture image and the input front texture
image, the input of the discriminator in back texture generation algorithm is a set of
images. The back texture Îb and front texture image If of the human body are used as
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Figure 5. Schematic diagram of the back texture generation algorithm based on
GAN.

inputs. A discriminator is used to rate the inputs. A high score indicates high authentic-
ity. The loss function of the back texture generation algorithm based on GAN is shown
in Formula (12).

LOSS = λGGLV GG + λpixLpix +min
G

max
D

LGAN(D,G) (12)

In Formula (12), λGG represents the perceived loss coefficient. LV GG represents image
perception loss. λpix represents the pixel loss coefficient. Lpix represents pixel loss in the
image. The pixel difference between images is shown in Formula (13).

Lpix =
∥∥∥Îb − Ib

∥∥∥
l1

(13)

In Formula (13), Ib is the real back texture image. Îb represents the predicted back
texture image generated by the generator. The perceptual loss between images is shown
in Formula (14).

LV GG =
∥∥∥f(Îb)− f(Ib)

∥∥∥
l1

(14)

In Formula (14), f(Îb) represents the feature tensor of the generated predicted back
texture image. f(Ib) represents the feature tensor of the real back texture image.

LGAN(D,G) = CIf ,Ib [logD(If , Ib)] + CIf ,Sf
[log(1−D(If , G(If , Sf )))] (15)

After completing the human back texture generation based on GAN, human animation
is synthesized using motion data and 3D human models. The synthesis method of this
animation is shown in Figure 6.

In Figure 6, the frontal image of the human body is taken as input. It is used to
construct a human mask image. Subsequently, the human posture, morphology, and
expression parameters are extracted. A 3D model of the human body with both sides
is constructed based on SMPL-X. To maintain the smoothness and naturalness of the
model, a fusion algorithm based on the cubic B-spline difference model is designed. The
geometric model of the hand is replaced and the front and back models are concatenated.
Subsequently, the model refinement is carried out. A human back texture generation
algorithm based on GAN is constructed. This algorithm is applied to the 3D model of the
human body to construct a human body parameterized model with complete textures.
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Figure 6. 3D model synthesis of the human body and synthesis of the human
body animation

Finally, the 3D animation synthesis of the human body is executed. Based on the mo-
tion database, pose parameters are extracted. Motion-driven design is used to complete
animation action design. Finally, the generated human animation is rendered.

3. An empirical study on the synthesis of 3D human animation.

3.1. Effectiveness analysis of model splicing and fusion algorithms based on B-
Spline difference. The model stitching and fusion algorithm based on B-spline difference
and the GAN back texture generation algorithm are tested for performance verification.
An empirical analysis is conducted to verify the feasibility of the 3D human animation
synthesis method that combines B-spline difference and GAN.

To verify the effectiveness of the proposed model stitching and fusion algorithm based
on B-spline differences, this algorithm is used in smooth curve trajectory fitting experi-
ments with traditional stitching fusion algorithms, T-spline based stitching fusion algo-
rithms, and C-spline based stitching fusion algorithms. By simulating the trajectory of
the third-order Bessel curve, various comparison stitching fusion algorithms are verified
for smoothness. The comparison indicators are fitting error, fitting time, and fitting com-
pression rate. The experimental environment is a Windows 10 64 bit operating system.
The experimental platform is Matlab 2017. The programming languages are C++ and
OpenGL. The fitting error of each comparison splicing fusion algorithm is shown in Figure
7.

Figure 7(a) shows the fitting error of traditional stitching fusion algorithms. In Figure
7(a), the maximum fitting error of traditional stitching fusion algorithms is 10.0*10-4.
The average fitting error is 7.8*10-4. Figure 7(b) shows the fitting error of the stitching
fusion algorithm based on T-spline difference. In Figure 7(b), the maximum fitting error
of the stitching and fusion algorithm is 10.0*10-4. The average fitting error is 5.4*10-4.
Figure 7(c) shows the fitting error of the stitching fusion algorithm based on C-spline
difference. In Figure 7(c), the maximum fitting error of the stitching fusion algorithm is
10.0*10-4. The average fitting error is 5.8*10-4. Figure 7(d) shows the fitting error of
the stitching fusion algorithm based on the cubic B-spline difference. In Figure 7(d), the
maximum fitting error of the stitching and fusion algorithm is 10.0*10-4. The average
fitting error is 4.6*10-4. The average fitting error is 3.2*10-4 lower than the traditional
splice fusion algorithm, 0.8*10-4 smaller than the T-spline fusion algorithm, and 1.2*10-4
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Figure 7. Comparison of the fitting error results for each splicing and fusion
algorithm

less than the splice algorithm based on T-spline. Based on the above results, the proposed
stitching fusion algorithm based on cubic B-spline difference has the smallest error. The
fitting compression ratio and fitting time of each comparative fusion algorithm are shown
in Figure 8.

Figure 8. Fitting compression rate and fitting time of each comparative splicing
fusion algorithm
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Figure 8(a) shows the compression rate of each comparative stitching fusion algorithm.
In Figure 8(a), the proposed fitting compression rate based on B-spline difference is higher
than other algorithms, reaching 33%. The fitting efficiency is the best. Figure 8(b)
shows the fitting time of each comparative stitching fusion algorithm. In Figure 8(b), the
proposed fitting time based on B-spline difference is shorter than other algorithms, with
a fitting time of 0.10s. It is 0.08s shorter than traditional splicing fusion algorithm, 0.04s
shorter than T-spline based algorithms, and 0.03s shorter than T-spline based splicing
fusion method. The fitting time is minimal. Based on the above results, the proposed
stitching fusion algorithm based on B-spline difference has better fitting performance,
which can complete model fitting better and faster.

3.2. Performance verification experiment of GAN back texture generation al-
gorithm. To verify the effectiveness of the proposed GAN based back texture generation
algorithm, performance comparison experiments are conducted on the algorithm. The
comparison algorithms are based on Variational Auto-encoder (VAE), PixelCNN, and
auto-encoder based back texture generation algorithms. PSNR, Structural Similarity In-
dex (SSIM), Mean Square Error (MSE), and Visual Information Fidelity (VIF) are used
to quantitatively evaluate the correlation between the back and front texture images gen-
erated by each algorithm. The data set used in the experiment is the Impersonator data
set. The experimental environment is Intel(R) Xeon(R) Silver 4210. The experimental
platform is Ubuntu 18.04 LTS. The programming language is Python 3.6. The PRSN and
SSIM values of each back texture generation algorithm are shown in Figure 9.

Figure 9. Comparison results of PRSN and SSIM values of each back texture
generation algorithm

Figure 9(a) shows the PRSN comparison results of various back texture generation
algorithms. In Figure 9(a), the proposed back texture generation algorithm based on
GAN has a PRSN value of 25.6dB, which is 1.8dB higher than the back texture generation
algorithm based on VAG. Compared to the PixelCNN based back texture generation
algorithm, the PRSN is 4.8dB higher. Compared to the back texture generation algorithm
based on auto-encoder, the PRSN is 9.6dB higher. The quality of the generated images is
higher than the comparison algorithms. Figure 9(b) shows the SSIM comparison results
of various back texture generation algorithms. In Figure 9(b), the proposed back texture
generation algorithm based on GAN has a SSIM value of 0.84. Compared to the back
texture generation algorithm based on VAG, the SSIM is 0.15dB higher. Compared to
the back texture generation algorithm based on PixelCNN, the SSIM is 0.1dB higher. It
is 0.17dB higher than the back texture generation algorithm based on the auto-encoder.
The similarity between the generated back texture image and the front texture is higher
than other comparison algorithms. Based on the above results, the proposed back texture
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generation algorithm based on GAN has better image quality performance. The MSE
and VIF results of each comparison algorithm are shown in Figure 10.

Figure 10. MSE and VIF comparison results of each back texture generation
algorithm

In Figure 10, the MSE value of the proposed back texture generation algorithm based
on GAN is 22.4, which is lower than other comparison algorithms. It indicates that
the proposed method has the smallest error. The accuracy of matching with the front
texture is higher. In addition, the VIF value of this algorithm is also higher than other
comparative algorithms, reaching 0.88. The quality of generated images is higher. Based
on the above results, compared to other algorithms, the proposed back texture generation
algorithm based on GAN generates back texture images with higher matching accuracy.
The generated images also have better quality and practical value.

3.3. Performance comparison experiment of 3D human animation synthesis.
To verify the feasibility of the proposed 3D human animation synthesis method based on
B-spline difference and GAN back texture generation algorithm, a corresponding 3D hu-
man animation is generated using human action posture video and a random action video.
The matching accuracy, error rate, animation synthesis time, and expert satisfaction of
generated animations are used for performance comparison experiments. The comparison
methods are the Grassmann Manifold method [22] and the HSOM method [23]. The data
set used is the UTKinect Action3D data set, which includes 10 different action categories.
Six of these actions are selected as test subjects for the study. Firstly, the performance
verification of the proposed 3D animation generation method is conducted. The confu-
sion matrix of action matching results in the 3D animation generation results is shown in
Figure 11.

In Figure 11, in the action matching of the proposed 3D human animation generation
method, the rows of the confusion matrix represent the actual action categories. The lists
represent the action categories that generate the animation. In diagonal elements, the
values on the diagonal of this matrix are higher than 0.87. The values on non diagonal
lines not exceed 0.04. This indicates that the method generates the correct matching
angles for animation actions, which meets the requirements for correct matching of 3D
animation actions. Subsequently, the accuracy and error performance of action matching
for different animation generation methods are compared. The accuracy and error results
of action matching for each 3D animation generation method are shown in Figure 12.
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Figure 11. Confusion matrix of action-matching results

Figure 12. Action matching accuracy and error comparison results of each 3-
dimensional animation generation method

Figure 12(a) shows the action matching accuracy of various 3D animation generation
methods. In Figure 12(a), the proposed 3D human animation synthesis method based on
B-spline difference and GAN has an action matching accuracy of 87.8%. Compared to
the Grassmann Manifold method, it is 9.4% higher. Compared to the HSOM method, it
is 7.2% higher. The proposed method has the best accuracy performance. Figure 12(b)
shows the action matching error rate results of each 3D animation generation method.
In Figure 12(b), the proposed 3D human animation synthesis method based on B-spline
difference and GAN has an action matching error rate of 12.2%. Compared to the Grass-
mann Manifold method, it is 9.4% lower. Compared to the HSOM method, it is 7.2%
lower. The proposed method has the smallest error. Based on the above results, the
proposed 3D human animation synthesis method based on B-spline difference and GAN
outperforms the comparison methods in action matching performance for outputting an-
imations. The generated 3D animation has high quality.

4. Conclusion. In recent years, the quality requirements for 3D human animation have
become increasingly high in society. To further improve the details and action accuracy of
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3D human animation design, an improved human model reconstruction algorithm is con-
structed based on B-spline difference. A back texture generation algorithm is constructed
based on GAN. Based on this, a fusion 3D human animation design method is designed.
Empirical analysis is conducted on the two improved algorithms proposed in the study.
The average fitting error of the human model reconstruction algorithm is 4.6*10-4, which
is 3.2*10-4 lower than the traditional splicing-fusion algorithm. Compared with T-spline
fusion algorithm, it is 0.8*10-4 lower. Compared with the splice algorithm based on T-
spline, it is 1.2*10-4 lower. The fitting compression rate is 33%, and the fitting time is
0.10 s, which is 0.08s shorter than the traditional splice fusion algorithm, 0.04s shorter
than the T spline fusion algorithm, and 0.03s shorter than the the splice algorithm based
on T-spline. The PSNR of the proposed back texture generation algorithm based on GAN
is 25.6dB. The PRSN is 1.8dB higher than the back texture generation algorithm based
on VAG, 4.8dB higher than the PRSN based on the back texture generation algorithm of
PixelCNN, and 9.6dB higher than the PRSN based on the back texture generation algo-
rithm based on the auto-encoder. The quality of the generated images is higher than the
comparison algorithms. The structural similarity is 0.84. The SSIM is 0.15 higher than
the VAG based back texture generation algorithm, 0.1dB higher than the back texture
generation algorithm based on PixelCNN, and 0.17 higher than the back texture gener-
ation algorithm based on the auto-encoder. In addition, empirical analysis is conducted
on the designed 3D human animation. The values on the diagonal of the action confusion
matrix are all higher than 0.87. The accuracy of action matching is 87.8%, which is 9.4%
higher than the Grassmann Manifold method and 7.2% higher than the HSOM method.
Based on the above results, the proposed fusion method for 3D human animation has
better detail quality and action matching than other methods, solving the unreality of
human form and unnatural motion in 3D human animation design. It has great potential
in practical applications. But the research also has certain shortcomings. During the
reconstruction of the proposed human model, some non frontal and anti human texture
details are missing. In the future, the algorithm for generating back texture will be further
optimized to improve the detail quality and realism of 3D human models
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