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Abstract. To bolster the safety of autonomous and assisted driving systems, the im-
perative of achieving a synergy between real-time processing and high accuracy in lane
detection cannot be overstated. Addressing the challenges posed by the intricate nature
of lane detection algorithms and the concomitant degradation of accuracy due to the loss
of information on small-scale targets, this study introduces an enhanced lane detection
model predicated on the DeeplabV3+ framework. The model integrates the lightweight
MobilenetV2 as the foundational backbone network to meet the exigencies of real-time
operation. In parallel, the incorporation of the Multi-scale Feature Extraction Enhance-
ment Module is meticulously designed to counter the heterogeneous distribution of lane
dimensions, thereby bolstering the model’s capability to accurately predict diminutive tar-
gets, including marginal lanes and those at extended distances. In an innovative stride,
this research proposes the Convolutional Block Weighted Attention Module, meticulously
devised to refine the distribution of attentional resources across both channels and spatial
dimensions, which in turn augments the model’s efficacy in processing clusters of pixel
points within homogenous semantic classifications. The Feature Fusion Module is judi-
ciously engineered to produce semantically enriched feature maps. By implementing skip
connections at strategic junctures between the encoding and decoding layers, the model
achieves an efficacious fusion of features across varying depths, culminating in a marked
enhancement of segmentation performance.Empirical analysis conducted on a represen-
tative dataset corroborates the model’s prowess, as evidenced by an impressive 99.48%
Accuracy and an 88.22% mIoU, all while maintaining a brisk prediction latency of merely
35.12 ms per image. These findings underscore the proposed model’s exceptional capac-
ity to deliver real-time performance without compromising on accuracy, setting a new
benchmark in the domain of lane detection.
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1. Introduction. Lane detection, a fundamental component of autonomous driving tech-
nology, is imperative for augmenting road safety, facilitating the secure maneuvering of
vehicles, and averting lane deviations. Its significance extends beyond the domain of au-
tonomous driving to encompass urban traffic planning and administration, where it equips
policymakers with essential insights into road utilization and traffic patterns [1].

The introduction of deep learning has significantly enhanced lane detection capabilities
by automating feature extraction, diminishing the dependence on human expertise, reduc-
ing error frequencies, and refining operational workflows [2]. Through the deployment of
multi-layer neural networks, a more nuanced abstraction of features is attained, enabling a
thorough semantic analysis of the imagery, which in turn, bolsters the overall efficacy [3].
Additionally, deep learning models exhibit exceptional proficiency in fitting, generaliz-
ing, and processing in parallel when managing voluminous datasets [4]. Notwithstanding
the manifold benefits conferred by deep learning, lane detection technologies encounter a
plethora of challenges, prompted by the dynamic nature of actual driving surroundings.
To depict the intricacies of lane detection across diverse environments more graphically,
FIGURE 1 displays a selection of representative lane marking scenarios.

In the dynamic and unpredictable environment of real-world driving, sustaining both
the precision and immediacy of detection remains a pivotal area of research emphasis.
Contemporary studies are largely focused on augmenting the accuracy of lane detection,
with a particular emphasis on performance within intricate scenarios. As an exemplar, the
joint learning algorithm predicated on attention-FCN, as proposed by Wang et al., has sig-
nificantly ameliorated segmentation accuracy, notably yielding substantial advancements
in the detection of diminutive targets [5]. This research dovetails with the aims of the
present study, which endeavors to formulate an accurate and efficient deep learning model
predicated on the characteristics of lane markings, through the integration of advanced
techniques such as attention mechanisms.

In the domain of lane detection, the imperative to reconcile high precision with minimal
inference latency is paramount. Hence, the design of deep learning models mandates a
judicious balance between the quantity of parameters and the complexity of the model
within a logical framework, to ensure parity between the accuracy of lane detection and
the speed of inference.

Figure 1. Typical lane scenario image
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In FIGURE 1, Panel (a) presents an image of lane markings captured under opti-
mal weather conditions; panel (b) depicts lane markings characterized by pronounced
curvature; panel (c) displays an image of lane markings under foggy conditions; panel
(d) illustrates lane markings affected by glare; panel (e) identifies distant lane mark-
ings, specifically the aggregation of pixel points at the terminus of the lane markings,
as highlighted by the blue annotations within the figure; and panel (f) portrays edge
lane markings, which are the collective pixel points situated at the periphery of the lane
markings, as demarcated by the red annotations in the figure.

Acknowledging these constraints, a suite of lightweight networks and other novel solu-
tions have been advanced to ameliorate lane detection performance. Initial deep learning
constructs for lane detection were predicated on frameworks such as FCN [6], UNet [7],
PSPNet [8], and SCNN [9]. The FCN is capable of processing inputs of arbitrary di-
mensions and employs skip connections to fortify accuracy, yet it does not encompass
multi-scale features, thereby circumscribing its precision. UNet contemplates multi-scale
features but is encumbered by a symmetrical architecture that imposes significant com-
putational demands, thus impinging upon the real-time capabilities of lane detection.
PSPNet amalgamates global contextual information and incorporates a pyramid design to
address the challenge of recognizing small targets at a singular scale, albeit with compro-
mised accuracy. The SCNN model harnesses spatial convolutions to facilitate the learning
of lane marking features across disparate spatial locales, yet it necessitates considerable
computational outlay during training and does not sufficiently cater to the detection of
smaller targets. These progresses intimate that, notwithstanding the extant challenges,
further enhancements in lane detection technology are feasible through the pursuit of
innovative methodologies.

In response to the intricacy and computational exigencies of such models, lightweight
networks have garnered extensive application. Quintessential lightweight networks include
MobileNet [10], ShuffleNet [11], and EfficientNet [12]. While these archetypal lightweight
networks are commendable for their real-time execution, their precision in detection and
generalization capabilities are somewhat lacking. Researchers have proffered a plethora
of remedial strategies to counteract these deficiencies. Hou et al. have introduced Self-
Attention Distillation (SAD), which has been corroborated on architectures such as ENet
and has demonstrated efficacy in congested conditions and under poor lighting, yet it has
not been exhaustively evaluated in complex settings such as lanes with significant curva-
ture [13]. Chen et al. have advocated for a lightweight UNet model that offers promising
real-time performance, but it does not adequately address scenarios with variable lighting
conditions [14]. Yao et al. have developed a dual-branch real-time lane detection model
that captures both global and local detail features, showing proficiency in detecting both
straight and undulating lane markings, but it falls short in addressing complex condi-
tions like low illumination [15]. Song et al. have proposed the LLSS-Net, which exhibits
exceptional detection capabilities in low-light scenarios, but its research does not extend
to other multifaceted environments [16]. Our proposed methodology for lane detection
aspires to rectify these enumerated inadequacies.

Within the complex and ever-evolving realm of driving environments, lane detection
technology confronts several challenges, which can be itemized as follows: (1) The ne-
cessity for augmented accuracy, given that intricate scenarios incorporate visual compli-
cations such as suboptimal lighting, glare, low levels of illumination, and the presence
of confounding elements including road markings, stains, wear, and obstructions. The
adaptability of neural network models is paramount [17]; (2) The procurement and la-
beling of datasets entail substantial expenditure [18], complicating the comprehensive
representation of diverse complex scenarios, which, in turn, impinges upon the model’s
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generalizability and precision; (3) An imbalance between positive and negative samples
predisposes the model to a predilection for background prediction [19]; (4) The simulta-
neous attainment of accuracy and real-time performance presents a significant challenge.

To address challenges (1) and (4), we propose a lane detection model predicated on
DeeplabV3+, which incorporates several novel features: (1) An efficacious Multi-scale
Feature Extraction Enhancement Module, which amalgamates depthwise separable di-
lated convolutions across a spectrum of sampling rates, thereby harvesting an extensive
suite of multi-scale feature information and enhancing the model’s discernment of periph-
eral and remote lane markings; (2) A Feature Fusion Module (FFM) that employs a series
of compact convolutional kernels to refine edges, effectively ameliorating the loss of detail
for diminutive targets; (3) The deployment of a Convolutional Block Weighted Attention
Module (CBWAM), which appraises the significance of discrete blocks to eliminate anal-
ogous interferences, thereby bolstering the comprehensive segmentation accuracy of lane
markings; (4) The adoption of skip connections to progressively amalgamate superficial
features, remedying the suboptimal exploitation of the encoding layer’s output features.
In addressing challenge (2), the extant dataset has been enriched with images featuring
lane markings of pronounced curvature, alongside the utilization of image enhancement
techniques to emulate variations in outdoor illumination. Regarding challenge (3), Dice
Loss has been incorporated within the loss function, encompassing the congruity between
the predicted and actual values, thus effectuating an equilibrium between positive and
negative samples.

In summation, this manuscript delineates an enhanced model based on DeeplabV3+,
designed to surmount the obstacles inherent in lane detection amidst the variable and in-
tricate conditions typical of real-world driving. This endeavor not only refines theoretical
constructs within the domain of deep learning architectures but also empirically substan-
tiates the efficacy of the model across a gamut of complex scenarios. The findings of this
investigation are anticipated to significantly contribute to the safety and dependability
of forthcoming autonomous driving systems and to underpin the evolution of intelligent
traffic management infrastructures.

The remaining sections of the paper are structured as follows: Section two explicates the
comprehensive design of the lane detection model predicated on the refined DeeplabV3+.
Section three evaluates the performance of the proposed methodology in relation to al-
ternative models and exhibits corresponding detection imagery. Finally, section four en-
capsulates the discourse of the entire document.

2. Methodology.

2.1. General Network Architecture. Lane detection, as an integral element of au-
tonomous and assisted driving systems, is vital for vehicle navigation and safety. Nonethe-
less, the accuracy of such detection is frequently undermined by a plethora of complex
environmental factors, including uneven lighting conditions, degradation of lane mark-
ings, and the presence of diminutive and elusive targets like edge lanes and distant lanes.
These impediments can precipitate a degradation in the efficacy of conventional models
in lane segmentation. In an effort to surmount these limitations, we have instituted tar-
geted enhancements to the DeeplabV3+ model, with the objective of amplifying both
the precision and real-time processing capabilities of lane detection. The refined network
architecture is illustrated in FIGURE 2.

The revised design primarily modifies the encoder configuration of DeeplabV3+. The
upgraded encoder is composed of four distinct modules: the backbone network, the Multi-
scale Feature Extraction Enhancement Module, the Feature Fusion Module (FFM), and
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Figure 2. Overall network architecture diagram

skip connection. The backbone network’s role is to distill primary features, such as
color and texture, from the input lane imagery. To optimize real-time performance, the
highly efficient MobilenetV2 serves as the backbone network. Following this, the Multi-
scale Feature Extraction Enhancement Module is deployed to harvest lane characteristics
across multiple scales, thereby enriching the model’s depiction of lanes. Subsequently, the
Feature Fusion Module (FFM) is meticulously crafted to refine the model’s detection of
intricate details, with a focus on edge lanes and distant lanes. Lastly, the Convolutional
Block Weighted Attention Module (CBWAM) is integrated, further delineating between
lane-containing regions and their counterparts, thereby fortifying the model’s resilience
to disruptions in multifaceted settings. The incorporation of skip connection throughout
the encoder and decoder layers facilitates a synergistic fusion of features across various
strata, providing the model with a superior feature representation capacity and, in turn,
significantly advancing lane detection performance.

2.2. Network Design Module Details.

2.2.1. Multi-scale Feature Extraction Enhancement Module. In the domain of lane de-
tection, lane morphology and distribution exhibit significant variability across different
roadway segments, engendering a model’s detection performance that is prone to per-
turbation by road type and environmental factors. The Atrous Spatial Pyramid Pooling
(ASPP) framework, tasked with harvesting multi-scale feature information, is adept at
securing features across disparate scales. However, it faces two salient challenges when
tasked with processing diminutive lane targets: First, the conventional ASPP employs
parallel dilated convolution layers with unduly broad sampling rate intervals, which may
lead to a forfeiture of critical edge information in the detection of small targets; sec-
ond, the profusion of parallel convolution layers burgeons the model’s parameter count,
impeding the development of streamlined lane detection models.

To mitigate these issues, the present study introduces an enhancement to the original
ASPP framework, resulting in the formulation of a Multi-scale Feature Extraction En-
hancement Module. The architecture of this module is delineated in FIGURE 3. This
refined ASPP framework embodies two pivotal innovations: initially, the parallel dilated
convolution branches are re-engineered with refined sampling rate combinations. Ex-
tending the foundational ASPP structure, additional parallel dilated convolution layers
are incorporated, and the sampling rates are meticulously calibrated to encompass more
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granular intervals, establishing a configuration of 3, 6, 9, 12, 15, 18, and 24. This ar-
rangement empowers lower sampling rates, such as 3, 6, and 9, to apprehend a greater
quantum of local feature information, whereas higher rates, such as 12, 15, 18, and 24,
proffer an enlarged receptive field conducive to the assimilation of extensive global con-
textual information. Given that the 3Ö3 convolution at sampling rates of 18 and 24 is
less parametrically dense, thus suboptimal for exhaustive small target feature extraction,
it is equivalently transmuted into a 5Ö5 convolution at rates of 9 and 12. This conversion
preserves the receptive field while diminishing parameter volume, concurrently amplifying
the model’s proficiency in segmenting diminutive targets, including edge lanes and remote
lanes.

Figure 3. Multi-scale Feature Extraction Module

Secondarily, the study integrates Dilated Depthwise Separable Convolution as a surro-
gate for traditional dilated convolution layers. This convolution variant markedly trims
the model’s parameter bulk while preserving the efficacy of feature extraction. Dilated
Depthwise Separable Convolution bifurcates the convolution process into two discrete
stages: depthwise convolution and pointwise convolution. Within the depthwise convolu-
tion phase, each convolution kernel independently interacts with a singular channel of the
input feature map, thereby conserving the channel count of the feature map. The ensu-
ing 1Ö1 pointwise convolution modulates the channel quantity and forges inter-channel
linkages. This bifurcated approach not only curtails parameter volume but also elevates
computational efficiency. These methodological advancements render the Multi-scale Fea-
ture Extraction Enhancement Module not only more adept at meticulously capturing lane
features but also significantly streamline the model’s architecture, thus paving the way for
real-time lane detection. By virtue of this module, our model attains enhanced proficiency
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in extracting thoroughfares comprising small-sized lanes and in accurately demarcating
lanes, thereby furnishing autonomous driving systems with more dependable visual intel-
ligence.

2.2.2. Feature Fusion Module(FFM). Within the architecture of the backbone network,
the capacity for feature representation of diminutive targets is markedly compromised
following successive downsampling processes. This is particularly deleterious for the iden-
tification of nuanced targets, such as edge lanes and remote lanes. To augment the ability
of the lane detection model to delineate features of small targets, we have integrated the
principle of super-resolution upsampling into the design of our module, culminating in
the development of a Feature Fusion Module (FFM). This module enhances the represen-
tational strength of the deep features harvested by the backbone network and mitigates
the diminution of small target information resulting from serial downsampling.

As depicted in FIGURE 4, the engineered Feature Fusion Module consists of three core
components: a Residual Module, Hybrid Dilated Convolution, and Super-resolution Up-
sampling. The Residual Module is initially deployed to refine the edge details within the
deep features, establishing a more precise groundwork for the restoration of fine details.
The Hybrid Dilated Convolution, through its employment of dilated convolutions with
assorted sampling rates, amalgamates local and global contextual information, thereby
amplifying feature expressiveness. The final component, Super-resolution Upsampling,
employs sub-pixel convolution techniques to enhance the resolution of deep feature maps,
reinstating the lost fine details whilst maintaining potent semantic information. The in-
corporation of the Feature Fusion Module not only elevates the precision of lane detection
but also reinforces the model’s proficiency in discerning small targets, thus increasing the
model’s robustness and adaptability across a spectrum of intricate roadway scenarios.

Figure 4. Block Weighted Attention Module

More specifically, the module capitalizes on the deep features, Fs4, derived from the
16-fold downsampling executed by the backbone network. Post sub-pixel convolution
processing, it procures super-resolution features teeming with lane information, designated
as F ′

s4. These features are then disentangled to recapture the minutiae of the target
features. The emergent F ′

s4 is integrated with the feature layer Fs3, sourced from 8-fold
downsampling by the backbone network, producing a feature layer F ′

s3 that is replete with
copious local feature information, consequently bolstering the accuracy of lane detection.
This fusion approach not only refines the hierarchical structuring of features but also
significantly enhances the detection precision of diminutive lane targets. Herein, Fsi

denotes the feature map acquired post 2i-fold downsampling by the backbone network,
where H and W represent the height and width, respectively, of the image input to the
backbone network; each downsampling iteration reduces the feature map dimensions by
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half. Csi signifies the channel quantity of the feature map following 2i-fold downsampling
by the backbone network, with i indicating the ith instance of downsampling by the
backbone network.

2.2.2.1. Residual module. In the training of deep neural networks, particularly those with
an extensive number of layers, practitioners frequently confront the phenomena of vanish-
ing gradients. Such phenomena can complicate the training process and may precipitate
a decline in network efficacy, which in turn impairs the propagation of features within
the network. The deployment of a Residual Module can efficaciously mitigate this issue
by leveraging a shortcut connection to sustain the flow of information, thereby facilitat-
ing more direct backward propagation of gradients. The architecture of this module is
illustrated in FIGURE 5.

Figure 5. Residuals Module

Central to the Residual Module are two consecutive 3 × 3 convolutional layers, with
each layer succeeded by a LeakyReLU activation function and a Batch Normalization
(BN) layer. The LeakyReLU activation function, a modification of the ReLU function,
permits the passage of slight negative gradient values, thereby resolving the issue of neuron
inactivation, colloquially termed ”neuron death,” which occurs under the ReLU function
when inputs are negative. The BN layer is utilized to normalize the features entering each
layer, diminishing internal covariate shift, expediting the training process, and bolstering
the model’s stability.

The module’s output, denoted as H(x), integrates the original input, x, with the output
of the non-linear transformation, F (x). The residual connection facilitates the conveyance
of the input feature, x, directly to the output without subjecting it to non-linear transfor-
mations, effectively creating a shortcut that lessens the risk of gradient vanishing during
network training. The expression of the Residual Module’s output, H(x), is presented in
Equation (1):

H(x) = F (x) + x (1)

Here, x signifies the network’s input, and F (x) represents the output subsequent to the
convolutional layers. The incorporation of the Residual Module enables our model to more
efficiently preserve the gradient flow while processing profound information, circumventing
information loss during training, and thereby augmenting the model’s capacity for learning
and generalization. This enhancement significantly improves the accuracy of detecting
small-scale lane targets, including edge lanes and distant lanes.

2.2.2.2. Hybrid Dilated Convolution. In the architecture of neural networks, the expanse
of the receptive field is of paramount importance for the assimilation of global information.
This holds particularly true for the task of lane detection, wherein an expansive receptive
field is instrumental in facilitating the model’s interpretation of both the comprehensive
layout and the local interconnections of lane demarcations within an image. To this



2242 C. -X. Ma, J. -A. Li, Y. -H. Han, Y. -M. Wang, H. -B. Mu and L. -R. Jiang

end, the present study introduces the concept of Hybrid Dilated Convolution (HDC),
which seeks to augment the receptive field, thereby enabling the extraction of global
information pertaining to lane markings from the input feature maps, while concurrently
circumventing the gridding effect.

The gridding effect is characterized by the occurrence of unconvolved pixels within the
feature map when dilated convolutions with larger dilation rates are employed, poten-
tially leading to the omission of critical information. The HDC approach was formulated
to overcome this challenge, predicated on a strategic combination of dilation rates for
convolutional kernels, thus ensuring the comprehensive engagement of each pixel in the
feature map.

Consider a series of N dilated convolutional layers, each of dimension K × K, and
with a progressive sequence of dilation rates r = [r1, r2, r3, . . . , rn]. The application of
the HDC paradigm ensures the maximal exploitation of pixel information in the feature
map following the initial dilated convolutional kernel, thereby eliminating the presence
of dormant pixels within the feature map. The maximal interspace between two nonzero
elements within the ith layer is articulated in Equation (2):

Mi = max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri] (2)

Here, Mi represents the maximal interspace between two nonzero elements within the
ith layer, and ri denotes the dilation rate for the ith layer’s dilated convolution, with the
stipulation thatMn = rn, signifying that the maximal interspace in the concluding layer is
equivalent to the dilation rate of that layer. Adherence to the HDC principle is maintained
as long as M2 ≤ K, implying that the maximal interspace between two nonzero elements
in the second layer does not exceed the convolutional kernel’s dimension. For instance,
a configuration of three sequential 3 × 3 dilated convolutional layers with dilation rates
r = [2, 3, 5] is considered compliant with the HDC principle, as the values calculated from
Equation (3) satisfy the stipulated threshold of being less than or equal to 3.

M2 = max[M3 − 2r1,M3 − 2(M3 − r2), r2] = max[5− 2, 5− 2× (5− 3), 3] = 3 (3)

By virtue of this design, the hybrid dilated convolution is endowed with the capability
to effectively capture global information of lane markings with diverse configurations,
without compromising pixel information.

2.2.2.3. Super-resolution upsampling. The characteristic features of diminutive lane mark-
ings endure significant attrition during the successive downsampling stages of the back-
bone network, necessitating a restorative mechanism to salvage these features, thereby
enhancing the network’s proficiency in delineating the features of minor lane markings.
Super-resolution image reconstruction is predicated on the restoration of high-resolution
imagery from low-resolution inputs, with a concerted effort to preserve maximal image
detail. Sub-pixel convolutional layers have gained widespread adoption for their efficacy in
elevating image resolution while retaining intricate image details, as delineated in Equa-
tion (4).

PSR = fL(PLR) = PS(WL ∗ fL−1(PLR) + bL) (4)

PSR symbolizes the resultant high-resolution image, PLR denotes the low-resolution im-
age input, and fL constitutes the transformation function from input to output. WL ∗
fL−1(PLR) + bL represents the feature map at the Lth layer, derived from convolving the
(L − 1)th layer. PS signifies the periodic shuffling operator, which reconstitutes pixels
from identical locations across n×n low-resolution images into an n×n feature map, sub-
sequently serving as the corresponding segment within the super-resolution image. This
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procedure is systematically applied to all pixels, culminating in the construction of the
super-resolution image.

The feature map FS4′ , emanating from the hybrid dilated convolution, serves as the
precursor for the sub-pixel convolutional layer, engendering a high-resolution feature map
FS4′′ with dimensions twice the magnitude of the original. This high-resolution feature
map is then amalgamated with the feature map FS3′′ , which is procured from the 8-fold
downsampling of the backbone network, through a channel-wise fusion process, thereby
enriching the detail information.

The strategic implementation of the super-resolution upsampling layer markedly for-
tifies the model’s capacity to articulate the features of lesser targets, such as peripheral
lanes and distant lanes, thus empowering the model to more adeptly navigate a plethora
of complex roadway scenarios and enhance segmentation precision.

2.2.3. Convolutional Block Weighted Attention Module (CBWAM). In semantic segmen-
tation for lane detection, delineating the input image into discrete regions uncovers that
certain sectors are inundated with extraneous elements such as the sky, lanes devoid of
markings, roadside vegetation, and vehicle fronts. These segments are notably less per-
tinent compared to those that include lane demarcations. Furthermore, these areas may
contain objects akin to lanes, such as white barriers and signage, which pose a risk of
confounding the detection process. Informed by this understanding, the current study
introduces the Convolutional Block Weighted Attention Module (CBWAM), depicted in
FIGURE 6.

Figure 6. Convolutional Block Weighted Attention Module

The CBWAM encompasses three distinct components: the Channel Attention Module
(CAM), the Block Weighted Attention Module (BWAM), and the Spatial Attention Mod-
ule (SAM).CAM assigns weights to the feature channels of the initial fusion feature map,
generating the first weight assignment feature map. BWAM applies block weight division
to the first weight assignment map, yielding the second weight assignment feature map.
Lastly, SAM performs pixel weight division on the second weight assignment feature map,
producing the output of CBWAM.

2.2.3.1. Channel Attention Module(CAM). Within the realm of lane detection, the CAM
strategically assigns varying weights to the features across different channels, thus ampli-
fying the model’s sensitivity to pixels pertaining to lanes while concurrently attenuating
the prominence of background features. This enhancement is pivotal for bolstering model
performance amidst complex and variable roadway conditions. FIGURE 7 illustrates the
architecture of the CAM.

The initial fusion feature map, F1, is concurrently subjected to maximum pooling and
global average pooling. The aggregated outputs, denoted as M1 and A1 respectively,
are then synergized and activated via a Sigmoid function to derive the channel-specific
weights V1. These weights are subsequently applied to the initial feature map to yield
the first attention-modulated feature map, F2, effectively orchestrating the allocation of
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Figure 7. Channel Attention Module

attentional resources among channels. In this context, H, W , and C signify the height,
width, and channel count of the feature map fed into the CBWAM.

Equations (5) and (6) represent the results of average pooling (M1) and maximum
pooling (A1) performed along the spatial direction.

A1c = HAP (F1) =
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j) (5)

M1 = HMP (F1) =
H∑
i=1

W∑
j=1

max(xc(i, j)) (6)

Where HAP and HMP represent the functions of average pooling and maximum pool-
ing, respectively. xc(i, j) represents the value of the Cth channel at the position (i, j).
Equation (7) represents the final result F2 obtained from the channel attention mechanism
CAM.

F2 = F1 ⊗ δ(S(M1)⊕ S(A1)) (7)

Where the sigmoid function is represented by δ, and S denotes the Shared MLP oper-
ation. The symbols ⊕ and ⊗ represent element-wise addition and element-wise multipli-
cation, respectively.

2.2.3.2. Block Weighted Attention Module(BWAM). The task of lane detection necessi-
tates recognizing that the salience of feature information is not uniform across channels
nor across spatial dimensions. To adeptly mitigate the influence of non-essential elements
on lane detection, the BWAM is contrived to partition the domain into multiple zones,
endowing each with distinct weights to coarsely recalibrate spatial attention. FIGURE 8
delineates the BWAM’s schematic representation.

Initially, BWAM conducts average pooling on the CAM’s output, condensing it to
a singular channel. This output is then segmented into 16 zones, each denoted as Bi

(i = 1, 2, 3, . . . , 16), and subjected to both maximum pooling and average pooling. The
collective pooling results, M2 and A2, are subsequently amalgamated and processed via
a series of three cascading 3 × 3 convolutional kernels, culminating in the derivation of
regional weights V2 via the Sigmoid function. These weights are then applied to the initial
image to effectuate block-based weighting, producing the second attention-augmented
feature map, F3. This map is further refined by appending a Spatial Attention Module
(SAM), which intricately adjusts the weights to generate the CBWAM-modulated output
feature map.
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Figure 8. Block Weighted Attention Module

Equation (8) represents the result of average pooling after channel-wise blocking as M2,
while Equation (9) denotes the result of maximum pooling after channel-wise blocking as
A2.

A2,p =
1

1
4
H × 1

4
W

H
4∑

i=1

W
4∑

j=1

xa(i, j, p) (8)

M2,pq =
1

1
4
H × 1

4
W

max
i∈[1,H

4
],j∈[1,W

4
]
xa(i, j, p) (9)

Where A2,pq represents the pixel value of the pth block obtained after applying average
pooling to the blocked region. The pixel value xa(i, j, p) corresponds to the pth block at
the position (i, j) after average pooling, while M2,pq denotes the pixel value of the pth
block obtained after applying maximum pooling to the blocked region.

2.2.3.3. Spatial Attention Module(SAM). The SAM is a granular spatial weighting sys-
tem, meticulously designed to confer precise weights upon each pixel within the feature
map, thereby elevating the fidelity of lane detection. As illustrated in FIGURE 9, the
SAM complements the BWAM by executing nuanced adjustments to the spatial attention
distribution across the entire image.

Figure 9. Spatial Attention Module

The SAM engenders two distinct feature maps, M3 and A3, via global average pooling
and global max pooling, respectively. These maps are merged and subjected to feature
extraction through a triad of cascading 3× 3 convolutional kernels. Utilizing the Sigmoid
function, pixel-specific weights V3 are generated and integrated with the feature map
emanating from BWAM, resulting in the final CBWAM-influenced output feature map, F4.
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BWAM is tasked with the macro-level allocation of spatial attention, while SAM refines
this distribution at the pixel level, ensuring a judicious assignment of spatial attention
resources.

Equation (10) represents the result of global average pooling along the channel direction,
denoted as A3, while Equation (11) represents the result of global maximum pooling along
the same direction, denoted as M3.

A3 = HAP (F3) =
1

C

C∑
i=1

x(i) (10)

M3 = HMP (F3) = max x(i) (11)

where C is the number of channels, i ∈ [1, C] and i ∈ N◦.
Equation (12) represents the output feature map, denoted as F4, obtained after the

application of CBWAM.

F4 = F3 ⊗ δ(Conv(S(M3)⊕ S(A3))) (12)

The synergetic application of BWAM and SAM ensures a comprehensive and hierar-
chical distribution of spatial attention, from broader regions down to individual pixels.
This collaborative mechanism ensures that the spatial attention within the final output
feature map F4 is both rational and efficient. Such a stratified approach to spatial atten-
tion allocation substantially amplifies the model’s capability to discern lanes in intricate
driving scenarios.

2.2.4. Skip connection. Accurate local feature detection is paramount, often dictating the
efficacy of vehicular decision-making systems. Skip connection, a prevalent architectural
feature within neural networks, forges direct informational conduits between disparate
network layers, thereby facilitating the retention of critical local feature information.
This mechanism enhances the model’s proficiency in identifying salient lane attributes.
FIGURE 10 delineates the structural schema of skip connection.

Figure 10. Schematic diagram of skip connection
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In the context of the DeeplabV3+ architecture, the integration of deep and shallow
feature information across the channel dimension demands a fourfold upsampling of the
deep feature map. However, such an elevated upsampling factor risks obfuscating pixel-
level detail. Furthermore, a rudimentary structural design interlinking the encoding and
decoding layers can precipitate substantial loss of feature information during transference.
Informed by these insights, the present study revisits the conceptual underpinnings of
Fully Convolutional Networks (FCNs) to refine the DeeplabV3+ framework.

At the juncture between the encoding and decoding layers, skip connection are strate-
gically deployed to incrementally amalgamate shallow features emanating from various
convolutional strata of the primary network. This exploitation of shallow features, which
encapsulate local details such as texture and hue associated with lane markings, serves
to markedly elevate segmentation precision, particularly for diminutive targets such as
peripheral and remote lanes.

The process is outlined as follows: initially, the encoded output bifurcates—one pathway
feeds into the Feature Fusion Module (FFM) for super-resolution upsampling, while the
other pathway is subjected to a two-stage upsampling. The outputs of both pathways are
then fused and subsequently undergo another round of twofold upsampling. This fused
map is then adjoined, in terms of the channel dimension, to the feature map derived
from the octuple downsampling of the backbone network. The process of merging and
upsampling is reiterated, doubling the scale of the result until the dimensionality of the
output feature map is halved relative to the input image. The final feature map, a product
of the skip connection, is channeled into the decoding layer, culminating in the pixel-wise
segmentation of the image.

3. Experimental results and analysis.

3.1. Data set selection and pre-processing.

3.1.1. Overview of the Baidu’s unmanned vehicle dataset. For the purposes of this re-
search, the dataset utilized during the training phase was sourced from the Baidu’s
unmanned vehicle dataset, specifically from the semi-final stage dataset. This dataset,
which was amassed from road segments within the metropolises of Shanghai and Beijing,
is optimally conducive for the development of autonomous driving algorithms that are
customized for the unique driving environment prevalent in mainland China. Beyond
the inclusion of images depicting straight roadways under optimal lighting conditions,
this dataset comprises a spectrum of complex driving scenarios, such as those involving
glare, low light conditions, and inconsistent illumination patterns. FIGURE 11 presents
a selection of images from the dataset, each paired with its respective annotation.

Additionally, the experimental protocol of this study extended beyond the use of the
Baidu’s unmanned vehicle dataset, incorporating the Tusimple dataset—a benchmark
dataset in the field of lane detection. Collected from various segments of highways, the
Tusimple dataset includes a variety of traffic scenarios encountered during different times
of the day, under moderate weather conditions, and ranging from two-lane to multi-lane
configurations. Each image within this dataset is annotated with precise lane markings,
offering a comprehensive depiction of diverse traffic situations and roadway scenes.

The images displayed in FIGURE 11 illustrate a variety of challenging conditions for
lane detection: (a) illustrates lanes in low light conditions; (b) shows lanes affected by
glare; (c) captures lanes with significant curvature; (d) displays interference from road
markings; (e) depicts lanes obscured by vehicles ahead; (f) includes erroneous lane marking
disruptions; (g) features interference from pedestrian crossings; (h) shows lanes with signs
of wear; and (i) details further disruption from road markings.
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Figure 11. Lane images in various environments in Baidu’s unmanned vehicle
dataset

3.1.2. Image pre-processing. In the upper half of the image, about 1/3 of the area contains
a large number of objects unrelated to lane detection, such as the sky, trees, etc., and to
speed up the training process and take into account the sufficient field of view, the lower
half of the image, about 2/3 of the area with a size of 3384Ö1020 pixels, is retained as
the region of interest using a cropping method, and then it is scaled down to 1128Ö340
pixels to prevent memory overflow during training.

As one of the most widely used regularization methods, data augmentation can not only
reduce the dependence of the model on feature points appearing at the same location with
high frequency and avoid the interference of noise points by rotating the images at different
angles, compressing them, and artificially adding noise but also expand the size of the
dataset to prevent model overfitting.

In this study, before training, the number of lanes with large curvature in the dataset
is widened by using horizontal flip to balance the sample types; in the training process,
the images in each batch of the dataset are firstly cropped randomly, and the brightness,
contrast, and saturation are randomly increased to maintain the training speed while sim-
ulating the light brightness changes during the driving process. A total of 11,608 images
were included in the dataset before the training, and the lanes in different environments
were counted, and the statistical results before and after the enhancement are shown in
FIGURE 12.

3.2. Experiment and Analysis.

3.2.1. Experimental environment configuration. The model described in this paper uti-
lizes the following hardware and software configuration: Ubuntu 20.04 operating system,
Python 3.7 programming language, PyTorch 1.7.0 deep learning framework, AMD EPYC
7302 CPU, Nvidia RTX 3090 GPU with 24GB video memory, 63GB RAM, and 50GB of
available hard disk space.

3.2.2. Experimental procedure. In this study, the weights were initialized using torch.manual seed(3407).
The step decay strategy, in conjunction with the Adam optimizer, was used to determine
the learning rate. The expanded dataset was divided into training, validation, and test
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Figure 12. Statistical results of lane images in different environments before and
after data augmentation

sets in an 8.5:1:0.5 ratio. The initial learning rate was set to 0.0005, with a minimum of
5e-6, and a batch size of 16.

Three different loss functions were employed in the experiments: the two-category
cross-entropy loss function, the weighted two-category cross-entropy loss function, and
the combination of the weighted two-category cross-entropy loss function and Dice Loss.
The experiments were conducted over 100 rounds, with the training loss and validation
loss values recorded during each round. Furthermore, model evaluation was performed
every 5 rounds, saving the weights associated with the optimal evaluation metric mIoU.
Finally, the loss curves and mIoU curves were plotted as a function of the number of
training rounds.

The experiments in this paper were conducted as follows: (i) Four different loss functions
were individually applied to the modified DeeplabV3+ model to determine the optimal
one for this dataset. (ii) Ablation experiments were conducted to assess the necessity
of each designed module. (iii) A comparison was made between different deep learning
models to evaluate the segmentation performance of the improved DeeplabV3+ model,
considering real-time capabilities and lane detection accuracy.

3.2.3. Evaluation indicators. The main performance evaluation metrics for the experi-
ments are the Mean Intersection over Union (mIoU ), Accuracy, and mean pixel accuracy
(mPA). One of the crucial metrics for evaluating the performance of the semantic seg-
mentation model is mIoU. It is computed by determining the IoU of the predicted and
labeled values for all image categories and subsequently calculating the average of these
ratios.

In the binary classification problem studied in this paper, the average intersection over
union (mIoU ) is computed as the mean of the intersection over union ratios for the lane
IoUlane and the background IoU background. The values of mIoU are determined using
Equations (13) and (14), respectively.

mIoU =
1

M

M∑
i=1

TP

TP + FN + FP
(13)

IoUlane =
TPlane

TPlane + FNlane + FPlane

(14)

Equation (15) presents the formula employed to quantitatively measure the accuracy
of the model’s predictions.
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Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Equation (16) presents the formulas that calculate the ratio of pixels with positive
predictions in each category to the total number of pixels in that category. Additionally,
they compute the average for each category.

mPA =
1

M

M∑
i=1

TP

FP + TP
(16)

Where M is the number of categories, TP is the sum of the number of pixels predicted
to be positive but actually positive, TN is the sum of the number of pixels predicted to
be negative but actually negative, FP is the sum of the number of pixels predicted to be
negative but actually positive, and FN is the sum of the number of pixels predicted to
be positive but actually negative.

3.2.4. Different loss functions. In an effort to rectify the prevalent class imbalance be-
tween positive and negative samples in lane imagery, the present study introduces the
application of Dice Loss. This loss function stands out for its enhanced efficacy in im-
balanced sample contexts, prioritizing the extraction of feature information from the
foreground during the training phase, which in turn significantly bolsters the model’s
proficiency in identifying lane features.

Within the scope of this work, four distinct loss functions were integrated into the re-
fined DeeplabV3+ architecture: (1) Binary Cross Entropy (BCE) Loss; (2) a combination
of BCE Loss and Dice Loss; (3) Weighted BCE (WBCE) Loss; and (4) a fusion of WBCE
Loss and Dice Loss.

The BCE Loss measures the discrepancy between the true and predicted probability
distributions and is calculated as shown in Equation (17):

BCE Loss =
1

N

∑
i

−(yi · log(ŷi) + (1− yi) · log(1− ŷi)) (17)

Here, y represents the label, and ŷ represents the model prediction.
The WBCE Loss assigns different weights to each class based on Equation (17). This

weighting scheme strengthens its contribution to the loss for classes with a small number
of samples and reduces its contribution to the loss for classes with a large number of
samples. The calculation formula is given in Equation (18).

WBCE Loss =
1

N

∑
i

−(ω · yi · log(ŷi) + (1− yi) · log(1− ŷi)) (18)

The ω is the weight.
The Dice Loss is commonly employed as an ensemble similarity measure function to

quantitatively assess the degree of similarity between two samples. Its calculation formula
is depicted in Equation (19).

Dice Loss = 1− 2
∑N

i=1 yi · ŷi∑N
i=1 yi +

∑N
i=1 ŷi

(19)

Here, the variables yi and ŷi represent the labeled and predicted values of pixel i,
respectively. N denotes the total number of pixel points.

A series of experiments were conducted employing these varied loss functions, as delin-
eated in TABLE 1.
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Table 1. Experiments with different loss functions

Exp No. Loss ω = ωlane : ωbackground
mIoU
(%)

Accuracy
(%)

mPA
(%)

No.1 BCE Loss \ 86.95 99.41 91.40
No.2 BCE Loss+Dice Loss \ 87.47 99.41 93.86
No.3 WBCE Loss 2:1 87.86 99.44 93.19
No.4 WBCE Loss+Dice Loss 2:1 88.22 99.48 91.64

The data in TABLE 1 reveal that exclusive utilization of BCE Loss (Experiment No.1)
yielded a mIoU of 86.95%. Incorporation of Dice Loss alongside BCE Loss (Experi-
ment No.2) resulted in an augmented mIoU of 87.47%, representing an increment of 0.52
percentage points relative to Experiment No.1. Experiment No.3 further advanced the
mIoU to 87.86% by employing WBCE Loss with a lane-to-background weight ratio of 2:1,
thereby validating the efficacy of the weighting approach in mitigating class imbalance.
The culmination of these efforts in Experiment No.4, which combined WBCE Loss with
Dice Loss, led to an mIoU of 88.22%, surpassing Experiment No.1 by 1.27 percentage
points, with Accuracy improving to 99.48%, and mPA attaining 91.64%. Such marked
improvements are ascribed to the synergistic effect of WBCE Loss and Dice Loss : the for-
mer equilibrates the class disparity, while the latter ensures the model’s predictions closely
align with the actual labels. The confluence of these loss functions thus culminates in su-
perior performance, conclusively demonstrating their collective superiority in countering
the challenge of class imbalance. The findings accentuate the pronounced advantage of
this methodology in refining the model’s discrimination of lanes, especially within intricate
traffic environments, and thereby enhancing the accuracy of lane detection.

FIGURE 13 illustrates the visual detection maps derived from models trained with the
respective loss functions, demonstrating the effectiveness of each approach.

Figure 13. Visual Detection Maps for Different Loss Functions

Based on the findings from FIGURE 13, employing WBCE Loss+Dice Loss as the loss
function enhances the model’s capability to detect lanes, resulting in more comprehensive
and detailed markings. It exhibits the ability to detect distal lanes more comprehen-
sively in scenarios such as Continuous straight lanes and Straight with shadow, while
also capturing smoother and fuller lanes in situations like Large curves and Large curves
with glare light. In summary, the identified lanes exhibit greater completeness and richer
details. Conversely, models trained using alternative loss functions exhibit certain short-
comings. This indicates that adopting WBCE Loss+Dice Loss as the loss function aids
the model in addressing the issue of category imbalance and emphasizes the similarity
between the predicted results and actual labels, thereby enhancing the performance of
the lane detection model.
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3.2.5. Ablation experiments. In the ablation study section, a quantitative analysis was
undertaken to ascertain the individual contributions of the Multi-scale Feature Extrac-
tion Enhancement Module, the FFM, Skip connection, and the CBWAM to the overall
performance of the model. The findings of this analysis are detailed in TABLE 2.

Table 2. Ablation experiments of different modules in the network structure

Experiment
serial number

Different modules
in the network structure mIoU(%)

Backbone
Multi-scale feature
extraction module

FFM
Skip

Connection
CBWAM

No.1 ✓ 84.85
No.2 ✓ ✓ 86.05
No.3 ✓ ✓ ✓ 85.71
No.4 ✓ ✓ ✓ ✓ 87.10
No.5 ✓ ✓ ✓ ✓ ✓ 87.41

No.6 (Ours) ✓ ✓ ✓ ✓ ✓ 88.22

TABLE 2 delineates the results from six distinct ablation experiments. The baseline
model (Experiment No.1) achieved a mIoU of 84.85%. With the integration of solely the
Multi-scale Feature Extraction Enhancement Module (Experiment No.2), the mIoU saw
an increment to 86.05%, marking an improvement of 1.20%. The addition of only the
CBWAM (Experiment No.3) realized an mIoU of 85.71%, an uplift of 0.86%. The em-
ployment of Skip connection alone (Experiment No.4) culminated in an mIoU of 87.10%,
translating to an augmentation of 2.25%. These experiments distinctly demonstrate the
enhancement provided by the Multi-scale Feature Extraction Enhancement Module, the
CBWAM, and the Skip connection to the field of lane detection. Moreover, upon the
addition of the Feature Fusion Module to the foundation established by Experiment No.4
(Experiment No.5), the mIoU further rose to 87.41%, a supplementary increase of 0.31%,
thereby evidencing the Feature Fusion Module’s enhanced capability in capturing and
refining the features of lanes, particularly their intricate details. In conclusion, the pro-
posed model (Experiment No.6), which synthesizes all aforementioned modules, attained
an mIoU of 88.22%, translating to a significant enhancement of 3.37% compared to the
baseline model. This improvement underscores the synergistic impact of the integrated
modules. The comprehensive ablation study not only substantiates the effectiveness of
each module but also furnishes critical insights for the architectural design of future lane
detection models.

The visualization of the ablation experiment is detected in the graph shown in FIGURE
14.

Figure 14. Visualization and detection map of the ablation experiment

By analyzing the visual detection graph and considering the previous data, it becomes
evident that the model augmented solely with the multi-scale feature extraction module
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(No.2) outperforms the baseline model (No.1) in detecting small targets like distal lanes
in Large curves and Straight with low light scenes, thereby affirming the effectiveness
of the multi-scale feature extraction module. Furthermore, the model equipped solely
with CBWAM (No.3) exhibits improved discrimination of boundaries for similar objects
such as white railings in Straight lanes with lane marks, highlighting CBWAM’s effec-
tive allocation of attention resources and enhanced feature extraction capabilities. The
inclusion of skip connection alone (No.4) results in fuller lanes compared to the baseline
model, demonstrating the effectiveness of combining skip connection with shallow features
for lane feature extraction. Additionally, the model combining skip connection and FFM
(No.5) achieves superior overall detection performance across all scenarios when compared
to No.4. Finally, our proposed model (No.6) outperforms models No.1-No.5, providing
enhanced overall detection performance and more detailed information.

3.2.6. Comparative experiments on the Baidu’s unmanned vehicle dataset. This paper
presents comparison experiments, as shown in TABLE 3, to validate the superior segmen-
tation capability and real-time performance of the proposed enhanced DeeplabV3+ model
for lane segmentation. UNet, PSPNet, and the previous enhanced version of DeeplabV3+
are employed for comparative analysis. To ensure experimental fairness, all models are
evaluated under identical conditions, utilizing the same input image size of 1128Ö340
pixels.

Table 3. Evaluation results of various image segmentation models on the Baidu’s
unmanned vehicle dataset.

Exp No. Model mIoU(%) Accuracy (%) mPA(%) Params(MB)
Single Image

prediction time
(ms)

No.1 VGG16+UNet 89.56 99.54 93.51 95.0 47.30
No.2 MobilenetV2+PSPNet 72.26 98.47 81.03 9.3 20.41
No.3 MobilenetV2+DeeplabV3+ 84.85 99.30 91.12 22.3 26.29
No.4 Ours 88.22 99.48 91.64 26.7 35.12

In the comparative evaluations on the Baidu’s unmanned vehicle dataset, our proposed
architecture (Experiment No.4) attained an mIoU of 88.22%, an Accuracy of 99.48%,
and an mPA of 91.64%, with the model footprint being a mere 26.7MB and the inference
latency for a single image at 35.12 ms. In juxtaposition with the VGG16+UNet configu-
ration (Experiment No.1), the latter realized a marginally superior mIoU of 89.56%, yet
was encumbered by a significantly larger size of 95.0MB and a longer prediction duration
of 47.30 ms. Conversely, our model markedly diminishes both the complexity and the
inference time while preserving a performance level that is on par. Relative to the Mo-
bilenetV2+PSPNet framework (Experiment No.2), our model exhibited a notable mIoU
enhancement of 15.96%, underscoring the capability of our design to retain a lightweight
structure while elevating accuracy. These findings not only affirm the precision advantage
of our model but also underscore its efficiency gains, which are particularly pivotal for
applications necessitating real-time lane detection.

The visualized detection plots of different image segmentation models are shown in
FIGURE 15.

From FIGURE 15, it can be observed that our proposed model (No.4) achieves a detec-
tion effect similar to the Ground Truth and a prediction effect comparable to the UNet
model (No.1). The overall lane detection effect is good with clear edges. In comparison
to the PSPNet model (No.2), our proposed model demonstrates superior prediction ac-
curacy at the edges, exhibiting a significantly higher number of correctly detected lane
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Figure 15. Visualization and detection plots of different segmentation models

pixels. Furthermore, when compared to the baseline model (No.3), our proposed model
outperforms in both overall and detailed lane detection results.

3.2.7. Evaluation of Classical Image Segmentation Algorithms on the TuSimple Dataset.
In this investigation, we conducted a comparative analysis of several semantic segmenta-
tion models on the TuSimple dataset, which included the well-established UNet, PSPNet,
DeeplabV3+, as well as our novel proposed model. The experimental outcomes, delineated
in TABLE 4, encapsulate the performance benchmarks of each model on the TuSimple
dataset, which comprise metrics such as mIoU , mPA, Accuracy, and the F1-score.

Table 4. Comparative Performance Metrics of Classical Image Segmentation Al-
gorithms on the TuSimple Dataset

Exp No. Model mIoU (%) mPA (%) Accuracy (%) F1-score (%)
No.1 VGG16+UNet 77.59 85.14 98.52 85.9
No.2 MobilenetV2+PSPNet 57.41 60.06 97.35 64.6
No.3 MobilenetV2+DeeplabV3+ 75.0 81.64 98.37 83.8
No.4 Ours 78.24 89.85 98.41 86.5

The data unequivocally demonstrate that the proposed model outshines the other three
experimental groups in aggregate, registering the most elevated scores in mIoU , mPA,
and F1-score. Moreover, the proposed model consistently excels over the VGG16+UNet
model across all evaluative indicators. To elucidate, the proposed model (denoted as
’Ours’) exhibits an increment of 0.65 percentage points in mIoU and 4.71 percentage
points in mPA over the VGG16+UNet model, and it is marginally lower in Accuracy
by a negligible 0.11 percentage points. The F1-score is particularly noteworthy, where
the proposed model achieves 86.5%, outperforming the 85.9% secured by VGG16+UNet,
which further corroborates the effectiveness of our approach.

In essence, the proposed model has demonstrated superlative performance on the
TuSimple dataset, with marked improvements in critical metrics such as mIoU and mPA,
indicating a substantial enhancement in the segmentation of intricate structures relative
to other models. These findings substantiate the sound design and robustness of the
proposed model.

3.2.8. Comparative Study of Classical Lane Detection Algorithms on the TuSimple Dataset.
Within the scope of this experiment, we evaluated a spectrum of state-of-the-art lane de-
tection techniques and introduced our MobilenetV2-based model (referred to as ’Ours’).
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These methodologies incorporate a variety of technical stratagems and foundational net-
works, including but not limited to Eiglanes, SCNN, ENet-SAD, RESA, LaneAF, LSTR,
FOLOLane, CLRNet, LaneATT, and CondLane. Eiglanes, CLRNet, and LaneATT are
predicated on anchor-based methods; SCNN, ENet-SAD, RESA, and LaneAF leverage
semantic segmentation; LSTR utilizes model-based approaches; FOLOLane relies on key-
point estimation; and CondLane employs a row-based detection strategy.

Among the methodologies under scrutiny, the proposed model manifests a conspicu-
ous performance ascendancy, attaining a lofty Accuracy of 98.41% while sustaining a
processing velocity of 28.4 frames per second. In comparison to other methodologies
underpinned by ResNet and DLA architectures, such as CLRNet, which peaks at an
Accuracy of 96.87%, and LaneATT, with an Accuracy of 96.83%, our proposed model
secures an Accuracy augmentation of 1.54% and 1.57%, respectively. Against the SCNN
method, another semantic segmentation paradigm, our proposed model records an Accu-
racy improvement of 1.88%. This underlines that the proposed model not only confers
superior Accuracy but also significantly bolsters lane detection efficacy whilst upholding
real-time processing capabilities. These outcomes accentuate the viability and applicabil-
ity of our methodology in lane detection endeavors, especially in contexts that necessitate
high Accuracy coupled with immediate responsiveness.

Table 5. Comparative Performance Metrics of Classical Lane Detection Algo-
rithms on the TuSimple Dataset

Method Backbone Accuracy(%) FPS
Eigenlanes [22] - 95.62 -

SCNN [9] VGG16 96.53 7.5
ENet-SAD [23] - 96.64 75.0
RESA [24] ResNet34 96.82 -
LaneAF [25] DLA-34 95.62 -
LSTR [26] ResNet18 96.18 420

FOLOLane [27] ERFNet 96.92 -
CLRNet [28] ResNet18 96.84 -
CLRNet [28] ResNet34 96.87 -
CLRNet [28] ResNet101 96.83 -
LaneATT [10] ResNet122 96.10 26
LaneATT [10] ResNet18 96.84 -
LaneATT [10] ResNet34 96.87 -
CondLane [29] ResNet18 95.48 220
CondLane [29] ResNet34 95.37 154
CondLane [29] ResNet101 96.54 58

Ours MobileNetV2 98.41 28.4

4. Conclusion. The real-time lane detection methodology introduced in this study, pred-
icated on an enhanced DeeplabV3+ framework, adeptly surmounts the segmentation in-
tricacies associated with diminutive targets, including edge and distant lanes within vehic-
ular imagery. This approach satisfies the exigencies of precision and immediacy required
for lane segmentation in real-world applications. Initially, the MobilenetV2 architecture
serves as the backbone network, distilling lane features across a hierarchy of levels. This
is followed by the deployment of a Multi-scale Feature Extraction Enhancement Module,
which seizes the contextual nuances of lanes across varied scales. Subsequently, FFM —
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underpinned by a Residual Module and Hybrid Dilated Convolution — performs super-
resolution upscaling on the deeply-layered features derived post a 16-fold downsampling,
engendering feature maps replete with semantic richness and detailed granularity.

In an effort to capitalize on the a priori distributional knowledge of lanes, the CBWAM
meticulously distributes attentional resources across both channel and spatial domains,
thus bolstering the model’s lane discernment capabilities and mitigating the attrition of
feature information. The incorporation of Skip connection seamlessly amalgamates dis-
parate levels of features, engendering a synergistic interplay between profound and super-
ficial semantic information, which markedly amplifies the model’s segmentation prowess.
Empirical evidence corroborates that the model, while maintaining real-time efficacy, sig-
nificantly augments the segmentation of diminutive targets, thereby contributing a novel
research vista to the sphere of lane detection.

Notwithstanding the considerable strides made by the proposed model across various
dimensions, it is not devoid of limitations. For example, the model’s robustness in the face
of severe meteorological conditions is slated for further amelioration. Ensuing research
endeavors will be channeled towards enhancing the model’s generalizability, thereby ren-
dering it more adaptable to a diverse array of driving milieus. Moreover, the pursuit
of more streamlined network structures, with the aim of bolstering the real-time aspect
of lane detection, will constitute a principal objective of our future undertakings. It
is our ambition to perpetuate the refinement and innovation of our techniques, thereby
furnishing increasingly efficacious and precise lane detection solutions for the tangible
implementation of autonomous vehicular technologies.

Acknowledgment. This work is supported by Zhejiang Sci-Tech University 2021 Na-
tional University Students Innovation and Entrepreneurship Training Program, China
(11120032662125). This work is also supported by the Key R&D Program of Zhejiang
Province (2022C03136).

REFERENCES

[1] Y. U. Yim and S. Y. Oh, “Three-feature based automatic lane detection algorithm (TFALDA) for
autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 4, no. 4, pp.
219-225, 2022.

[2] Z.-Q. Ying, G. Li, and G.-Z. Tan, “An illumination-robust approach for feature-based road detec-
tion,” IEEE International Symposium on Multimedia (ISM), pp. 278-281, 2015.

[3] H.-Y. Zhou and X. Song, “Lane Detection Algorithm Based on Haar Feature Based Coupled Cascade
Classifier,” IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC),
pp. 286-291, 2021.

[4] Q. Chen and H. Wang, “A real-time lane detection algorithm based on a hyperbola-pair model,” in
IEEE Intelligent Vehicles Symposium, IEEE, 2006, pp. 510-515.

[5] H.-R. Xu, X.-D. Wang, H.-W. Huang, K.-S. Wu, and Q. Fang, “A fast and stable lane detection
method based on B-spline curve,” IEEE 10th International Conference on Computer-Aided Industrial
Design & Conceptual Design, pp. 1036-1040, 2009.

[6] W.-H. Li, F. Qu, Y. Wang, L. Wang, and Y.-H. Chen, “A robust lane detection method based on
hyperbolic model,” Soft Computing, vol. 23, pp. 9161-9174, 2019.

[7] Z. W. Kim, “Robust lane detection and tracking in challenging scenarios,” IEEE Transactions on
Intelligent Transportation Systems, vol. 9, no. 1, pp. 16-26, 2008.

[8] J. Kim, J. Kim, G. J. Jang, and M. Lee, “Fast learning method for convolutional neural networks
using extreme learning machine and its application to lane detection,” Neural Networks, vol. 87, pp.
109-121, 2017.

[9] T.-M. Deng and Y.-J. Wu, “Simultaneous vehicle and lane detection via MobileNetV3 in car following
scene,” PLoS One, vol. 17, no. 3, pp. e0264551, 2022.



A Real-time Semantic Segmentation Model for Lane Detection 2257

[10] L. Tabelini, R. Berriel, T. M. Paixao, C. Badue, A. F. De Souza, and T. Oliveira-Santos, “Keep
your eyes on the lane: Real-time attention-guided lane detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 294-302, 2021.

[11] L.-C. Chen, Y.-K. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous
separable convolution for semantic image segmentation,” in Proceedings of the European Conference
on Computer Vision (ECCV), pp. 801-818, 2018.

[12] L. Caltagirone, S. Scheidegger, L. Svensson, and M. Wahde, “Fast LIDAR-based road detection
using fully convolutional neural networks,” IEEE Intelligent Vehicles Symposium (IV), pp. 1019-
1024, 2017.

[13] D.-H. Lee and J.-L. Liu, “End-to-end deep learning of lane detection and path prediction for real-time
autonomous driving,” Signal, Image and Video Processing, vol. 17, no. 1, pp. 199-205, 2023.

[14] L.-C. Chen, X.-Z. Xu, L.-H. Pan, J.-F. Cao, and X.-M. Li, “Real-time lane detection model based
on non bottleneck skip residual connections and attention pyramids,” PLoS One, vol. 16, no. 10, pp.
e0252755, 2021.

[15] X.-G. Pan, J.-P. Shi, P. Luo, X.-G. Wang, and X.-O. Tang, “Spatial as deep: Spatial CNN for traffic
scene understanding,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no.
1, 2018.

[16] R.-Z. Ding, Z.-Y. Liu, T.-W. Chin, D. Marculescu, and R. D. Blanton, “FlightNNS: Lightweight
quantized deep neural networks for fast and accurate inference,” in Proceedings of the 56th Annual
Design Automation Conference, pp. 1-6, 2019.

[17] X.-R. Jiang, N.-N. Wang, J.-W. Xin, X.-B. Xia, X. Yang, and X.-B. Gao, “Learning lightweight
super-resolution networks with weight pruning,” Neural Networks, vol. 144, pp. 21-32, 2021.

[18] S. Swaminathan, D. Garg, R. Kannan, and F. Andres, “Sparse low rank factorization for deep neural
network compression,” Neurocomputing, vol. 398, pp. 185-196, 2020.

[19] D. Yoon, J. Park, and D. Cho, “Lightweight deep CNN for natural image matting via similarity-
preserving knowledge distillation,” IEEE Signal Processing Letters, vol. 27, pp. 2139-2143, 2020.

[20] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted residuals
and linear bottlenecks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4510-4520, 2018.

[21] X.-Y. Zhang, X.-Y. Zhou, M.-X. Lin, and J. Sun, “ShuffleNet: An extremely efficient convolutional
neural network for mobile devices,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6848-6856, 2018.

[22] M.-X. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,”
in International Conference on Machine Learning. PMLR, pp. 6105-6114, 2019.

[23] Y. Hou, Z. Ma, C. Liu, and C. C. Loy, “Learning lightweight lane detection CNNs by self-attention
distillation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
1013-1021, 2019.

[24] D.-H. Lee and J.-L. Liu, “End-to-end deep learning of lane detection and path prediction for real-time
autonomous driving,” Signal, Image and Video Processing, vol. 17, no. 1, pp. 199-205, 2023.

[25] Z.-T. Yao and X.-Y. Chen, “Efficient lane detection technique based on lightweight attention deep
neural network,” Journal of Advanced Transportation, 2022.

[26] S. Song, W. Chen, Q.-J. Liu, H.-S. Hu, T.-C. Huang, and Q.-Y. Zhu, “A novel deep learning network
for accurate lane detection in low-light environments,” Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering, vol. 236, no. 2-3, pp. 424-438, 2022.

[27] H. Chang, D.-Y. Yeung, and Y.-M. Xiong, “Super-resolution through neighbor embedding,” in Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, vol. 1, pp. I-624, 2004.

[28] P.-Q. Wang, P.-F. Chen, Y. Yuan, D. Liu, Z.-H. Huang, X.-D. Hou, and G. Cottrell, “Understand-
ing convolution for semantic segmentation,” in 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 1451-1460, 2018.

[29] L. Liu, X. Chen, S. Zhu, and P. Tan, “Condlanenet: a top-to-down lane detection framework based
on conditional convolution,” In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 3773-3782, 2021.


