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Abstract. In the industrial production of medical syringes, existing Deep Semantic
Segmentation (DSS) methods, which generally have numerous network parameters, face
significant challenges in real-time hair defect detection due to hair’s unique character-
istics, including its irregular and thin structure. Moreover, potential hair overlapping
with the syringe further complicates the detection process. In this case, conventional
DSS methods are hard to explore the accurate low-level visuospatial information that is
critical for detecting hair defects. Considering the wide applicability and effectiveness of
the Local Binary Pattern (LBP) for detecting irregular and thin structural defects, we
argue that LBP may help DSS models to extract more detailed hair features as a way to
improve their performance in detecting hair defects on syringes. Inspired by this idea,
this study proposes a Deep LBP-Enriched Real-time Segmentation (DLERS) method for
hair defect detection, which maintains a lightweight network structure and leverages the
LBP encoding mechanism to facilitate DSS models to extract more detailed edge features.
Besides, to alleviate the influence of the hair-like noise and fragmentary edges, we pro-
pose employing a joint loss function that combines the Dice loss, BCE loss, and Edge loss
to train our network. To evaluate the performance of DLERS, we conduct experiments
on one real-world syringe dataset. The competitive results ( e.g., 85.36% MIoU and 149.1
FPS) prove the effectiveness of our method.
Keywords: Deep learning, Local Binary Pattern, Real-time defect detection, Image
segmentation

1. Introduction. Product defect detection is essential to industrial production and the
key to controlling product quality. Generally, according to their sources, defects of prod-
ucts can be divided into two categories: internal or external. The internal defects, such as
design flaws and material issues, originate from the product itself. The external defects
refer to exogenous foreign-bodies caused by the external environment. These exogenous
foreign-bodies occur due to the external factors of the production environment, which
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Figure 1. The input image with hair defect and its segmentation results.
Given an input image (subfigure (a)) with hair defects, where red boxes rep-
resent hair defects and green boxes represent hair-like noise. Conventional
DSS method [8] suffers from hair-missing issue (marked by the yellow box
in subfigure (c)) and hair-like noise (marked by the green box in subfigure
(c)). In contrast, our method can accurately extract defects (subfigure (d)),
which is quite close to the ground truth (subfigure (b)).

will contaminate the product. Given the profound impact of these prevalent defects, it is
essential to design contextually appropriate and efficacious detection techniques.

Hair defect is commonly identified as a type of exogenous defect because the bacteria
carried by the oil on the hair’s surface can seriously contaminate medical syringes. If
healthcare workers use contaminated syringes to infuse patients, it may lead to inflamma-
tory reactions and may even result in medical accidents in more severe cases. Therefore,
to effectively eliminate this safety hazard, factories need an efficient and real-time hair
defect detection method in industrial production. Conventionally, most existing hair de-
fect detection programs are artificially conducted by workers, which, unfortunately, tend
to be time-consuming, there by severely impeding industrial productivity. To increase
production efficiency, experts have introduced classic machine vision technology to the
field of defect detection [1] [2] [3] [4]. These technologies mainly use traditional Hand-
crafted Feature (HF) to detect defects. HFs are designed to capture defects directly from
the pixel-level information and aligns with the characteristics observed by human vision.
Generally, HFs in industrial defect detection rely on human-designed rules and require
domain expert knowledge. While these features are typically interpretable, they often
lack robustness, especially when dealing with complex, diverse, and noisy data.

With the rapid development of industrial manufacturing, medical syringe production
lines have become more intelligent and efficient. Under this circumstance, conventional
handcrafted-feature guided defect detection methods are vulnerable to interference and
suffer from poor robustness, which limits their applications in medical syringe inspection.
In recent years, due to their high accuracy, adaptability, and automatic feature extrac-
tion [5] [6] [7], deep semantic segmentation has been widely applied in defect detection.
However, existing deep semantic segmentation methods encounter difficulties in achieving
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satisfactory results for real-time industrial defect detection because of their substantial
demand for computational resources and large amounts of training data. In addition, in-
dustrial cameras in real-world medical syringe production lines frequently capture subtle
and hair-like internal wrinkles, constituting a critical challenge for defect detection on
medical syringes. Complicating matters further, hairs may overlap with medical syringes,
leading to a more intricate background in the captured syringe images. This complexity
poses challenges for defect detection methods. In this case, it is difficult for conventional
neural networks to detect defects effectively. Their segmentation results may suffer from
false positive (the green box in Figure 1(c)) and false negative (the yellow box in Fig-
ure 1(c)), leading to inaccurate detection outcomes. Therefore, an efficient hair defect
detection technology for medical syringes is imminent.

To solve the problems encountered in hair defects, we propose a lightweight method
called Deep LBP-Enriched Real-time Segmentation (DLERS) method. This method em-
ploys an LBP feature encoding mechanism for DSS models, which offers advantages in
extracting more detailed hair features and can be seamlessly adapted to various segmen-
tation network frameworks. Specifically, our method is built on three observations: 1) In
the hair defect detection, it is important for the segmentation network to utilize the low-
level visuospatial information to explore fine-grained details of hair defects, such as edge
features; 2) It is essential to mitigate the impact of hair-like noise and fragmentary edges
in the syringe tray; 3) In industrial defect detection, deep segmentation models should
be designed with efficient architectures to meet the real-time requirements of production
lines. To leverage these findings, DLERS integrates the LBP feature encoding strategy to
enhance the network’s ability to capture essential features for segmentation. Additionally,
DLERS maintains a lightweight network structure and utilizes a joint loss function that
combines Dice loss, BCE loss, and Edge loss, to efficiently and robustly segment hair
defects, even in the presences of hair-like noise. To summarize, the main contributions of
this paper are listed as follows:

• We propose a lightweight Deep LBP-Enriched Real-time Segmentation (DLERS)
method for real-time hair defect detection on syringes, which integrates the LBP
feature encoding into a deep neural network, enhancing the detection performance
by leveraging fine-grained hair information, e.g., edge features.

• To better address the challenges posed by hair-like noise and fragmentary edges, we
propose the utilization of a joint loss function that combines the Dice loss, BCE
loss, and Edge loss. This joint loss function allows the network to learn distinctive
features of hair defects, ensuring accurate defect segmentation.

• The competitive results on one real-world syringe dataset demonstrate the effective-
ness of our method. Our method arrives at the best result, that is, 85.36% on MIoU
and 149.1 Frames Per Second (FPS), which surpasses the compared methods over
by 2.15% MIoU and more than four times faster in processing speed.

2. Related work. Our method closely relates to LBP-based defect detection and deep
learning-based segmentation. Both of these methods have shown promising performance
in defect detection. In this section, we briefly introduce these two techniques.

LBP-based defect detection: In the early stage of automatic defect detection, the
traditional machine vision-based methods often utilize Local Binary Pattern (LBP) in
images to detect surface defects. For instance, Li et al. [9] proposed an energy-based
local binary patterns (ELBPs) rather than grayscale-based local binary patterns to detect
structural defects. Liu et al. [10] proposed to extract the LBP features of tires to detect
superficial crack-shaped defects. Song and Yan [11] proposed an adjacent evaluation
completed local binary patterns (AECLBPs) algorithm. This method can detect surface
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defects in hot rolled steel strips even under the influence of the feature variations of intra-
class changes, illumination, and grayscale changes. Liu et al. [12] proposed a real-time
detection algorithm for the steel surface defects. Similarly, Li et al. [13] proposed a texture
description model for birch board crack. Utilizing the typical characteristics of complex
geometry and texture distribution, Cao et al. [14] designed a nickel foam surface defect
detection method.

Deep learning-based segmentation: Building upon success of deep neural networks
in computer vision tasks, Masci et al. [15] proposed to apply deep learning technology
to automatic visual surface defect detection. Their work shows that combining con-
volution neural networks and maximum pooling is superior to the handcrafted feature
approach. Weimer et al. [16] proposed a neural network structure for industrial defect de-
tection, which learned features from data and achieved a final average detection accuracy
of 99.2%. To find subtle defects, Racki et al. [17] proposed a two-stage network based on a
segmentation network that achieves excellent results in a weakly labeled anomaly dataset
DAGM with different textured surfaces and different shapes. Tabernik et al. [18] also
employed segmentation-based two-stage networks on the Kolektor surface-defect dataset
and reached more advanced performance. In addition, many studies [19] [20] [22] [21] have
found that low-level visuospatial features in the network can improve the performance of
semantic segmentation network. On this basis, Wang et al. [23] proposes to solve the edge
blurring problem by leveraging multilevel representations during segmentation. However,
this simple addition or concatenation of multi-level features does not adequately capture
low-level visuospatial features and can cause misalignment problems.

To address the aforementioned issue, Takikawa et al. [24] proposed a GSCNN network
that reclassifies features into standard flow and shape flow. In this method, the Canny
operator is used in the branch network to enhance the edge information in the shape flow to
obtain better segmentation results. Luan et al. [25] proposed a Gabor convolution neural
network (GaborCNN) by combining with traditional handcrafted features. They believe
that Gabor can enhance the adaptability of deep learning features by handling changes in
direction and scale. Zhao et al. [26] proposed a defect detection method combining GAN
and LBP, which achieves excellent results on fabric images and the DAGM2007 dataset.

3. Methodology. In this section, we describe our Deep LBP-Enriched Real-time Seg-
mentation (DLERS) method in detail. First, we outline the overall structure of DLERS
in Subsection 3.1. Then, we provide a comprehensive explanation of how our LBP feature
encoding of DLERS is designed to extract more detailed features to enhance the DSS
model for hair defect detection in Subsection 3.2. Finally, the joint loss function with
Dice loss, BCE loss, and Edge loss is introduced in Subsection 3.3.

3.1. Network structure. We propose an efficient and lightweight network for real-time
detection of hair defects on medical syringes. The overall structure of DLERS is shown
in Figure 2. We can see that DLERS contains three parts: base network, LBP-enriched
Feature Encoding (LFE) modules, and semantic segmentation head (Seg head). The
architecture of our base network draws structural inspiration from the successful You Only
Look Once (YOLO) [27] [28] [29] model, which has demonstrated excellent performance
in various industrial production applications. The YOLO model family is considered
one of the most advanced object detection models, known for its skip connection and
feature extraction techniques that contribute to excellent detection performance. Besides,
its lightweight character derives from the model’s utilization of the bottleneck block.
Based on these two characteristics, we build a lightweight base network that incorporates
the bottleneck block along with a specially designed skip connection–the LFE modules,
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Figure 2. The network structure of our Deep LBP-Enriched Real-time
Segmentation (DLERS) method. To extract detailed texture features of
hair defects, we conduct LBP-enriched feature encoding modules (yellow
dotted rectangle area) to augment the outputs of the base network with
different feature scales (features at three different layers (F1, F2, and F3)).
Finally, the enriched texture features are fused and upsampled for semantic
prediction in the segmentation head (Seg head).

which will be described in the next paragraph. The base network consists of several
key components, including the convolution block, bottleneck block, upsample layer, and
concatenation layer. The bottleneck structure is adopted to reduce the number of channels
by half using a 1 Ö 1 convolution, then double the number of channels through a 3 Ö 3
convolution to obtain high-level features.

Additionally, to extract rich low-level features, we construct LFE modules to explore
fine-grained features of hairs defects. The objective of LFE modules is to learn a mapping
function fθ : F → M , which transforms the input feature F into a new feature space
M using the parameters θ. In this paper, we use the LBP encoding technique to form
the parameters θ, that is, fK . Here, K refers to the kernel matrix generated from the
LBP encoding. Detailed construction process of K will be discussed in Subsection 3.2.
After the construction of LFE modules, we can apply it to the base network to enrich
the low-level features. As shown in Figure 2, given the low-level features F1, F2, and F3

from different layers, their LBP-enriched features M1, M2, and M3 can be formulated as
F1 → M1, F2 → M2, and F3 → M3 by the mapping function fK , respectively. It is worth
noting that in the LFE modules, the kernel K generated from LBP is fixed. As shown in
Figure 1, thanks to these LFE modules, our method can solve the challenges arising from
the hair defect’s irregular and thin structure and its potential overlap with the syringe.

To fuse features from different scales, we employ a 1 × 1 convolution block within the
segmentation head of our network to condense the feature representation. After that,
we upsample these fused features to the original image size. This step is crucial to align
the fused features with the input image, permitting precise localization and accurate
prediction of hair defects. Finally, with the fused and upsampled features, we introduce
a convolution layer to generate the final prediction for hair defect detection.
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3.2. LBP-enriched feature encoding module. The classical machine vision-based
methods usually encode product surface defects via localized inhomogeneous texture pat-
terns. Among these methods, the Local Binary Pattern (LBP) [30] is renowned for its
superior resilience to noise and illumination variation, which has rendered it a highly ef-
ficient and widely used operator in many scenarios for extracting local texture features.
Specifically, the traditional LBP operator works on patches of an image that typically
has a size of m×m pixels, where m is usually an odd number such as 3, 5, etc. In LBP,
neighboring pixels with higher intensity values than the central pixel are assigned 1 and
0 otherwise. In 2D space, each pixel Iij located at (i, j) of an image can be encoded as a
binary sequence Q(i, j), which can be expressed as:

Q(i, j) =
[
Sij
1 , S

ij
2 , . . . , S

ij
4m−4

]
, Sij

k ∈ {0, 1}, (1)

where Sij
k is the code of the kth neighboring pixel N ij

k . Concretely, Sij
k can be calculated

as:

Sij
k = δ

(
N ij

k − Iij
)
, (2)

where δ(x) = 1 if x ≥ 0, δ(x) = 0 otherwise. It should be noted that there are 4m − 4
neighboring pixels in clockwise order for each Iij. Formally, these neighboring pixels
consist a sequence N ij as follows:

N ij =
[
N ij

1 , N ij
2 , . . . , N ij

4m−4

]
. (3)

The above encoding process in Equation (3) of LBP, designed by domain experts,
has been widely used in many computer vision tasks, such as texture classification and
object recognition, for its compact representation and robustness to noise. This encoding
strategy allows LBP to capture rich texture features in an image and effectively address
complex problems, ultimately achieving high performance. Building on these findings,
we believe that LBP can also enhance the performance of the DSS model in detecting
hair defects on syringes. To tackle the challenge of hair defects with irregular and thin
structures that commonly impede conventional DSS models’ capacity to fully exploit
low-level visuospatial information, we propose integrating LBP into the model. This
addition enhances the DSS’s texture feature extraction, thereby significantly improving
its performance in detecting hair defects.

Given a low-level feature X ∈ Rc×h×w generated by the DSS model, we define a feature-
enrichment function fK to better capture the fine-grained texture for hair defects, where
K is a predefined kernel constructed in accordance with the rules of LBP feature encoding.
To utilize the prior knowledge in LBP, we can determine K according to the encoding
framework in Equation (1). However, the binary sequence generated in Equation (1) for
each pixel is not compatible with existing kernels in deep neural networks, making it hard
to directly use it in the DSS model. To solve this problem, upon meticulous examination
of Equation (1), we can observe that for each pixel there are n = 24m−4 possible encoding
states according to the relative relations between the central pixel and its neighbors. Each
encoding state p has 4m−4 binary bits with predetermined values and represents a specific
texture information. Based on these findings, we can build a kernel κ ∈ Rm×m from p as
follows:

κi,j =

{
α if i = j = m+1

2

pϕ(i,j) otherwise
s.t. 1 ≤ i, j ≤ m, (4)

where ϕ(i, j) is an index function, which calculates the index of the element located at
(i, j) in κ starting from κ1,1 in clockwise order. α is the central supplementary parameter
of the kernel matrix. Drawing inspiration from traditional handcrafted features such as
the Sobel and Laplacian operators, which maintain a central element with a value that
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is the negative sum of the other elements in the kernel, we propose a similar approach.
Concretely, we design our kernel such that its central parameter is exactly set to the
negative sum of the remaining elements in the kernel, thereby enhancing its capacity
to extract texture information from the data. Formally, α can be calculated as α =
−
∑4m−4

u=1 pu. After applying all the possible encoding states to Equation (4), we can get
distinct n kernels from LBP with an m×m image patch size.

Let K = [κ1, κ2, . . . , κn] , K ∈ Rn×m×m be the obtained kernel matrix with n kernels
constructed by the kernel construction rules in Equation (4). We can apply these channels
to each individual channel of low-level feature X. Suppose the enriched features across
all n channels of X is T , the vth channel of T can be calculated as:

Tv,i,j = fK(X) =
m∑
p=1

m∑
q=1

(Xv,i−p,j−q ·Kv,p,q) , (5)

where · is the dot product. It is worth noting that Equation (5) works in a depth-wise
separable manner, which is computational efficient. In this context, to ensure compatibil-
ity with subsequent layers, we utilize a 1 × 1 convolution W b before feature enrichment
to match the number of input channels and the number of output channels. Besides, after
the feature enrichment, an additional 1× 1 convolution W a is introduced to combine the
information from different channels. Finally, the merged texture M for the input data
can be formulated as follows:

M = Conv(W a, fk(Conv(W b, X))). (6)

3.3. Loss function. Detecting hair accurately can be challenging due to its thin and
delicate texture. To enhance the overall quality of hair detection, following the previous
studies on edge detection [31], we propose to capture the distinct edges by exploring
gradients associated with hair strands. Specifically, the Sobel operator, renowned for its
simplicity and edge detection capability, is introduced to our hair detection framework.
Mathematically, Sobel operator maps gradient changes in the 2-dimensional space with a
3 Ö 3 filter Sx in the horizontal direction and a 3 Ö 3 filter Sy in the vertical direction.
Typically, the values of Sx and Sy are set as follows:

Sx =

1 0 −1
2 0 −2
1 0 −1

 , Sy =

−1 −2 −1
0 0 0
1 2 1

 . (7)

Suppose the predicted result and the ground truth of an input training image are denoted
as P and Y , respectively. To highlight the distinguishable edges along with hairs, we
hope that the hair boundaries in P and Y should be as close as possible. Based on this
assumption, we propose to minimize the following Edge loss function:

Ledge(Y, P ) = E
[∣∣Y ∗ Sy − P ∗ Sy

∣∣+ ∣∣Y ∗ Sx − P ∗ Sx

∣∣] , (8)

where ∗ is the convolution operation, E is the expectation operator, i.e., mean expectation.
In addition, in the field of defect segmentation, pixel imbalance has been a long-standing

problem, with researchers striving to address it for many years [32] [33]. Specifically, the
small part of the defective region relative to the whole image poses difficulty for segmen-
tation models. In this case, the segmentation model may prioritize the segmentation of
non-defective pixels, neglecting defective pixels and reducing model performance. This
issue is prevalent in hair detection due to the fine characteristics of hair strands.

Following the previous study [23], one way to solve this problem is to use the Dice loss
function [34], which can allow the network to focus more on defective regions. The Dice
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loss function can be expressed as:

Ldice(Y, P ) = 1−
2
∑W

i=1

∑H
j=1(yijpij) + ϵ∑W

i=1

∑H
j=1(yij) +

∑W
i=1

∑H
j=1(pij) + ϵ

, (9)

where W and H denote the length and width of the input image. yij ∈ {0, 1} denotes
the pixel at coordinate (i, j) in Y . ϵ is a small constant number used to smooth the loss
function to avoid the problem of division by zero.

During the training process, it is common to encounter scenarios where the input data
contains noise. In such cases, the presence of noise can cause the predicted result deviate
from the ground truth, leading to potential inconsistencies or inaccuracies. It is important
to note that while the Edge loss and the Dice loss have their respective advantages, they
are not immune to the effects of noise. Take the Dice loss for an example. Consider
a prediction P = (1, 0, 0, 0, 0.2) with a ground truth Y = (1, 0, 0, 0, 1) for a five-pixel
input image, where 0, 1, and 0.2 correspond to defective, non-defective, and noisy pixels,
respectively. Assuming ϵ = 0 in Equation (9), it is expected that the interference caused
by the noisy pixels should be mitigated in the subsequent training epoch. However,
compared to the defect pixels, the noisy pixel has a minor impact on the denominator,
making the gradient calculated by Dice loss ineffective in the next model update. To solve
this problem, we leverage the BCE loss function to diminish the influence of noisy pixels
as follows:

Lbce(Y, P ) =
1

WH

W∑
i=1

H∑
j=1

(−yijlog(pij)− (1− yij)log(1− pij)) . (10)

In a multi-tasking neural network [35], since each of the individual single-task loss
functions may exhibit distinct significance, it becomes crucial to assign each of these
tasks with a respective weight factor ωi. In our study, instead of manually tuning ωi, we
take the adaptive learning approach suggested by Liebel and Kǒrne [36] to automatically
adjust these weight factors. Specifically, We impose three learnable parameters: ω1, ω2,
and ω3, which are weight factors for the loss functions Lbce, Ldice, and Ledge , respectively.
Finally, after combining these weight factors, our joint loss function can be expressed as:

Lall(Y, P ) =
1

2ω2
1

Lbce(Y, P ) +
1

2ω2
2

Ldice(Y, P ) +
1

2ω2
3

Ledge(Y, P ) +
3∑

i=1

ln(1 + ω2
i ), (11)

where
∑3

i=1 ln(1 + ω2
i ) is a regularization term for all weight factors.

4. Experimental results and analysis. In this section, we evaluate the segmentation
performance of our proposed method for real-time hair defect detection with thorough
ablation studies in segmentation accuracy and speed. Four widely-used segmentation
models, i.e., Unet [8], SegNet [37], SCUNet [38], and FSDNet [39], for defect detection,
are introduced for comparison in this paper. To validate the effectiveness of our proposed
LFE module, we also apply it to two recent defect detection networks (i.e., SCUNet and
FSDNet). Finally, we verify the necessity of the joint loss function.

4.1. Implementation details. In this paper, we collected data from real-world indus-
trial medical syringe production lines to test the proposed method. Due to the low
hair-defect rate, high-speed production process, and the high cost of human labor, it is
difficult to collect sufficient training images. The collected dataset consists of 200 gray
syringe images, with half being defective samples and other half non-defective. During
the experiment, the whole dataset was divided into training, validation, and test sets with
a ratio of 6 : 2 : 2. This resulted in 120 training images, 40 validation images, and 40 test
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Algorithm 1 Our Deep LBP-enriched Feature Encoding

Input: The low-level feature X ∈ Rc×h×w, the kernel size m, the before-enrichment
convolution weight W b ∈ Rn×c×1×1, the after-enrichment convolution weight W a ∈
Rc×n×1×1.

Output: The rich texture M .
1: Construct the set of binary sequences {Q1, . . . , Qn} encoded by the neighboring pixels

in Equation (1).
2: Initialize the Deep LBP-enriched kernel matrixK = [κ1, κ2, . . . , κn] by κi = Qi,∀i, 1 ≤

i ≤ n.
3: for v = 1 to n do
4: Change the number of channels of X from c to n using

∑n
l=1

(
W b

v,l ·Xl

)
.

5: end for
6: for v = 1 to n do
7: Calculate the enriched feature Tv,i,j (1 ≤ i ≤ h, 1 ≤ j ≤ w) at the coordinate (i, j)

of the vth channel of T using Equation (5).
8: end for
9: for v = 1 to c do

10: Compute the vth merged LBP-enriched texture feature Mv as Mv =∑c
l=1

(
W a

v,l ·Xl

)
.

11: end for
12: return M

images. Considering the scarcity of training data, training a high-performance DSS model
can be challenging. Although the type of syringe and the image background remain rela-
tively consistent in the industrial production of medical syringe products, the variations
in image brightness and syringe position still significantly affect this production process
and defect detection process. To address these factors in the production environment,
following the recent studies in syringe defect detection [19], we extended the training set
to 480 images using: random brightness adjustment, random contrast adjustment, and
random rotation techniques. It should also be noted that existing pre-trained models were
usually trained for application scenarios distinct from hair defect detection. Hence, in our
experiments, all the compared networks were trained from scratch, randomly initialized
using a standard normal distribution. Detailed experimental settings are shown in Table
1.

Table 1. Detailed parameter settings of all experiments.

Configurations Value
Input image size 360Ö640
Epochs 400
Batch size 16
Learning rate 0.02
Learning rate strategy Poly (power = 0.9)
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Computer configuration RTX2080TI × 4 with 11GB GPU memory
Framework Pytorch



Deep LBP-Enriched Real-time Segmentation for Hair Defect Detection 2313

4.2. Evaluation metrics. Two widely-used metrics are imposed to evaluate our method
and the compared methods: Mean Intersection over Union (MIoU) and Mean Pixel Ac-
curacy (MPA). MIoU is calculated by first computing the Intersection over Union (IoU)
for each predicted label and its true label across all classes separately. After that, MIoU
is obtained by averaging these IoUs over all classes. MPA is another evaluation metric
for semantic segmentation. Define Pixel Accuracy (PA) as the ratio of correctly predicted
pixels in a category to the total number of pixels. Then, MPA is calculated by averaging
the PAs of all classes. Suppose the number of categories is C, the formulation of MIoU
and MPA can be expressed as:

MIoU =
1

C

C∑
i=1

TPi

FNi + FPi + TPi

, (12)

MPA =
1

C

C∑
i=1

TPi

FPi + TPi

, (13)

where TPi, FPi, and FNi refer to the true positive, false positive, and false negative of
category i, respectively. Both larger values of MIoU and MPA indicate better segmen-
tation performance. In this study, our primary focus is on determining whether each
individual pixel represents a defect or not, resulting in a binary classification task with
the number of category (C = 2).
In addition, to measure the efficiency of the defect detection algorithms, we introduce

the Frames Per Second (FPS) metric, which represents the number of images processed
by the defect detection algorithm in one second.

Table 2. Comparison segmentation results and model size from different
models for hair extraction on medical syringes.

Model Loss function MPA MIoU GFLOPs Parameters (M)

UNet [8]
Dice loss
Joint loss

89.70%
90.14%

82.89%
83.99%

19.43 34.5

SegNet [37]
Dice loss
Joint loss

89.02%
88.54%

80.42%
82.73%

11.90 29.44

SCUNet [38]
Dice loss
Joint loss

85.86%
87.61 %

78.83%
83.21%

11.28 20.26

FSDNet [39]
Dice loss
Joint loss

89.82%
90.06 %

82.46%
83.16%

61.11 17.54

DLERS(Ours)
Dice loss
Joint loss

92.60%
92.81%

83.40%
85.36%

1.43 5.80

4.3. Segmentation comparison results. In this subsection, two standard networks
that are commonly used for semantic segmentation, that is, UNet [8] and SegNet [37],
and two recent published defect detection networks, i.e., SCUNet [38] and FSDNet [39],
are introduced for comparison.

As shown in Table 2, DLERS obtains the highest MIoU of 85.36%, outperforming the
two standard segmentation networks (i.e., Unet and SegNet) by 1.37% and 2.63%, respec-
tively. Meanwhile, DLERS outperforms the two recently published detection networks,
that is, SCUNet and FSDNet, by 2.15% and 2.20%, respectively. Besides, DLERS also
achieves the highest MPA over other compared methods, indicating its superior perfor-
mance in accurately segmenting hair defects on medical syringes. To investigate how our
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Unet[ ] SegNet[3 ] Ground truthDLERS(Ours)Input SCUNet[3 ] FSDNet[3 ]

Figure 3. Visualization of hair extraction using different segmentation
networks. We can see that most of the compared methods are easily effected
by noise (the wrinkles in the syringe tray), resulting blurred or non-smooth
segmentation results. In contrast, our method produces more accurate seg-
mentation result, which is quite close the ground truth.

Figure 4. FPS comparison of different segmentation models on GPU
(RTX2080TI) and CPU (Gold6242R).

method works in the hair detection scenario, we visualize its detection results in Figure 3
and compare it with other compared methods, i.e., Unet, SegNet, SCUNet, and FSDNet.
From the results, we can observe that neither of the four compared segmentation net-
works, that is, Unet, SegNet, SCUNet, and FSDNet, can distinguish the hair-like noise.
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Although SCUNet performs better than SegNet and can remove some small-size or easily-
distinguishable noise, it is still susceptible to noise that closely resembles hair defects. In
contrast, our DLERS surpasses the compared methods by accurately identifying the hair
defects with smooth segmentation, which hardly shows any gaps between the segmented
pixels, positioning it as an efficient choice for real-time hair defect detection.

4.4. Real-time performance analysis. In Section 1, we have discussed the significance
of real-time performance in industrial defect detection, highlighting its crucial role in
ensuring the efficiency of production lines. In this subsection, we analyze and discuss the
model complexity and the model size of all the compared networks. In addition, the real-
time performance of the compared methods is also disucssed, focusing on their inference
speed on different hardware platforms (i.e., GPU and CPU).
As shown in Table 2, DLERS exhibits obvious advantages over SCUNet and FSDNet,

especially in terms of network complexity and model size. Concretely, DLERS spends
approximately 12% GFLOPs of SCUNet and SegNet, 7.4% GFLOPs of UNet, and 2.4%
GFLOPs of FSDNet, with roughly 28.6% parameters of SCUNet, 19.7% parameters of
SegNet, 16.8% parameters of UNet, and 33.1% parameters of FSDNet. These observations
demonstrate that compared with other methods, our DLERS is more efficient for defect
detection tasks. To further test how our method performs in real-time scenarios, we
apply all the compared methods to different hardware platforms. Figure 4 shows the
speed performance of the five methods in terms of frames processed per second (FPS) in
Table 2. Notably, in the GPU environment, FSDNet shows the slowest processing speed,
aligning with the GFLOPs in Table 2. The reason may be that FSDNet uses many 5× 5
or even larger 15 × 15 convolution kernels throughout the network, which requires more
computational resources. Thanks to the lightweight architecture and optimized design,
our DLERS achieves the fastest segmentation speed (i.e., 149.1 FPS on GPU), which is
approximately three times faster than that of SegNet and SCUNet, and over four times
faster than that of UNet and FSDNet. Similarly, in the CPU environment, our method
still achieves the highest processing speed among the compared methods. To sum up,
our DLERS offers a compelling solution for real-time defect detection, making it more
suitable for high-speed and time-sensitive applications in industrial settings.

4.5. Ablation experiments. Our method utilizes the LFE modules to enrich the low-
level features in deep learning models. In this subsection, we present visualizations and
analyses of feature maps before and after the LFE modules to investigate their impact
on low-level features. After that, to further demonstrate the effectiveness of our LFE
modules, we also apply them to two recent defect detection networks, that is, SCUNet
and FSDNet, and conduct comprehensive experiments to evaluate their performance.
Finally, we evaluate the impact of our proposed joint loss function via detailed ablation
studies.

The low-level visuospatial features visualization. We select DLERS’s three low-
level features from F1, F2, and F3 (shown in Figure 2) for illustration. The visualization
results are shown in Figure 5. We can see that before the LFE modules (first row of each
subfigure), compared to other objects, such as the syringes, the low-level visuospatial
information of the hair in the feature maps is not obvious, and the extracted hair features
occupy only a small part of each feature map. Moreover, only certain easily observable
attributes of these low-level features, such as boundaries, are identified. After the LFE
modules (the second row of each subfigure), we can see that hair’s extracted texture
features are enhanced, leading to clearer and more distinct feature maps. Meanwhile, our
LFE modules can significantly reduce the impact of noise and achieve more accurate hair
defect segmentation results.
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(a)

(b)

(c)

F1

M1

F2

F3

M2

M3

Figure 5. Partial visualization of low-level visuospatial features at differ-
ent layers before (F1, F2, and F3) and after (M1, M2, and M2) our LFE
modules on our medical syringe dataset.

Performance variation of our LFE modules with different defect detection
networks. We select two recent networks, that is, SCUNet and FSDNet, in industrial
production for this experiment, and apply three LFE modules to them. These three LFE
modules take inputs from three specific layers. For SCUNet, these layers correspond to the
second, third, and fourth layers, respectively. For FSDNet, the three layers are the second,
third, and fourth layers, respectively. In SCUNet, we add the LFE modules directly to
the copy operation of its U-structure. In FSDNet, the three outputs of the LFE modules
are concatenated and subsequently serve as the input to the deconvolution layer. Table 3
shows the segmentation results after adding the LFE modules into SCUNet and FSDNet.
For better presentation, we name these two newly created networks as SCUNet LFE (the
third row) and FSDNet LFE (the fifth row). Clearly, we can see that our LFE modules
promote significant improvements for these two networks in segmentation performance.
For example, after adding the LFE modules, we achieves 2.34% and 1.80% improvements
on MIoU over SCUNet and FSDNet, respectively.

Moreover, we also visualize the hair segmentation heatmaps of the methods listed in
Table 3, as depicted in Figure 6. In this experiment, two representative input images are
selected for comparison. In the first image, the hair partially overlaps with the medical
syringe, whereas in the second image, there depicts a complete overlap. According to
these visualized heatmaps, it can be found that SCUNet and FSDNet are partially able
or completely unable to detect hairs that overlapped with the syringe. However, after
adding our LFE modules, they can get improved segmentation heatmaps even when the
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Table 3. Quantitative comparison of hair segmentation performance after
applying our LFE modules to SCUNet and FSDNet.

Base network LFE modules MIoU(%)

SCUNet [38] ✗ 83.21

SCUNet LFE ✓ 85.56

FSDNet [39] ✗ 83.16

FSDNet LFE ✓ 84.96

SCUNet SCUNet_LFE FSDNet FSDNet_LFEInput

Figure 6. Visualization of hair segmentation heatmap using recent de-
fect detection networks. These four segmentation results (SCUNet,
SCUNet LFE, FSDNet, and FSDNet LFE) from left to right correspond
to the four cases in Table 3 (from top to bottom).

hairs and syringes overlap entirely. These experimental findings again demonstrate the
effectiveness of our LFE modules.

Table 4. DLERS’s performance variations under different loss functions.

Model Dice Loss BCE Loss Edge Loss MIoU(%)

DLERS

✓ 83.40

✓ 83.85

✓ ✓ 84.26

✓ ✓ 84.33

✓ ✓ 83.88

✓ ✓ ✓ 85.36

Performance variation with different loss functions. To evaluate the validity of
our joint loss function, we analyse the performance variations of DLERS using different
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Validation Testing

Figure 7. Performance variation of our DLERS network with different
loss functions over 400 training epochs. The left part is the result on the
validation sets and the right part is the result on the test sets.

loss functions and visualize the testing and validation MIoU at each training epoch. Table
4 shows the segmentation results of DLERS with different combinations of individual loss
functions within our joint loss framework, which incorporates Dice loss, BCE loss, and
Edge loss at different instances. When using Dice loss or BCE loss alone, the MIoU was
83.40% and 83.85%, respectively. After applying Dice+BCE, Dice+Edge, or BCE+Edge,
MIoU is increased to 84.26%, 84.33% and 83.88%, respectively. The results show that
employing any dual combinations of these loss functions can improve the hair defect seg-
mentation performance of DLERS. Moreover, when we combine the three loss functions,
DLERS achieves the best MIoU, i.e., 85.36%. To explore the effect of each loss function
on DLERS during the training process, we visualize DLERS’s performance variations on
the validation and test sets. Figure 7 shows our DLERS network optimization results
under different combinations of loss functions (top subfigure) or a single loss function
(bottom subfigure). As expected, the BCE loss can improve the network’s performance
and stability by reducing the impact of noise. This is evident from the fluctuating net-
work performance in the absence of the BCE loss. This is indicated by the black dotted
line in the bottom subfigure and the green solid line in the top subfigure, both of which
are susceptible to noise interference. Additionally, the performance on the test set aligns
consistently with that of the validation set. Finally, we can find that our DLERS network
achieves the best performance when all three loss functions are utilized simultaneously,
highlighting the significance of their combined usage. It is worth noting that the network
is not trained solely with Edge loss due to its inherent limitations. Edge loss is designed
to primarily constrain object edges along the gradient direction, making it challenging
for pixel-level classification. In this case, relying solely on Edge loss may fail to provide
sufficient guidance for the network to accurately learn discriminative features.

5. Conclusions and Future Work. In this paper, we propose a lightweight DLERS
(Deep LBP-Enriched Real-time Segmentation) method for real-time hair defect detec-
tion. The proposed method consists of a base network and an LBP-enhanced feature
encoding module. The base network, characterized by its lightweight architecture, mainly
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undertakes the task of effectively extracting deep features. This LBP-enhanced feature
encoding technique tackles the challenge of distinguishing hairs from fragmentary edges,
by leveraging the strength of the Local Binary Patterns (LBP) in detecting fine-grained
features of hair defects. By constructing and incorporating the LBP-enriched Feature
Encoding (LFE) technique, we enhance the deep semantic segmentation model’s ability
to capture more comprehensive low-level visuospatial features. Additionally, we introduce
a joint loss function that addresses the challenges associated with hair detection and al-
leviate the the impact of hair-like noise. Extensive experiments and ablation studies on
a real-world syringe dataset demonstrate the effectiveness of our proposed methods.

In view of potential deployment on devices with limited computational resources, we
acknowledge the importance of pursuing further optimization to enhance its efficiency and
adaptability. As part of our future work, to make our model more compatible with these
devices, we plan to use pruning techniques [40] to make our model slimmer.
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