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Abstract. With the continuous maturity and wide application of artificial intelligence
technology, people can use machines to express themselves in their study, work and
life. Machine translation (MT) has gradually become a trend. However, traditional
text translation systems cannot fully meet current needs, and how to effectively achieve
human–computer interaction in translation systems is still a very thought-provoking is-
sue. This study mainly explored the characteristics of MT and its semantic model. A
complete and clear multimodal interaction system was established by analysing and ex-
tracting input information from multiple data sources, such as images, text and speech.
A human–machine interface centred on user needs was designed, and relevant hierar-
chical interactions and training algorithms were combined to calculate MT automation
evaluation indicators. This system was applied to MT and natural language process-
ing (NLP) to complete the communication and interaction amongst different languages
faster, better and more directly than before. This study compared the effectiveness of
multimodal MT and traditional text translation from two aspects, automatic and man-
ual evaluation, demonstrating the advantages of multimodal MT in terms of similarity
and accuracy. Moreover, the language fluency of traditional pure text MT was only ap-
proximately 2.5288 and 2.6514. The multimodal MT increased to approximately 3.443,
3.4374 and 3.5032, demonstrating the enormous potential of multimodal translation for
information exchange amongst different languages. MT based on multimodal and mul-
tilevel unified interaction improved translation quality and the understanding and use of
various semantic information, bringing further seamless and effective integration to hu-
man–machine interaction. Moreover, MT was expected to make further breakthroughs in
multi-format data fusion and NLP.

Keywords: Multimodal Multilevel, Unified Interaction, Machine Translation, Natu-
ral Language Information Processing, Feature Extraction

1. Introduction. Language is the foundation for achieving intelligent information ex-
change and promoting knowledge sharing and social development. As an important com-
ponent, translation plays an irreplaceable role in interpersonal communication. As the
main development directions in the field of artificial intelligence, machine translation (MT)
and natural language processing (NLP) are also the fastest-developing technologies in
computer science and technology. However, traditional methods have certain limitations
when dealing with multimodal data and multilevel interactions. These methods cannot
meet the high concurrency problem between big data and complex semantics, thereby
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proposing new requirements for machine learning ability and reasoning speed. This study
aimed to explore and examine MT and NLP methods based on multimodal and multi-
level unified interaction and to improve the effectiveness and accuracy of translation and
processing by integrating multiple data and interaction methods.

In the context of globalisation, language barriers remain obstacles to obtaining infor-
mation, and relying solely on manual translation cannot meet translation needs. Tools
such as MT are becoming increasingly popular owing to their potential to overcome this
problem [1]. Syntax knowledge can effectively improve the performance of neural machine
translation (NMT). Source and target dependency structures can improve the quality of
translation, and their effects can be accumulated [2]. NLP has gained considerable atten-
tion in expressing and analysing human language through computation, and its applica-
tion has expanded to various fields, such as MT, spam detection, information extraction,
abstracts, medicine and question answering [3]. End-to-end training and representation
learning are key features of deep learning, making it a powerful tool for NLP. NLP has
five main tasks, namely, classification, matching, translation, structured prediction and
sequential decision-making processes. For the first four tasks, deep learning methods
outperform or significantly outperform traditional methods [4]. The utilisation of a hi-
erarchical to sequential attention NMT model to handle the optimal model parameters
for learning long parallel sentences and effectively utilising different contexts can not only
improve parameter learning but also allow well exploration of translation contexts of dif-
ferent ranges [5]. MT and NLP have extensive exploration and practice in the field of
machine intelligence, particularly in semantic understanding and expression, promoting
the development of translation towards intelligence.

Attention is an increasingly popular mechanism widely used in various neural archi-
tectures. The focus of attention structure models in NLP is to design models for vector
representation of text data, providing performance gains [6]. Deep learning in computer
vision and NLP provides state-of-the-art pre-training models, training scripts and training
logs to facilitate rapid prototyping design and repeatable exploration, achieving efficient
customisation [7]. The application of NPL-related technologies has improved the ability
of machines to classify and recognise information during the translation process.

The free and available online data construction baseline system is used to filter the six
languages of European NMT models developed by the corpus. The results generated by
the system are compared with those generated by Google Translate, which proves that
the method can effectively improve the system’s performance. In addition, the generation
speed is faster, and the quality is higher in terms of facilitating multilingual review in a
secure environment [8]. Artificial intelligence is the imitation and learning of humans, and
humans are intelligent agents that work together in multiple modes of seeing, listening and
speaking. Multimodal technology is the key to future applications of artificial intelligence.
Multimodal machine learning faces broad challenges, including representation, translation,
alignment, fusion and collaborative learning. This new classification method would enable
technicians to greatly understand its current situation and determine future directions
[9]. Multimodal MT enables mutual translation amongst multiple languages, solves the
problem of information asymmetry amongst different languages and provides high-quality
language communication and communication services.

Traditional MT systems have many shortcomings in speech recognition, vocabulary in-
put and speech speed calculation, particularly for machine learning models that cannot
effectively fuse multi-source information. This study utilised multimodal language analy-
sis technology to partition corpus in sentence structure and contextual environment, ex-
tracted semantic features through natural language modelling and established MT models
in combination with existing machine learning algorithms. This approach can effectively
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improve machine learning algorithm performance and improve MT efficiency and accuracy
whilst reducing the labour intensity of manual translators. Compared with conventional
methods, MT based on multimodal interaction improves the correlation amongst texts, re-
duces incorrect output caused by incorrect annotations during the translation process and
reduces error rates. MT achieves efficient and accurate translation of target documents
and improves user experience.

2. Processing Method and Application of MT Multilevel Interaction.

2.1. Development of MT and NLP Methods. With the continuous maturity of
computer science and technology, humans are no longer limited to language or text in
social life. Machines can process, transform and store various pieces of information and
output corresponding results according to different requirements, providing people with
many new functions and experiences. MT and NLP are products of the development of
this technology to a certain extent, and they would become an important means to solve
current complex problems [10].

MT is an information processing mode based on computer technology, which has the
advantages of automated reasoning, accuracy and speed. Owing to its involvement in
several complex logical operations, MT has a wide range of applications. Many scholars
have proposed some system models based on MT, but most of these models only consider
MT as a simple linear decision-making problem, ignoring the impact of multimodal feature
information on the performance of machine learning algorithms.

As a new type of artificial intelligence theory, NLP explored in this article has been
widely applied in recent years. NLP transforms knowledge that people need into text
form, enabling it to be understood, accepted and transmitted, thereby achieving the goal
of solving practical problems, such as speech recognition and image editing. However,
natural language is a complex system with strong nonlinear characteristics, containing
rich and abstract information that is difficult to obtain using traditional manual meth-
ods. Therefore, using advanced computer vision and intelligent information processing
technology is particularly important to achieve this goal.

Based on this background, this study mainly analysed the translation task of multi-
modal machines, using the description of the source language and its corresponding images
as input and the sentences of the target language as output. Combined with the theory of
multimodal systems in machine vision technology, the goal of establishing a target corpus
is achieved, which can quickly and accurately complete multilingual MT without changing
the existing vocabulary structure. The difficulty of this task lies in how to effectively in-
tegrate two or more modal information, construct corresponding templates by extracting
various modal features and design patterns that can meet specific needs according to the
semantic rules to be determined, thereby achieving auxiliary translation.

2.2. Progress in Multimodal Data Processing Technology. Multimodal interac-
tion is composed of visual, auditory, olfactory, tactile and taste sensory interactions,
completed by the touch of the eyes, ears, nose, mouth and skin, respectively. This tech-
nology is applied in reality, which revolves around these senses and integrates multiple
sensory interaction technologies to form a multimodal interaction form.

Amongst the existing common multi-mode data preprocessing methods, the improved
algorithm based on the combination of least squares support vector machine and Markov
chain model has a better classification effect. However, its training time is long, and it is
not suitable for large-scale real-time applications. In addition, wavelet transform denoising
is a fast and simple denoising algorithm that can effectively remove noise and retain useful
signal information, thereby enhancing recognition accuracy. However, wavelet transform
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denoising cannot extract multiple features simultaneously and does not have an adap-
tive filtering function, which cannot achieve automatic recognition of targets in complex
backgrounds.

In summary, in MT systems, multiple levels of interaction amongst different modal
data can obtain comprehensive, accurate and convenient information. The multimodal
data processing technology used in this study combines NLP and multimodal technology
and utilises the complementarity and interaction relationship of different modal data to
effectively improve the quality and efficiency of MT, providing great solutions for many
practical application scenarios.

3. Multimodal Data Processing and Feature Extraction.

3.1. Multimodal Data Fusion. Multimodal data fusion is the way to combine differ-
ent types of text, image, voice and other data at the semantic and expression levels,
strengthen the limitations of single modal data and improve the accuracy and efficiency
of information processing and analysis [11, 12] . Compared with traditional single-modal
data, multimodal data has a wider audience and better enriches the dimensions and
characteristics of the data. However, how to fuse these heterogeneous data remains a
challenging issue.

The mainstream methods include feature and decision-level fusions. The former mainly
integrates information based on features, whereas the latter constructs multidimensional
structural models through decision trees [13,14]. Tables 1 and 2 show the specific imple-
mentation methods.

Table 1. Feature-level fusion methods

Big difference
in data
sources

Accuracy Eigenvalue
or number of

features changes

Aim

Simple
splicing

Feature vectors of
different modes

are directly spliced
Weighted
fusion

√ √
Multiple eigenvec-
tors are weighted
and averaged

Depth feature
extraction

√ √
Integrate informa-
tion to generate
a feature tag set

Note: “ ” indicates no, and “
√
” indicates yes.

Table 2. Decision-level fusion methods

Precision Preconditioning Stability Aim

Weighted
average

_ _ Decision of mul-
tiple data is nor-
malised weighted

Majority rule ^ ^ Compare attributes
by discriminator

Bayesian
network

^
√

^ Find the joint
probability distribution

Note: “ ” indicates no; “
√
” indicates yes; “^” indicates high and “_” indicates low.
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Feature and decision-level fusions can greatly extract considerable unknown factors in
complex systems. The multimodal data fusion used in this article can effectively improve
processing efficiency and accuracy when analysing multi-source information whilst also
reducing misjudgements caused by noise or other interference and enhancing recognition
ability. However, owing to its high computational complexity and limited application
range, multimodal data fusion is still not widely applicable in practical scenarios. Calcu-
late the score for each data source under a certain criterion. Normalize the scores of each
data source to ensure their comparability under the same criteria. Calculate the weight of
each data source using the average score. Use the weight of each data source to calculate
the fusion result of the decision layer, and obtain the final decision result by weighted
averaging the scores of each source.

3.2. Multimodal Feature Extraction. In the fusion of multi-source data, to extract
complex feature information, several signals with similar scales, frequencies and time-
frequency domain characteristics for classification should be used. The feature extraction
methods of multimodal data used in this study include text feature extraction, image
feature extraction and voice feature extraction. They can effectively describe various
features in a single mode into multiple forms and combinations and can obtain further
comprehensive and accurate information by analysing these characterisation results, as
shown in Table 3.

Table 3. Multimodal feature extraction methods

Method Type Advantage Shortcoming Accuracy rate

Bag model Convenient and
practical

Ignore text word
order and
sentence
structure

Text Topic model Process large
amounts of text

Training is
complex and

time-consuming

85%-94%

Convolutional
neural networks

Image feature
extraction and
classification are

effective

High data
requirements

Graphics Scale invariant
feature

transform

Rotational
invariance

Sensitive to light
changes and

noise

76%-90%

Short-time
energy and zero
crossing rate

High real-time Less information

Voice Mel-scale
frequency
cepstral

coefficients

Strong anti-noise
performance

Affected by
parameters

88%-94%

The Bag model ignores word order and sentence structure, representing text as an
unordered collection of vocabulary items. For example, for the text ”Cats like sunny
days, dogs like rainy days”, vocabulary items cat, like, sunny days, dog, rainy will be
extracted.

At the current level of technology, pure text MT has made significant progress, mainly
focusing on translating one natural language into another. However, in the face of complex
language environments and multilingual user groups, the difficulties brought by this text
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context-based conversion method are becoming increasingly apparent. Owing to its de-
sign based on specific objective functions and constraints, this method cannot effectively
handle the differences amongst massive heterogeneous data sources, easily falling into lo-
cal optima and being unable to distinguish noise, which greatly limits the reliability and
application range of translation. In response to the above issues, the multimodal-based
multilevel unified interactive translation model further considers various physical forms
of input modes, such as text, images and speech. This model can dynamically adjust
model parameters according to actual application situations, thereby enhancing pattern
recognition ability. Moreover, the model has high interactivity and great semantic quality
and is currently one of the ideal human–computer interaction methods [15,16].

4. Design and Implementation of a Multilevel Unified Interaction Model.

4.1. Design of Multilevel Interaction Architecture. In MT systems, the architec-
ture design and implementation of multilevel interaction is an important content. It maps
the interoperability amongst various languages into semantic layer transformations, en-
abling each text to be understood and represented. The data are processed by machines
to obtain the required information. Ultimately, the information is fed back to the user
based on the processing results to perform the corresponding work [17]. Establishing
a multilevel interaction model architecture includes modules, such as low-level feature
extraction, middle-level semantic understanding and top-level decision generation. Such
modules abstractly describe problems at different levels, forming a complex and clear
hierarchical structure to achieve information transmission and interaction, as shown in
Figure 1.

Figure 1. Multimodal MT interaction architecture

The low-level feature extraction of the multilevel unified interaction model designed
in this study mainly deals with text input, image input and voice input. This approach
effectively captures the long-distance dependency amongst text sequences through the
self-attention mechanism, uses convolutional neural network [18, 19] and other models
to extract and code image features or uses the acoustic model and time series model to
process voice signals. This method also transmits the results to subsequent modules for
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the next translation operation. Middle-level semantic understanding generally extracts
semantic information from the underlying features and uses related algorithms to anal-
yse and interpret knowledge representation and reasoning, including reasoning, similarity
calculation, classification, clustering and other advanced functions. Top-level decision gen-
eration is the process of transforming semantic representations into corresponding layer
graph structures and logical rules to form the final target solution. Data synchronisation
updates are achieved for each target object recognition by receiving heterogeneous data
from different sources and previously calculated specific context vectors. Based on a pre-
trained encoder [20,21], the input sequence is modelled, achieving encoding and decoding
functions and generating target-side translation results. Convolutional neural networks
effectively extract image features through convolutional and pooling layers. Convolutional
operations capture local features and pooling reduces the number of parameters. This
mechanism is effective for image classification as it preserves spatial structural informa-
tion. Convolutional neural networks have high data requirements because they rely on
a large amount of annotated data to learn features. The larger the amount of data, the
more the network can generalize, adapt to a wider range of image changes, and improve
classification accuracy.

In the low-level feature extraction module, the text input adopts a self attention mech-
anism. This mechanism assigns different attention weights to words at different positions
in the text sequence, enabling the model to capture long-distance dependencies. Through
self attention, the model can focus on relevant vocabulary in the sequence, better under-
stand contextual information, and help improve the accuracy and fluency of multimodal
translation.

In the intermediate semantic understanding stage, use relevant algorithms for knowl-
edge inference. Similarity calculation can measure the degree of semantic similarity be-
tween entities or concepts, thereby identifying correlations. Clustering algorithms help to
combine similar knowledge and reveal hidden patterns. These algorithms can parse se-
mantic relationships, detect connections between concepts, and provide deeper reasoning
for understanding inputs.

In addition to MT, the multilevel interaction processing method can also be applied
to other NLP problems, such as text summarisation and sentiment analysis, providing
important ideas and technical support for the development of related applications. This
study designed a multimodal MT platform based on this, as shown in Figure 2.

Intelligent 

translation
Translation tool Service scheme Latest news About us

Simplified 

Chinese
English

Click Upload or drag to this area

General domain

Patent property right

Biomedical science

International engineering

Legal contract

PDF DOCX XLSX PPTX Image HTML

Figure 2. Multimodal MT platform
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In this translation model, various data types, such as images, audio, video and text,
can complement and support each other. The meanings and characteristics in natural
language can be comprehensively recognised, understood and expressed through different
information fusion methods and coordination modes. In addition, the system has informa-
tion processing and learning capabilities at multiple levels, including word-level language
modelling, sentence-level parsing and semantic parsing and even some complex semantic
and social factors in cross-cultural aspects. The system has achieved effective processing
and storage of various media forms and contents and can provide rich and complete infor-
mation retrieval functions and personalised service functions. In summary, MT and NLP
with multimodal and multilevel unified interaction are complex systems that integrate the
advantages of multiple disciplines and technologies. They can help researchers and engi-
neers solve problems in the field of NLP and provide great human–machine interaction
methods and information communication channels for daily life and work scenarios [22].

In the architecture of a multi-level interaction model, various modules collaborate with
each other to achieve efficient translation. The input module receives source text, images,
and audio, and passes them to the feature extractor of the text and images. These
extracted features are combined in the fusion module to form a multimodal representation.
The encoding module uses self attention mechanism to capture long-distance dependencies
of text sequences and generate context aware text representations. The decoding module
utilizes a generative model and attention mechanism to generate the target language
sequence through multimodal representation. The model optimizes parameters through
gradient descent algorithm to achieve end-to-end training. This design enables the model
to better understand and process multimodal inputs, improving translation performance.

4.2. Multimodal Unified Representation Learning. Multimodal unified representa-
tion learning eliminates the differences amongst different input modalities, thereby allow-
ing multiple modalities to fuse closely and further promoting the development of multi-
modal tasks, such as MT, visual and language questions and answers. The end-to-end MT
mentioned in this study is a typical representative form of unified representation learning
for multimodal data, which can achieve cross-modal information fusion and expression in
complex scenarios, as shown in Figure 3.

XX          X          XXX        XX        X        XXX

I         Visited         the        zoo         on          Sunday

Encoder

Decoder

Chinese

English

Figure 3. End-to-end multimodal MT
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The end-to-end multimodal MT used in this article integrates information, such as
text, image and sound, and achieves high-quality translation tasks through a unified deep
neural network model [23,24]. In this process, the semantic differences amongst different
languages and speech processing technology can be used to establish the corresponding
target word mapping relationship, eliminate many manual steps required in the traditional
process and strengthen the context understanding ability, to generate further natural and
smooth translation results and enhance the translation accuracy. In practical applications,
end-to-end multimodal translation models are suitable for multiple scenarios, from image
description and video subtitle production to emotion recognition. Moreover, they are
widely used in various intelligent terminals and human–computer interaction systems.

4.3. Multilevel Interactive Optimisation and Training. When processing different
types of data in multimodal machine learning, interacting with data across multiple levels,
such as visual, language, audio and knowledge, and analysing the data at each level are
often necessary. Owing to the differences in information amongst different levels and the
lack of correlation between them, multi-layer modelling often finds it difficult to achieve
global and local optima simultaneously. The method of multilevel interactive training has
become an important approach to solving this type of problem.

4.3.1. Theme Thesaurus Structure Model for Multilevel Interactive MT. Assuming a train-
ing sample for MT exists, its definition formula is as follows:

A = {Qab(i)Wab(i)Rab(i)} . (1)

In the formula, Qab(i) is the information input vector, Wab(i) is the set of semantic
correction vectors during the translation process and Rab(i) is a frequent itemset with
semantic autocorrelation. Their respective calculation formulas are as follows:

Qab(i) =
tab(i)− αtab(i)

tab(i− 1)
. (2)

Wab(i) =
|tab(i)−∆t(i)|

tab(i)
. (3)

Rab(i) = exp
[
−u [xa(i)− xb(i)]

2] (4)

In the formula, tab(i − 1) is the output of MT’s topic word information, and α is the
probability of correct translation.

A MT thesaurus structure model is constructed based on the above analysis, as shown
in Figure 4.

A 

context

B 

context

C 

context

Training sample

Degree of similarity

Logical reasoning

Semantic model

Image matching

Context mapping

Semantic mapping

Translation semantics

Figure 4. MT thesaurus structure model
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The thesaurus structure model of multilevel interactive MT has been widely used in
the field of computer language translation and has achieved fruitful results. This model
has many innovations in semantic description, information expression and inference. This
model also achieves the extraction of semantic associations between words and phrases
in the corpus by introducing training samples and calculating their similarity. The tuple
method is used to establish the mapping relationship between ontology and knowledge
base to enhance the overall expression ability of the system, enabling machines to pro-
vide further accurate text input to users from a massive corpus, thereby laying a solid
foundation for human–machine interaction based on multimodal knowledge.

The gradient descent algorithm is used in multimodal interactive translation models to
minimize the loss function and optimize parameters. At each training step, update the
parameters to reduce the loss by calculating the gradient of the loss function with respect
to the parameters. This prompts the model to gradually adjust weights and improve
performance. The learning rate determines the parameter update step size. Gradient
descent ensures that the model better adapts to multimodal data and achieves accurate
translation results.

4.3.2. MT Automatic Evaluation. The evaluation of MT quality is a complex process that
needs to be considered from multiple aspects, and manual evaluation is the most important
and effective way. However, manual participation in evaluation requires a significant
investment of time, energy and resources, including considerable translations and diverse
language types. Innovative algorithms and efficient automated alternative solutions are
needed to address these limitations. Automatic evaluation technology can provide new
solutions to this problem. The commonly used automation evaluation indicators include
[25] bilingual evaluation understudy (BLEU), translation error rate (TER) and recall-
oriented understudy for gisting evaluation (ROUGE).

BLEU is the most common automation evaluation indicator [26]. It uses the n-ary
grammar model method to compare the similarity between MT and reference texts and
then obtains a relatively accurate result. The BLEU index evaluates translation qual-
ity by comparing the lexical overlap between machine translation results and reference
translations. The parameter N (1 to 4) represents the length of the matched phrase, and
the higher the score, the better the translation. BLEU considers both precise matching
and n-gram matching, reflecting the accuracy and fluency of translation. The calculation
formula is as follows:

BLEU = BP × exp(
N∑

n=1

Wn logPn), (5)

where Pn is the improved n-gram accuracy value, N is the length of N − gram and BP
is the penalty factor. If the length of the translation is less than the shortest reference
translation, then BP is less than 1, and the specific expression is as follows:

BP =

{
1 lc > lr

exp(1− lr
lc
) lc < lr

, (6)

where lc is the length of MT, and lr is the length of the shortest reference translation
sentence.

In the log field, the rating effect of BLEU is as follows:

log BLEU = min(1− lr

lc
, 0) +

N∑
n=1

Wn logPn. (7)

In Baseline, N = 4; Wn is the uniform weight; Wn = 1
n
.
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Although BLEU is simple and easy to implement, it cannot meet complex NLP re-
quirements and cannot effectively describe the relationships amongst distant discontin-
uous words. However, the ROUGE method can integrate considerable information in a
short period and automatically perform semantic analysis on these texts.

ROUGE-L reflects semantic coherence and sentence structure similarity by evaluating
the longest common subsequence between MT output text and reference target. Based
on the similarity between the measurement reference translation and MT output of the
longest common subsequence, this study defines reference translation as P and MT output
as Q. The similarities are as follows:

S1 =
LCS(P, Q)

x
. (8)

S2 =
LCS(P, Q)

y
. (9)

ROUGE-L can be represented as follows:

F =
(1 + µ2)S1S2

S1 + µ2S2

. (10)

In the formula, LCS(P,Q) is the longest common subsequence between the reference
translation and MT output, and µ is the relative weight. When ∂S

∂S1
= ∂S

∂S2
, its expression

is as follows:

µ =
S2

S1

. (11)

The implementation of a multimodal interaction model includes the following key steps.
Firstly, determine the model architecture, including the processing methods for text and
image inputs, attention mechanisms, etc. Then, adjust the parameters and optimize the
model parameters through feedback from experiments and validation sets to ensure opti-
mal performance. The training process includes providing labeled data to the model and
using optimization algorithms such as gradient descent for training. During the train-
ing process, monitor the loss function and performance metrics to ensure that the model
learns effective representations. Regularly evaluate the performance on the validation set
to avoid overfitting. Finally, evaluate the generalization performance of the model using
test data.

5. Evaluation and Evaluation of MT and NLP.

5.1. Experimental Design and Dataset Construction. To evaluate the effectiveness
of pure text MT and multimodal MT, a dataset that can reflect actual application sce-
narios to ensure its accuracy and reliability should be established. For pure text MT, this
article mainly utilises existing public datasets, such as the Workshop on Machine Transla-
tion (WMT) or International Workshop on Spoken Language Translation (IWSLT), with
the main goal of completing language tasks in Germany, English and France. For multi-
modal MT, in addition to text, other forms of information also need to be considered, such
as image description translation MSCOCO, Flickr30K, Multi30k, audio content transla-
tion MuST-SHE and IWSLT21-ST-MUST-C. On this basis, combinatorial optimisation
can be carried out for different types of machines (e.g., combining speech recognition with
semantic understanding) to achieve high performance.
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5.2. Evaluation Indicators. This study mainly measures pure text and multimodal
MT output based on human evaluation indicators, such as language fluency, translation
accuracy and cross-language consistency. The study then combines automatic evalua-
tion indicators, such as BLEU, ROUGE and TER, to comprehensively evaluate machine
understanding and ultimately obtain objective and comprehensive MT and NLP effects.
Language fluency can be evaluated using language model metrics such as Perceptibil-
ity, and translation accuracy can be quantified through editing distance or Word Error
Rate. Cross linguistic consistency can be measured by combining semantic similarity and
cultural adaptability.

5.3. Data Evaluation and Result Presentation. According to task requirements and
translation types, text resources that need to be translated and evaluated are selected,
including source language text, MT output and reference translation. Amongst the au-
tomatic evaluation indicators, WMT14 is selected for the pure text MT test set, and
Multi30k is selected for the multimodal MT dataset.

5.3.1. BLEU. Translation quality is quantitatively evaluated by comparing the similarity
between machine-generated and reference translation results. In BLEU, the values of N
are 1, 2, 3 and 4, so they are named BLEU-1, BLEU-2, BLEU-3 and BLEU-4, respectively.
The value range of each indicator is [0,1]. The higher the score, the better the translation
quality. Figure 5 shows the results when faced with the same source language text to be
translated.

a b

Figure 5. BLEU score comparison. Panel a. BLEU score distribution of
two types of MT. Panel b. BLEU mean of two types of MT

In Figure 5a, the horizontal axis represents the four BLEU indicators, whereas the
vertical axis represents the score of each indicator. Amongst them, blocks represent
pure text MT, and triangles represent multimodal MT. Figure 5b shows the average
BLEU indicators for the two translation methods. The horizontal axis represents two
different MT modes, whereas the vertical axis represents the score. The performance
of pure text MT in both images was not ideal. Amongst them, the scores of BLEU-1,
BLEU-2 and BLEU-3 were 0.308, 0.242 and 0.118, respectively, which differed greatly
from those of multimodal translation, reaching a maximum of approximately 0.151. In
BLEU-4, the scores of the two were relatively similar, with values of 0.077 and 0.105,
respectively. The difference value was only approximately 0.028. Based on the scores of
the four BLEU indicators, the average BLEU of pure text MT was approximately 0.1863,
whereas the average BLEU of multimodal MT was approximately 0.2878. Therefore, the
results of multimodal MT had higher similarity and better quality compared with those
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of the reference translation. That is to say, plain text MT was more suitable for users to
use on English websites, whereas multimodal MT could better support translation and
communication amongst multiple languages and was also more suitable for fields with
high requirements for speech recognition and NLP.

5.3.2. ROUGE. The size of the ROUGE could be used to measure the degree of match-
ing between text summaries and automatically generated description text results and
reference translations. The ROUGE indicators were mainly divided into three types:
ROUGE-1, ROUGE-2 and ROUGE-L, and their scores when simultaneously executing
an MT task were calculated. Figure 6 shows the results.

a
b

Figure 6. Comparison of ROUGE scores. Panel a. ROUGE score range
for two types of MT. Panel b. The ROUGE mean of two types of MT

In Figure 6a, the horizontal axis represents the ROUGE score, with a ROUGE value
range of [0,1]. The data tested in this article ranged from 0.1 to 0.7. The vertical axis
represents two types of MT: pure text and multimodal. ROUGE-1 represents the number
of matches between a single word in the translation result and the reference translation,
including their overlap. ROUGE-2 also reflects the contextual relationship between the
translation result and the reference translation. ROUGE-L measures the similarity be-
tween translation results and reference translations by comparing the length of the longest
common subsequence between them. The score of multimodal MT ranged from 0.2 to
0.7, and that of pure text MT ranged from 0.15 to 0.65. Therefore, translation based on
multilingual information showed great advantages and can provide further functions.

Figure 6b shows the comparison of the average ROUGE scores for two translation
modes. The horizontal axis represents the type of MT, whereas the vertical axis repre-
sents the size of the average. After calculation, the average ROUGE score for pure text
MT was approximately 0.428, and the average ROUGE score for multimodal MT was
approximately 0.5113. The multimodal form was approximately 0.0833 higher than the
pure text form. By evaluating BLEU and ROUGE indicators, multimodal MT had good
decoding quality and improved translation accuracy to a certain extent. In practical life,
the promotion and use of this translation system should be strengthened.

5.3.3. TER. As an automated evaluation indicator, TER is mainly used to compare the
degree of difference between MT results and reference translations. The lower the score,
the smaller the difference between translation results and reference translations. TER
can accurately translate the source language into the target language and match it with
the real reference text. Three source language texts were randomly selected for testing,
and Tables 4 and 5 show the TER scores of the two MT results.

Based on the above results, the mean TER scores of the two MT methods were plotted,
as shown in Figure 7.
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Table 4. TER scores of pure text MT

Reference translation Machine translation output TER score

It is raining outside. XXXXXXX 0.5
I like to go for a walk in the park. XXXXXXXXX 0.17
They are having dinner together. XXXXXXX 0.25

Table 5. TER scores for multimodal MT

Image description Reference
translation

Machine translation
output

TER score

A yellow dog
playing on the

beach.

XXXXXXXXXX 0.33

Three children are
playing a game
under the tree.

XXXXXXXXXXX 0.17

This is a blue car. XXXXXXXXX 0.14

Figure 7. Mean TER scores of two MT methods

In Figure 7, the horizontal axis represents the score of TER, whereas the vertical axis
represents the translation type. Amongst them, blue represents pure text MT, and red
represents multimodal MT. The distribution of TER values for several text translation
results was represented by dots and squares. In both MT results, two texts have TER
values below the average. Moreover, the average value of multimodal translation was ap-
proximately 0.2133, whereas the average value of pure text translation was approximately
0.3067. A low TER score meant that the MT system could accurately translate the source
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language into the target language and match it with the actual reference text. Therefore,
the translation that integrated image, voice and other information was more efficient than
simple text translation.

5.3.4. Metric for Evaluation of Translation with Explicit Ordering (METEOR). ME-
TEOR is a MT automated evaluation method that comprehensively considers factors
such as strategy, accuracy [27,28]and recall [29,30]. Compared with TER, METEOR can
more comprehensively evaluate the effectiveness of translation systems. Assuming there
are 49 texts to be translated, of which 32 are pure language texts, and 17 are image and
audio texts, the METEOR scores of pure text and multimodal MT are calculated, as
shown in Figure 8.

Figure 8. Meteor scores for two types of MT. Figure 8a METEOR score
range for two types of MT. Figure 8b METEOR mean of two types of MT

The horizontal axis in Figure 8a represents the number of text quantities, whereas the
vertical axis represents the METEOR score. Blue dots represent pure text MT, and red
squares represent multimodal MT. Amongst them, the maximum value of pure text MT
was 0.77, the minimum value was 0.08 and the maximum difference was 0.69. The maxi-
mum value of multimodal MT was 0.9, the minimum value was 0.36, and the maximum
difference was 0.54. Therefore, the distribution of METEOR scores in multimodal MT
was concentrated, and the translation results were accurate and coherent.

In Figure 8b, the horizontal axis represents the translation type, and the vertical axis
represents the average METEOR score. Evidently, the average for pure language text
translation was approximately 0.3847, whereas the average for multimodal translation
was approximately 0.5841. Therefore, multimodal MT could collect further contextual
information and language features and help improve MT technology and translation qual-
ity to promote continuous improvement of MT products and provide guidance for the
development of products.

In addition to automated evaluation indicators, this study also designed a manual
evaluation experiment to evaluate three multimodal MT and two pure text MT. A total
of 100 Chinese sentences were randomly selected from a test corpus of 500 sentences. Each
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source sentence was paired with each translation to obtain a total of 50 pairs of Chinese
source sentences and English translations. These translation pairs were randomly sorted
on the webpage to disperse the translation of each source sentence. All manual evaluators
used the same webpage and view sentence pairs in the same order. Translation scores
range from 0 to 5, with 0 being very poor, 5 being best and 2.5 or above being qualified.
W1 and W2 are named as two traditional pure text MT, and S1, S2 and S3 are named
three multimodal MT. These 50 samples are evaluated in terms of language fluency and
cross-language consistency.

In the evaluation, pure text machine translation (W1, W2) scored lower on BLEU,
ROUGE, TER, and had average language fluency. Multimodal machine translation (S1,
S2, S3) performs better on these metrics, especially in terms of cross language consistency
and language fluency. S1, S2, and S3 are more in line with human perception, providing a
vivid and intuitive translation experience. Overall, multimodal machine translation excels
in handling word selection, grammar, and cultural differences, providing more flexible and
scalable translation solutions for multi domain applications.

5.3.5. Language Fluency. Language fluency mainly focuses on conversion accuracy and
expression clarity amongst different languages, and Figure 9 shows the comparison results.

Figure 9. Comparison of language fluency between two types of MT.
Panel a. The distribution of language fluency scores for two types of MT.

Panel b. Mean language fluency scores for two types of MT

The horizontal axis in Figure 9a represents the score, whereas the vertical axis represents
the number of samples within each score interval. Evidently, the distribution of the bar
charts in W1 and W2 was more to the left of the coordinate axis than S1, S2 and S3,
with even scores within the 0–1 range in W2. Significantly more samples exist within the
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4–5 interval in S1, S2 and S3. This case indicated that MT types such as S1, S2 and
S3 were in line with human sensory cognition, providing users with a vivid and intuitive
translation experience.

The horizontal axis of Figure 9b represents two types of MT models with a total of
five, whereas the vertical axis represents the average smoothness evaluation of 50 trans-
lation samples completed by each model. The average values of W1 and W2 on the left
side were approximately 2.5288 and 2.6514, respectively, barely reaching the qualified
level. The average values of S1, S2 and S3 on the right side were approximately 3.443,
3.4374 and 3.5032, respectively. This result proved that this type of multimodal MT
could integrate multimedia data, such as images, videos and sounds, into the translation
process, effectively increasing the interaction and communication between the source and
target languages, thereby enhancing the coherence of translation results and improving
translation fluency.

5.3.6. Cross Language Consistency. The information of text, images, audio and video
should be consistent with the language translation results to avoid errors caused by inte-
grating modal data. Figure 10 shows the specific evaluation results.

Figure 10. Cross-language consistency scoring results for two types of
MT

The horizontal axis of each line chart represents the number of samples. The vertical
axis represents the score and the tick marks are all from 0 to 5. In this case, the scores
of S1, S2 and S3 were more concentrated. The lowest scores of S1 and S3 were both
above 2, and the lowest scores of S2 were also above 1.5. They could have high flexibility
and scalability in different application scenarios. The lowest scores for W1 and W2 were
both approximately 1 point, which may lead to the selection of words in the translation
results not in line with the customary habits of the target language, thereby affecting the
overall consistency of the translation. In summary, multimodal MT had a comprehensive
understanding and diverse information sources and performed better in solving problems
related to single vocabulary, word order, grammar and cultural differences, achieving
a natural and authentic correspondence between the target and source language. In
addition, in real-time voice translation scenarios, such as audio conferences and video calls,
multimodal MT could simultaneously process audio and text inputs, providing further
timely and accurate translation results.
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6. Conclusion. Traditional text translation converts pure text from the source language
into pure text from the target language. Although machine learning and NLP have made
significant progress, some translation problems have been successfully solved, and the
translation effect is not ideal. By contrast, MT based on multimodal and multilevel
unified interaction can fully consider multiple data sources, making the translation results
highly intuitive, expressive and in line with the needs of practical scenarios. This study
introduced several commonly used data fusion methods and their characteristics and then
classified and extracted features for the target sentences under multi-mode, multi-layer
unified interaction mode. The study established a multilevel interaction architecture and
its corresponding relational model and finally completed the design and implementation
of a multi-mode MT system with the help of NLP technology, which had good support
ability for different language corpora.
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