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Abstract. In financial fraud identification tasks, it is often necessary to integrate data
from different institutions or organisations, but these data often contain sensitive infor-
mation, so achieving data privacy and data sharing at the same time is a huge challenge.
Privacy-preserving machine learning techniques can make it possible for all parties to
train models together without revealing sensitive information by using techniques such as
encryption and differential privacy. Therefore, this work proposes the use of federated
learning techniques in distributed machine learning approaches for modelling and com-
pleting the classification and identification of financial fraud. Firstly, the definition of
financial fraud is given and the principle of federation learning in privacy-preserving ma-
chine learning is analysed. Then, the federated meta-learning FedMeta framework is used
to construct the financial fraud identification model in order to better solve the financial
data heterogeneity problem and the temperature drift problem. During the metamodel
training process, the gradient is cut before uploading the local gradient in each round to
determine the privacy sensitivity of the gradient. Differential privacy noise protection is
applied to the gradient, and the perturbed gradient information is uploaded to the server
side, which avoids the original gradient from leaking the user’s privacy information. Sec-
ondly, for the problem that gradient encryption with single-key homomorphism cannot
resist conspiracy attacks, Paillier homomorphic encryption is used to encrypt the user
gradient parameters. The experimental results show that the proposed model performs
well in all the metrics, and has better overall performance in the financial fraud identi-
fication task compared to SecureBoost and longitudinal neural network models.
Keywords: Financial fraud; Privacy-preserving machine learning; Differential privacy;
Federated learning; Meta-learning; Homomorphic encryption

1. Introduction. Enterprises are microscopic subjects of market operation, and their
disclosed operating conditions provide important data support for economic development.
And financial fraud will interfere with the normal business order and impact on the whole
economy and society. Therefore, identifying financial fraud has become a classic topic
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[1, 2]. At the same time, the use of machine learning to identify financial fraud has also
become a popular research method [3, 4, 5].

Privacy-preserving machine learning techniques provide a way to solve the above prob-
lems. Privacy-preserving machine learning is characterised by ”data not moving model
moving” [6, 7], i.e., the data is still in the hands of the data owners, and the joint mod-
elling of multiple parties is achieved by sharing the model parameters without disclosing
the data, and ultimately, machine learning is achieved by using all the data. This ap-
proach technically bypasses the difficulties of data trading, is less difficult to implement,
and is more easily accepted by all parties, and thus has gradually gained popularity in
settings where privacy protection and data confidentiality need to be emphasised [8].

Privacy-preserving machine learning techniques encompass three two technological routes
[9, 10]: secure multi-party computation (arithmetic-logic operations using multi-party
data); federated learning (machine learning model construction using multi-party data)
and hardware encryption. Ideas and algorithms for secure multiparty computation emerged
in the 1980s, and federated learning saw a wave of research following the release of Google’s
FedAvg algorithm in 2016 [11]. As the price of being able to prevent data leakage, the var-
ious methods mentioned above usually face the problems of complex computational steps
and restrictive application conditions, and need to trade-off generality, computational
speed, and reliability, so improved algorithms continue to appear, while specific problems
need to be analysed in different scenarios. Privacy-preserving machine learning scenarios
usually include financial, medical, personal sensitive data use, etc., in the financial field,
mainly including insurance fraud identification, credit card fraud identification and other
scenarios, and financial fraud identification and its similarity, so this paper plans to use
the use of privacy-preserving machine learning technology for modelling to help financial
fraud identification model application landing.

1.1. Related Work. In the motivation of financial fraud, with the continuous develop-
ment of the capital market. The research on the causes of fraud is also deepening. The
mainstream research is divided into iceberg theory [12], fraud triangle [13], GONE [14],
fraud risk factor theory [15] and so on. In terms of financial fraud identification, there
have been a large number of studies on fraud identification using machine learning models.

In financial fraud identification research, models mostly follow a simple to complex
trend. Most of the studies use structured data (e.g., information on turnover rate, share-
holding of major shareholders, etc.), and evolve from early single-layer models such as
SVM, logistic regression, decision trees, etc., to complex models such as NN. Pai et al.
[16] used Support Vector Machine (SVM) algorithm to classify financial statement data
and predict whether a company has financial fraud or not. It extracts a large number
of financial indicators as features, such as gearing ratio, cash flow, etc., and then trains
and tests them with SVM classifiers. Shih et al. [17] used logistic regression algorithm to
study publicly available data on corporate fraud cases. It extracted basic company infor-
mation, financial data and management team data as features, and built a classification
model for fraud and non-fraud prediction by logistic regression. The results show that
the model has high precision and recall. Chen [18] used the CART decision tree algo-
rithm to model the financial indicators as the node classification criteria, and obtained an
interpretable decision tree model to detect financial fraud. Wu and Du [19] proposed a
deep learning method based on LSTM for financial fraud prediction. It trained an LSTM
hybrid network model using textual and numerical information from financial statements.
The results show that this deep learning model outperforms traditional machine learning
algorithms on this task.
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In addition to the aforementioned research on the mechanisms of data trading it-
self, some research aims to clear the way for data trading through technological means.
Privacy-preserving machine learning is one possible approach. Using cryptography, privacy-
preserving machine learning is able to combine data from multiple parties for computa-
tion without disclosing the data, effectively solving the problem of moral hazard in data
transactions. Research on such problems is usually divided into algorithm design and
application research aspects. At the level of algorithmic research, Al-Rubaie and Chang
[20] reviewed the relevant papers on privacy-preserving machine learning and summarised
the research routes of machine learning, including secure multi-party computation and
federated computation. Although privacy-preserving machine learning can protect the
data privacy of the participants, the cost is a rise in computational complexity, coupled
with the need to communicate among multiple participants, resulting in a decrease in
computational efficiency. To address this problem, Park et al. [21] proposed a federated
learning algorithm that optimises the communication cost by 90% over traditional algo-
rithms such as FedAvg. You et al. [22] et al. designed a weight-based asynchronous
federation learning aggregation update method, and tests on MNIST, CIFAR-10 showed
that it can effectively improve the training efficiency of federation learning.

1.2. Motivation and contribution. Recent studies have found that although the orig-
inal data is not exposed in federated learning, the model parameters exchanged can also
result in the disclosure of some of the user’s data privacy. In addition, in the data het-
erogeneity problem, different companies and organisations have different accounting and
financial systems, and there is a great deal of heterogeneity in their financial data, lead-
ing to the inability of commonly used federated learning algorithms to perform poorly
on some users. Therefore, in order to solve the above problem, it is proposed to use the
federated meta-learning technique [23] in federated learning methods for modelling and
completing the classification and identification of financial frauds. The main innovations
and contributions of this work include:

(1) The FedMeta framework, a federated meta-learning framework, was chosen to build
a financial fraud identification model for the financial data heterogeneity problem and the
temperature drift problem, with the goal of collaboratively training the meta-model using
data distributed among multiple clients.

(2) Since the training of federated meta-learning is also based on stochastic gradient
descent, the same privacy leakage problem exists. In order to solve the above problems, a
federated meta-learning method based on differential privacy preservation is designed to
protect the user’s privacy security, which is more suitable for financial fraud recognition
models.

(3) Aiming at the problem that the stochastic gradient descent algorithm with single-
key homomorphism is unable to resist the conspiracy attack, it is proposed to use Paillier
homomorphic encryption to encrypt the user’s local model parameters.

2. Concepts of Financial Fraud and Privacy-Preserving Machine Learning
Theory.

2.1. Definition of financial fraud. Financial fraud refers to intentional misstatements
related to the audit of financial statements, including misstatements resulting from the
preparation of false financial reports and misstatements resulting from misappropriation
of assets. Therefore, with reference to the above provisions, this paper considers financial
fraud as the act of falsifying, altering, or providing false accounting documents, books,
and reports. This paper uses the library of penalty documents obtained from the China
Stock Market & Accounting Research (CSMAR) database to identify fraudulent firms.
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Iceberg theory is one of the early studies on the motivation of financial fraud. The
theory divides the motivation of financial fraud into two parts, one of which can be
identified by observing written institutional documents and tracking the normal business
and management processes of an enterprise; the other part is the psychological activities,
emotions, values and other factors of the parties involved, which are usually difficult to
be quantified and identified and confirmed by external evidence.

The fraud triangle theory attributes the occurrence of financial fraud to three factors:
pressure, opportunity and excuse. After the Fraud Triangle and GNOE, various studies
have continued to expand the factors influencing financial fraud. The Risk Factor Theory,
which incorporates these factors, constitutes one of the most well-developed theories of
financial fraud. The theory categorises financial fraud factors into individual risk factors
and general risk factors. Individual risk factors are factors controlled by different individ-
uals, which usually vary from person to person and are not controlled by the enterprise,
including personal values, moral level, etc. General risk factors are controlled by the en-
terprise, such as the chances of fraud, the probability of being detected, and the penalties
after being detected.

2.2. Privacy-preserving machine learning. ”Privacy” refers to any data that the
data owner does not want to disclose or put at the disposal of other subjects. There are
a number of semi-honest data owners (who do not provide false data but inquire about
the data of other parties) who combine their data for machine learning training to solve
a machine learning problem, and these data owners do not want to disclose or share the
data with other owners. The techniques that enable machine learning at this point are
called privacy-preserving machine learning techniques. The use of Internet information
can improve the effectiveness of financial fraud identification. When Internet platforms
do not want to disclose their data directly to other subjects, this Internet information can
be called ”private”.

In privacy-preserving machine learning, sometimes the parties involved are not equal:
one party owns the sample labels and some of the sample features, and actively obtains
more data from the other party for modelling purposes, e.g., an investor organisation
knows whether a company has committed financial fraud and wants to obtain information
from other parties (e.g., an internet platform) for modelling purposes. The other party
only provides data services to the outside world, e.g., the Internet platform does not
care whether a company is financially fraudulent, but only provides data at the request
of other parties (e.g., investors). The former is called the active party and the latter is
called the passive party. Usually, the active party initiates the modelling request and
manages the model structure, parameters, and states, while the passive party calculates
the corresponding parameters upon the request of the active party.

Privacy-preserving machine learning techniques are classified into three main technical
routes. (1) Secure multiparty computation, with the goal of implementing arithmetic,
comparative, and logical operations using multiparty data without disclosing the data
of both parties, encompassing homomorphic encryption, obfuscated circuits, and secret
sharing. (2) Federated learning with the goal of implementing machine learning models
[24, 25]. Each data owner agrees to use the same model structure and computes weights
using their own data, and subsequently aggregates the weights to train the model. (3)
Hardware encryption, in which hardware such as trusted platform modules are used to
ensure that data is not compromised. This work mainly deals with the first two techniques
as hardware devices are more expensive.

2.3. Principles of federated learning. Federated learning is a new approach to ma-
chine learning that is able to use sensitive datasets distributed across a large number of
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clients (these may be mobile phones, other mobile devices, or sensors) without having to
collect data from them. In federated learning, users upload their local model parameters
in each iteration to train a global model. In order to update the global model, a centralised
server will be used to aggregate the parameters received from these users and send the
updated global model, back to them. Thanks to its ability to avoid users from leaking
private data to other participants, federated learning has become one of the fundamental
techniques for security-sensitive tasks.

Federated learningCentralized learning

ServersServers

User 1 User 2 User n

Upload training samples 

Download training models

User 1 User 2 User n

Upload local parameters 

Download global model

Figure 1. Generalised machine learning training frameworks

According to different training methods, machine learning can be divided into two types:
centralised learning and federated learning, as shown in Figure 1. Federated learning
mainly consists of multiple users and a cloud server, where users first train a local model
based on the processed raw data, and then send part of the training results, i.e., the model
parameters (e.g., training gradient), to the server, which aggregates all the parameters
and then resends the results to each user. Unlike traditional centralised machine learning,
federated learning does not need to collect raw data from all users for learning and training
during the training process, which can greatly reduce the privacy risk and cost of the
system, thus breaking the barrier of data silos. During the training process of federated
learning, the data owner uses a gradient descent algorithm to minimise the loss function
in order to find the optimal parameters. The process is described as follows [26]:

(1) In the t-th round of training, each data owner Ui trains the local model θi based on
the local private dataset Di, and computes the local gradient ∇gti .

∇gti =
∂F (yi, f (xi))

∂θt
(1)

where Fi(θ) is the loss function of the data owner Ui based on the data set Di.
(2) All data owners Ui upload the gradient ∇gti to the FL server.
(3) After the FL server collects the gradients G′ = {∇gt1,∇gt2, . . . ,∇gtm} sent by the m

users, it performs additive aggregation.

gtglobal =
1

m

m∑
i=1

∇gti (2)

(4) The federated learning server sends the aggregated gradients back to all participants
[28], and the users make the corresponding model updates.

θt+1
i = θti − lr ∗

gtglobal
m

(3)
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where lr is the learning rate, i.e., the step size to move in the opposite direction of the
gradient.

The above training process of federated learning is iterated until the loss function Fi(θ)
reaches a certain threshold or the accuracy of the local model has been reached.

3. Privacy-preserving and federated learning-based model for financial fraud
identification.

3.1. Model construction based on federated meta-learning. When constructing
financial fraud identification models, due to data ownership, privacy regulations, and other
issues, companies are often reluctant to share financial data, so the federated learning
framework is highly adaptable. Currently, there are a number of commonly used federated
learning algorithms, such as SecureBoost [27] and Longitudinal Neural Network (LNN).
However, federated meta-learning (FedMeta) [29] is more suitable for building financial
fraud identification models than SecureBoost and longitudinal neural networks, mainly
because of the financial data heterogeneity problem and the temperature drift problem.
In the data heterogeneity problem, different companies and organizations have different
accounting and financial systems and their financial data are highly heterogeneous. In
the case of the FedMeta framework, each client performs personalized training of the local
model to be able to better adapt to the respective data distribution, and then aggregates
and updates the parameter gradients globally, which can cover a greater diversity of data.

In the temperature drift problem, financial fraud behavior is related to changes in a
variety of factors, such as the characteristics of the financial data itself (e.g., cyclicality,
seasonality), the macroeconomic environment, and the corporate governance structure,
and there is a certain degree of temporal drift. Federated meta-learning allows each node
to train and update the model locally, which can capture and respond to changes in data
distribution in real time.

Therefore, the FedMeta framework is chosen in this work to build a financial fraud
recognition model. The goal of meta-learning is to train a model, such as a deep neural
network, in multiple tasks that can be better applied to new tasks by fast adaptation
with samples on new tasks. The more classical MAML model in meta-learning uses a
gradient-based learning rule, which allows for fast adaptation on new tasks.

The goal of meta-learning is to learn to generate sensitive model parameters θ that,
when encountering a new task, produce an effective improvement in the model’s loss
function for the new task t when the model parameters are changed slightly in the direction
of the gradient, as shown in Figure 2.

 3

2

1 *
3

*
2

*
1

Meta-learning
New task parameter adaptation

Figure 2. MAML parameter adaptation process
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The parameter vector θ is updated by performing a stochastic gradient descent on the
task Ti to obtain the updated vector θ′i. For example, when using a gradient update, the
update is done as follows:

θ′i = θ − α∇θLTi
(fθ) (4)

where the learning rate α is a fixed hyperparameter. More specifically, the goal of
meta-learning is to find the meta-model parameter θ that minimises the overall loss of
the parameter when adapted to a new task, and the objective function of meta-learning
is as follows.

min
θ

∑
Ti∼p(T )

LTi

(
fθ′i
)
=

∑
Ti∼p(T )

LTi
(fθ − α∇θLTi

(fθ)) (5)

Meta-optimisation is performed on the model parameter θ and the objective is computed
using the updated model parameter θ′i. For cross-task meta-optimisation by Stochastic
Gradient Descent (SGD), the model parameters θ are updated as follows.

θ = θ − β∇θ

∑
Ti∼p(T )

LTi

(
fθ′i
)

(6)

where β is the learning rate for updating the metamodel parameters.
FedMeta, a federated meta-learning framework, is meta-learning implemented in a fed-

erated setting with the goal of collaboratively training meta-models using data distributed
across multiple clients. Correspond each client in federated learning to each task in meta-
learning. The server will perform a weighted average of the local parameters based on the
number of samples in the clients. The aggregated model parameters are then redistributed
to different clients as models for the next round of updates.

θk = θ − ηgk (7)

Where k represents the client, η is the learning rate of the client’s gradient update, gk
is the gradient of the client k, θk denotes the updated parameters of the k-th client, and
θ denotes the model parameters assigned by the server to the client.

The update is performed on the server side as follows.

θ =
K∑
k=1

nk

n
θk (8)

where nk is the number of samples for the k-th client and n is the total number of
samples for all clients. Each client can iterate multiple times before returning a local
model update in order to update the model parameters assigned by the server.

3.2. Differential privacy preserving federated meta-learning. In previous feder-
ated learning research it was argued that gradient sharing in federated learning does not
expose information about a user’s training data. However, some recent studies have shown
that gradients can expose training data to some extent. The privacy disclosure issue dur-
ing federated learning is shown in Figure 3. When performing federation training, the
parameter server is able to steal local information from the gradients returned from client
nodes. In each training round t, each client node i receives the model parameters W from
the server and samples a batch (xi

t, y
i
t) in its local dataset to compute the gradient.

∇Wi =
∂ (F (xi

t,W ) , yit)

∂W
(9)
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Mobile client Client Client

Privacy disclosure

Client data

Attacker

Servers

W

W

Figure 3. Privacy Breaches in Federal Learning

The local gradients of each client are averaged over the parameter server ∇W , and then
the parameters of the federated model are updated.

∇W =
1

N

N∑
1

∇Wi;W = W − η∇W (10)

where N is the number of clients, η is the server-side learning rate, and ∇Wi is the
parameter uploaded by client i.

The server tries to reason about the client’s local data while completing normal training.
For receiving a gradient ∇Wi,t,k from client i, the goal is to steal the training data (xi

t, y
i
t)

of client user i. In order to recover the user’s original data from the gradient, a dummy
input x′

t and an input label y′t are randomly initialised. Then, these ”dummy data” are
fed into the model and a ”dummy gradient” is obtained.

∇W ′ =
∂ (F (x′

t,W ) , y′)

∂W
(11)

Through multiple rounds of training, the loss function is minimised to make the virtual
gradient closer to the real gradient, thus making the virtual input close to the real training
data. It can be seen that in some distributed federated learning scenarios, even though
the original data is kept locally all the time, the gradient based on the exchange can still
cause privacy leakage to the user. Since the training of federated meta-learning is also
based on stochastic gradient descent, the same privacy leakage problem exists. In order
to solve the above problems, this paper designs a federated meta-learning method based
on differential privacy preservation, which protects the user’s privacy security and is more
applicable to financial fraud recognition models.

Based on FedMeta, a federated meta-learning framework, this paper proposes a dif-
ferential privacy-preserving federated meta-learning method, DPP-FedMeta.By utilising
differential privacy-preserving privacy information of the participating training users, the
method makes a trade-off between model utility and privacy preservation. Figure 4 shows
the differential privacy-preserving federated meta-learning training process. Users are
primarily responsible for the local model parameters trained on their private data, while
preventing indirect leakage of private information to honest and curious parameter servers
or other participants.
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Figure 4. Differential Privacy Federated Meta-Learning Framework

The goal of federated meta-learning is to train a meta-learning model using clients
Ci with congested data Di, coordinated by a parameter server S. The end result of co-
training here is not the final parameters of the model, but rather the initialised metamodel
parameters of the model on each client. When this metamodel parameter is assigned to
a client or a new user, it needs to be trained with gradient descent using the client’s
local data to quickly match the new task. Clients are coordinated by a central server to
complete each round of training tasks.

The server first randomly initialises the meta-model parameters θ and sends the initial-
isation parameters to each client. After receiving the initialisation parameters from the
server, the client first performs a local update of the parameters based on its own local
support set. This allows the federated metamodel to do fast adaptation on new users in
the future, i.e., only a small amount of gradient descent is used to get better accuracy on
new users. After getting the initialisation parameters θ, the client first calculates the loss
values based on the local support set.

LDi
s
(θ) =

1

|Di
s|

∑
(x,y)∈Di

s

ℓ (fθ(x), y) (12)

where Di
s is the user’s support set.

Calculate the gradient based on the loss value of the initialised model parameters on
the support set, and perform a gradient descent by taking a step in the opposite direction
of this gradient.

θi = θ − α∇θLDi
s
(θ) (13)

This operation updates the meta-model parameters to complete the local adaptation
of the incoming model. The α is the learning rate of the client gradient update, and the
updated model parameters are θi. Next, the loss function is computed on the local query
set using the adapted metamodel.

LDi
q
(θi) =

1∣∣Di
q

∣∣ ∑
(x,y)∈Di

q

ℓ (fθi(x), y) (14)

where Di
q is the user’s query set.

Calculate the user’s gradient at this point.
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gi = ∇LDi
q
(θi) (15)

The client needs to send the trained gradient gi to the server for global meta-model
parameter update. It is assumed that in general, the server is honest and curious, i.e.,
the server does not break the training rules of the model, but explores the user’s privacy
information from the gradient uploaded by the client. Unlike the commonly used gradient
privacy protection methods, this work utilises a differential privacy mechanism to perturb
the local gradient uploaded by the client in each round with Gaussian noise.

The key to the federated meta-learning differential privacy training approach is to
implement a differential privacy-preserving stochastic gradient descent (SGD) algorithm.
Instead of exposing the entire local gradient to the server side after the client obtains the
local gradient, a differential privacy preserving mechanism is used to process the original
gradient. A common cutting method of SGD in deep learning is used to avoid gradient
explosion. The method of cutting the gradient for each sample is shown as follows.

gi(xq) =
gi(xq)

max
(
1, ∥gi(xq)∥2

X

) (16)

For the cut gradient, a differential privacy Gaussian noise perturbation is added.

gi =
1

|Di
q|

(∑
q

gi(xq) +N(0, σ2X2)

)
(17)

The local gradient gi of the user with noise is obtained, and the client sends the local
gradient after this round of perturbation to the server for global model update.

After receiving the noise gradient returned from each client, the server side averages
the noise gradient and performs gradient descent in the direction opposite to the gradient
to update the initialised meta-model maintained on the server side.

θ = θ − β

|C|
∑
i∈C

gi (18)

Where β is the learning rate of the gradient update performed by the server, and |C|
is the number of clients. The updated initialisation parameters are sent to the clients for
the next round of training until the federated meta-model converges.

3.3. Paillier-based SGD Gradient Encryption. The above model uses the SGD algo-
rithm to update the parameters of the local and global models during training. However,
the single-key homomorphic SGD algorithm cannot resist the problem of conspiracy at-
tacks. Therefore, in order to further ensure the privacy of user data, this paper uses
Paillier homomorphic encryption to encrypt the user’s local model parameters, and uses
the additive homomorphic property to ensure that the FedMeta server is able to perform
data aggregation in a dense state.

The data owners take the security parameters as input and jointly generate a pair
of homomorphic keys (pka, ska) by running the key generation algorithm for Paillier
homomorphic encryption. The public key (pka) is used to encrypt each data owner’s local
model parameters, which in the scheme of this chapter refer to the gradient parameters.
The private key (ska) is used to decrypt the global gradient. The private key (ska) is
kept between the data owners throughout the training process.

In each round of training, each data owner Ui participating in the training is based
on the local dataset Di = {(xi, yi)}, xi denotes the input data, and yi denotes the corre-
sponding labels. Calculate the loss function Lf (Di,Wi). The smaller the value of the loss
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function, the closer the predicted value is to the true value, i.e., the higher the accuracy
of the model training.

Lf (Di,Wi) =
1

|Di|
∑

(xi,yi)∈Di

(yi − f(xi,Wi))
2 (19)

where Wi denotes the model parameters.
Then the data owner computes the gradient vector ∇gi using a gradient descent algo-

rithm on the loss function Lf (Di,Wi) computed in Equation (19).

∇gi =
∂Lf (Di,Wi)

∂ω
(20)

The Paillier homomorphic encryption algorithm is used to encrypt the participant’s gra-
dient ∇gi to obtain the ciphertext gradient ∇ci.

ci = Encpka(∇gi) (21)

The use of the Paillier encryption algorithm, which satisfies the additive homomorphism
property, not only serves to blind the gradient, but also facilitates the federated meta-
server to perform model parameter aggregation in the dense state.

4. Experimental results and analyses.

4.1. Experimental environment. The running hardware and software information for
data acquisition and model construction in this paper is shown in Table 1. The model
construction process sets up an assumption that the investor owns and uses the financial
and non-financial data of the firm, owns the labels of whether the firm is fraudulent or
not, and is the passive party in the privacy-preserving machine learning model.

Table 1. Model runtime platform hardware and software

Hardware/Software Model/Version
CPU Intel Xeon CPU E3-1265L v3 @ 2.50GHz 4-Core
RAM 32G DDR3 RDIMM

hard drive 256GSSD (system disc) + 1THDD x 3 (ZFS, data disc)
Hypervisor VMware ESXi 6.7U3

Os Ubuntu 18.0.5-LTS
Python 3.8

Scikit-learn 1.0.2
TensorFlow 2.3.4

FATE 1.8.0

4.2. Sample selection. Before starting to obtain data, it is first necessary to determine
the fraud and non-fraud samples. To ensure the objectivity and reliability of the results,
the financial fraud samples are obtained from the Violation Information Summary Table
of the Violation Incident Database in CSMAR, which records the violations of listed com-
panies disclosed by the CSRC, local securities regulators, stock exchanges, and regulatory
bureaus of various parts of the Ministry of Finance. Considering that the SEC updated its
industry classification standards in 2012, the time period is set from 2012 to 2022 in order
to provide sufficient time for the industry classification calibre and exposure to fraud.
Considering that some of the samples may have financial malpractice that has not been
proven (i.e., the ”grey sample”), all non-financial malpractice-penalised firms in the table
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are excluded from the overall population in this paper. Finally, a large number of samples
with missing data are also excluded. After these filters and the treatment of missing
values, a total of 17,231 samples are generated, of which 516 are fraud samples and 16,715
are non-fraud samples. Considering the large dimensionality of the model’s features, it
has been difficult to get a global view of the data using descriptive statistics. In this
paper, we use t-SNE to downscale the data in order to have a global understanding of the
data. t-SNE transforms the distance between each point in the high-dimensional space
into a conditional probability that obeys a normal distribution. The distances between
data points in the embedding space are made to obey a t-distribution, and the KL scatter,
which measures the distribution in the high-dimensional space and the distribution in the
embedding space, is used as the cost function.

4.3. Performance evaluation and comparison. For the machine learning task, the
way to assess the effectiveness of the model is to perform inference using the test set and
compare the results of its inference in the test set with the real labels in order to evaluate
how effective the model is. Since financial fraud identification is a classification problem,
it will be evaluated using metrics for classification problems. The vast majority of the
metrics are based on the confusion matrix. The confusion matrix indicates the matrix of
true labels and model predictions for all samples. The matrix is divided into four parts
as shown in Table 2.

Table 2. Schematic Confusion Matrix

Projected value
real value 0-Non-fraud 1-Fraud
0-Non-fraud TN - True Negative Example FP - False Positive Example
1-Fraud FN - False Negative Example TP - True Positive Example

In the study of financial fraud discussed in this paper, TN denotes the number of
samples in which non-financial fraud was correctly identified as non-financial fraud, FP
denotes the number of samples in which non-financial fraud samples were identified as
fraud, FN denotes the number of samples in which financial fraud samples were identified
as non-fraud, and TP denotes the number of samples in which financial fraud was correctly
identified as financial fraud.

In this work, SecureBoost, LNN and DPP-FedMeta are used to test the dataset re-
spectively. These models were trained for 1000, 200 and 100 rounds with a batch size of
32. the user target privacy budget for DPP-FedMeta was set to 2. The model training
process was stopped when the target privacy budget was reached. The cut value is set to
0.01 in the experiment and its used as the noise sensitivity. The amount of noise added
to each round of training gradient by the noise scale. The larger the control noise scale is,
then a larger amount of noise is added to the original gradient, which reduces the utility
of the model, and the noise scale is set to 4 in the experiment. The comparison results of
the three models are shown in Table 3.

The results show that the DPP-FedMeta model performs the best on the Precision
metric at 93.99%, followed by the SecureBoost and LNN models at 92.31% and 90.51%,
respectively. This indicates that the DPP-FedMeta model is more accurate in determining
instances of financial fraud. According to the tabular data, the DPP-FedMeta model
shows better performance under all the metrics and has better overall performance and
performance in the financial fraud identification task compared to SecureBoost and LNN
models.
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Table 3. Comparative results of models/%

SecureBoost LNN DPP-FedMeta
Precision 92.31 90.51 93.99
Recall 93.28 91.45 94.94
F1 92.27 91.32 94.46
Accuracy 92.56 91.25 94.48
AUC 98.07 93.71 98.58
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Figure 5. ROC curves

From the ROC curves as shown in 5, the DPP-FedMeta model has a steeper curve
and covers a larger lower area than the other two models. This indicates that with the
introduction of differential privacy protection, the FedMeta model is more decisive in its
judgement and less likely to have fraud/non-fraud samples reasoning out probabilities in
the same interval.

5. Conclusion. Based on FedMeta, a federated meta-learning framework, this paper
proposes a differential privacy-preserving federated meta-learning method, DPP-FedMeta,
which is utilised to construct a classification and identification model for financial fraud.
The model objective is to train the metamodel collaboratively using data distributed
among multiple clients. In addition, a federated meta-learning method based on differen-
tial privacy preservation is designed to protect the user’s privacy security, which is more
applicable to the financial fraud recognition model. Experimental results show that the
DPP-FedMeta model exhibits better performance in Precision, Recall, F1, Accuracy and
AUC metrics compared to SecureBoost and longitudinal neural network models.
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