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Abstract. Since the 21st century, with the continuous advancement of national indus-
trialization, embedded systems have been widely used in various industries. Due to their
highly customisable and adaptable characteristics, embedded systems can fulfil the diverse
demands of various industries for intelligence, automation and portability. They offer
significant practicality for detecting patient attention. However, embedded systems based
on traditional algorithms have many limitations. To solve the problems of low accuracy
and reliability in traditional embedded systems, this study builds on the MobileNetV2
Single Shot Multibox Detector algorithm and uses EfficientNet to improve the model’s
feature representation and detection performance. The multi-scale training and predic-
tion strategies are also introduced and finally applied to the embedded systems to design
an attention detection model. The test results showed that after 240 iterations, the train-
ing error of the improved MobileNetV2 Single Shot Multibox Detector model tended to
converge, which was 70.83% faster than the standard MobileNetV2 Single Shot Multibox
Detector. Finally, it converged to 0.05 and the error decreased by 0.30. The embedded
attention detection system in this study exhibits greater recognition accuracy and con-
sumes less time, indicating potential application in the field of attention detection.
Keywords: PSO MobileNet2 SSD; Embedded system; EfficientNet; Attention detec-
tion; Howland Current Source

1. Introduction. The identification of attention-related illnesses in children is increas-
ingly gaining attention from the public. These diseases, such as attention deficit and
hyperactivity disorder (ADHD), have a negative impact on children’s learning and de-
velopment. The rapid development of the Internet of Things and mobile computing has
brought new opportunities for detecting children’s attention, among which embedded
systems are highly favored in this field [1]. MobileNetV2 Single Shot Multibox Detector
(MobileNet2 SSD) is a commonly used algorithm in embedded systems. Although it is a
lightweight object detection algorithm, there are still many limitations at this stage.

Firstly, there are certain limitations to the detection performance of the MobileNet2
SSD algorithm, especially in the detection of small-sized targets, which often face dif-
ficulties [2]. Secondly, the resources and computing power of embedded systems are
limited, and it is necessary to improve the speed and efficiency of MobileNet2 SSD while
maintaining accuracy [3]. To address the detection challenges and low efficiency of the
conventional MobileNet2 SSD algorithm, this study presents an enhanced and innovative
attention detection model. This study endeavours to enhance the precision of attention
detection to facilitate a greater number of individuals with attention deficit disorder in
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seeking appropriate medical care in a timely manner. The innovation of this study lies in:
(1) To enhance the precision and sensitivity in detecting children’s attention, the current
study initially enhances MobileNet2 SSD’s network structure. (2) EfficientNet has been
introduced to improve the feature representation and detection performance of the model.
(3) By introducing multi-scale training and prediction strategies, and selecting the loss
function Focal Loss that is more suitable for object detection tasks, the improved Mo-
bileNet2 SSD algorithm (IMobileNet2 SSD) is obtained. Finally, the algorithm is applied
to the embedded systems and an attention detection model is designed.

This paper mainly consists of four parts. The second part is a review of the current
research status of domestic and foreign experts and scholars on children’s attention de-
tection. The third part establishes an improved embedded attention detection model
for MobileNet2 SSD. The fourth part conducts comparative experiments and efficiency
verification on the optimization effect of the model.

2. Related Work. In the past few decades, embedded systems have been widely used,
and embedded systems with stronger performance have gradually received attention from
multiple enterprises and researchers. Li proposed a fuzzy logic C-means (FLC) clustering
algorithm to address the difficulty of compensating for fiber non-linearity using digital
signal processing (DSP). This technology could greatly reduce signal damages [4]. Yang
et al. designed a catalyst preparation prediction model using machine learning methods
to address the issue of long experimental steps and cycles typically required in traditional
catalyst development processes. This algorithm had good performance in the field of
polyolefin catalysts [5]. Huu designed a feature extraction scheme based on MobileNetV2
and combined it with a single trigger detector (STD) network to address the issue of low
system accuracy in gestures and actions in smart homes. This model had an accuracy rate
of over 90% and was suitable for practical applications [6]. Arora et al. designed a deep
Convolutional neural network (DCNN) for face detection to solve the problem of computer
automatically detecting whether people wear masks. It used feature detection and extrac-
tion techniques to identify whether a person is wearing a mask, which has high accuracy
and is easy to deploy in embedded systems [7]. Li et al. proposed a fruit recognition
method that combines BM2DK PCANet and support vector machine (SVM) classifier to
improve the intelligent mechanization of orchards. The recognition rate of this method was
11.84% higher than that of PCANet [8]. Ahn et al. developed an automatic generation
method for textile circuits using machine vision to address the issue of inaccurate capture
of fabric images by image acquisition devices. This method improved the accuracy of fab-
ric image recognition by 8.9% [9]. The application of machine learning algorithms in daily
life is becoming increasingly diverse, providing a certain reference for the improvement of
embedded systems. Sahoo et al. designed a distracted driving detection model using light-
weight DCNN to solve the problem of distracted driving among traffic participants, with
a classification accuracy of 99.93% [10]. Carreon and other researchers designed a normal
timing device that used the execution path of embedded applications to address the issue
of insufficient active security measures to provide protection for embedded systems. This
method had significant advantages in terms of effectiveness and accuracy [11]. Raji et
al. designed an embedded system multi-objective task scheduling framework to address
the increased manufacturing process changes caused by active technological expansion.
This framework considered the uncertainly of parameters in hardware and software com-
ponents. According to experiments, the execution of this framework improved by 28.6%
[12]. Thangavel et al. proposed an embedded unsupervised system to reduce conflicts
between humans and wildlife in the Anamalai Tiger Reserve (ATR), which is used to
recognize and classify animals based on their sound signals. This system could indicate
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animal movement approaching forest boundary areas [13]. Krupa et al. designed a sparse
and low memory optimization algorithm to solve the problem of model predictive control
of tracking formula in embedded systems, and used the expansion of alternating direction
multiplier method. This algorithm increased the domain of attraction and ensured the
feasibility of recursion even in the case of sudden changes in reference [14]. Envelope et al.
designed an embedded system with Multilayer Perceptron (feedforward)-Artificial Neural
Network (MLP-ANN) and Field Programmable Gate Array (FPGA) to analyze potential
triggering factors of epilepsy and formulate suitable medical interventions. The accuracy
rate of seizure classification of this system was high [15].

In summary, there is adequate theoretical and implementation basis for employing
MobilenetV2 SSD in embedded systems. Various studies have shown that it has broad
application prospects, but there have been no relevant studies attempting to combine the
two to solve the problem of attention detection. To enhance the detection performance
and overcome the low detection efficiency challenges of the traditional MobileNet2-SSD
algorithm, this study introduces EfficientNet in a ground-breaking manner to elevate the
model’s feature representation capabilities. By incorporating both multi-scale training
and prediction strategies and selecting the Focal Loss loss function that is appropriate
for object detection tasks, the MobileNet2-SSD algorithm can be enhanced. This study
will apply the improved algorithm to embedded attention detection systems to further
promote the development of the attention detection industry.

3. Solution design of embedded attention detection model. This chapter is mainly
divided into two sections. The first section focuses on improving MobileNet2 SSD and
establishing a model for the IMobileNet2 SSD algorithm. In the second section, the al-
gorithm is applied to embedded systems, and the processing and analysis results are fed
back to other modules through Bluetooth for subsequent processing.

3.1. Attention detection model based on IMobileNet2-SSD algorithm. MobileNet2
SSD is an object detection model based on the combination of MobileNetV2 and Single
Shot MultiBox Detector (SSD) algorithm. MobileNetV2 is a lightweight CNN suitable
for real-time image recognition tasks in resource constrained environments such as mobile
devices. SSD is a commonly used object detection algorithm that can simultaneously
detect multiple targets of different categories in an image, and provide their positions and
confidence levels. MobileNet2 SSD combines its lightweight characteristics with SSD’s
multi-scale feature extraction and prediction technology, making the model have high
speed and accuracy. It is widely used in real-time target detection tasks in mobile de-
vices, embedded systems and edge computing, such as face detection, vehicle detection,
etc. Although MobileNet2 SSD is a lightweight model, it may perform poorly in terms
of detection accuracy and recall compared to some more complex object detection algo-
rithms. In addition, MobileNet2 SSD may encounter difficulties in detecting small-sized
objects. Due to the network structure and design of feature extractors, it may not be
able to capture the detailed features of small targets, resulting in a decrease in detec-
tion accuracy. In response to the limitations of the MobileNet2 SSD algorithm in terms
of detection performance and difficulty in detecting small target sizes, the following im-
provements have been made in this study. MobileNet2 SSD uses MobileNet as the feature
extractor, but its accuracy is relatively low and its adaptability to large-sized inputs is
weak. Therefore, it is recommended to utilize a stronger foundational network, such as
EfficientNet, to enhance the model’s capability of representing features and detecting per-
formance. Firstly, it is necessary to integrate the various components of EfficientNet into
the architecture of MobileNet2 SSD. In MobileNet2 SSD, MobileNet V2 plays a role in



2378 B.Z. Fan, and Z.S. Lv

feature extraction and requires EfficientNet to replace this function. This means removing
the original MobileNet V2 layer and replacing it with a series of layers from EfficientNet.
Secondly, the original MobileNet2 SSD uses a special structure such as Inverted Residual
Block. At this time, it is necessary to substitute it with the MBConv layer in the Effi-
cientNet version. Afterward, it is imperative to modify the pertinent parameters, like step
size and the number of output channels to align it with the configuration of EfficientNet.
The activation function is changed to Swish instead of ReLU6. The EfficientNet structure
is shown in Figure 1.

Figure 1. EfficientNet structure diagram

EfficientNet is a series of CNN models proposed in 2019. The design goal of these
models is to achieve state-of-the-art performance in image classification tasks while also
possessing efficient computing power. The key idea behind EfficientNet is to scale the
dimensions of the baseline network architecture in a systematic manner. The process
begins with a simple initial model and then expands it by utilizing composite coefficients
to adjust the network’s depth, width, and resolution. This method can strike a balance
between model size and accuracy. The EfficientNet model utilizes various techniques to
improve efficiency, including the use of deep separable convolution combinations to reduce
parameters and computational complexity, as well as the use of mobile reverse bottleneck
structures to effectively capture more complex patterns. The model also adopts a tech-
nique called compound scaling, which uniformly scales the depth, width, and resolution
of the network. This method ensures that the network learns representations on inputs
of different sizes and can better generalize. The EfficientNet model has achieved excel-
lent results on various benchmark datasets, such as ImageNet, with fewer parameters and
computational resources compared to previous state-of-the-art models [16]. They are also
widely used in various computer vision tasks such as Transfer learning and feature ex-
traction. Additionally, to enhance the model’s performance, one can improve the network
structure by increasing the depth and width of the network, adding more convolutional
layers, and attention mechanisms [17]. In addition, multi-scale training and prediction are
required, and relevant strategies are introduced to improve the detection ability of small
targets by training and detecting images at different scales. In multi-scale image training,
data augmentation methods are used to generate training samples of different scales. The
original image is randomly scaled and cropped to generate multi-scale training images,
and all generated images and their corresponding labels (i.e. the labels of the original
image) are used as the training set. During the training process, the model will use these
images of different scales to learn the features of the target. Meanwhile, multiple branches
are introduced in the output layer of the model, each responsible for object detection at
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different scales. This can improve the model’s detection ability for targets of different
scales. When conducting multi-scale training and prediction, it is necessary to ensure
that features between different scales can be effectively fused and matched. The study
uses a feature pyramid network to ensure this. Finally, the loss function Focal Loss, which
is more suitable for target detection tasks, is used to optimize the detection results and
improve the processing ability of small targets. The resulting IMobileNet2 SSD is shown
in Figure 2.

Figure 2. IMobileNet2 SSD algorithm flowchart

This model has strong feature representation ability and higher accuracy. The Efficient-
Net structure uses deeper networks and convolutional layers, which can learn more deep
features and help improve the model’s performance. EfficientNet incorporates a technique
known as Composite Scaling that can balance trade-offs between network size and accu-
racy, finally enhancing the model’s generalization performance across diverse input sizes.
The ratio is selected as a feature of attention. Attention features are calculated using
IMobileNet2 SSD, and left prefrontal lobe electroencephalo-graph (EEG) signals β

θ
are

collected, with the ratio used as the attention feature. The 256 EEG data collected each
time are used to conduct a Fast Fourier Transform (FFT) to obtain attention features.
The EEG sampling rate of the system is 128 Hz, and the frequency resolution (FR) of the
FFT result calculated based on the FR formula is 0.5 Hz. Figure 3 shows the algorithm
flow.

In the program, the power spectrum of EEG signal is calculated by FFT, and the
attention feature is obtained. FFT is a calculation method derived from Discrete Fourier
transform (DFT). The DFT formula for n = 0, 1, . . . , N − 1 is Equation (1).

x(k) =
N−1∑
n=0

x(n)W kn
N (1)

In Equation (1), there is k = 0, 1, . . . , N−1, and x(n) represents a finite length discrete
signal. When N is an integer power of 2, DFT can be decomposed into two points of
DFT, and x(n) can be decomposed into the sum of two sequences, as shown in Equation
(2).
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Figure 3. The flow of attention detection algorithm based on IMobileNet2-SSD

x(n) = x1(n) + x2(n) (2)

In Equation (2), x1(n) and x2(n) are even and odd sequences. Due to the fact that

W 2kn
N = e−

2πjkn
N , and x(n) can be represented by transformations, as shown in Equation

(3).

x(k) =

N
2
−1∑

n=0

x1(n)W
2kn
N +W k

N

N
2
−1∑

n=0

x2(n)W
2kn
N (3)

In Equation (3), x1(k) represents point N/2 of x1(n), and x2(k) represents point N/2
of x2(n). According to the symmetry of the Twiddle factor, x(k) can be transformed, as
shown in Equation (4). {

x(k) = x1(k) +W k
Nx2(k)

x
(
k + N

2

)
= x1(k)−W k

Nx2(k)
(4)

In Equation (4), x1(k) and x2(k) both have a period of N/2. By analogy, after m− 1
decompositions, the N -point DFT is finally decomposed into N/2 2-point DFTs.

3.2. Embedded attention detection model. The first step of the study fully demon-
strates the feasibility of applying the MobileNet2 SSD algorithm in attention detection
systems. In addition, it is necessary to combine the algorithm with embedded systems.
Firstly, Emotiv Epoc+ is used for EEG signal acquisition. This head mounted electrode
device has high resolution and comfort, and can collect high-quality EEG signals. Using
the BioSemiActiveTwo signal conditioning circuit to collect simulated EEG signals, it can
receive analog signals from electrodes and convert them into signals suitable for Analog to
Digital Converter (ADC) processing. At this time, the EEG signals need to be amplified
and filtered through the signal conditioning circuit to improve signal quality. Then, the
EEG signal is converted into a digital signal through an ADC [18]. Finally, the obtained
digital signal is sent via Bluetooth to the embedded platform of the Bluetooth receiver
to complete the collection of EEG signals. The Raspberry Pi serves as the embedded
platform for the research experiment, possessing adequate processing power and storage
capacity to operate the MobileNet2 SSD algorithm. Additionally, it is furnished with
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interfaces that permit reception of digital EEG signals transmitted via Bluetooth and
execution of attention detection algorithms for data processing and display of outcomes.
Then the parameters of the electrical stimulation are sent to the portable collection and
control module through Bluetooth. Finally, the Howland current source generates the
corresponding electrical stimulation to regulate attention. In this process, electrical stim-
ulation regulation, as a means of attention regulation, requires operation within safety
constraints. The stimulation parameters shall be kept within 1-2 mA to avoid discomfort
or harm to the user. The workflow of the whole system is shown in Figure 4.

Figure 4. The workflow of an embedded attention detection model

Figure 4 shows the workflow of an embedded attention detection and regulation system.
The ADC and Howland current sources (HCS) are selected to generate a constant cur-
rent to power the Transcranial Direct Current Stimulation (tDCS) circuit in this system.
HCS is a circuit configuration used to generate a stable constant current output. It was
designed by American engineer Charles G Howland in 1962. The HCS uses a combination
of differential amplifiers and feedback networks, which can achieve the required constant
current output by adjusting the input voltage. It is typically used in precision measure-
ments, sensor drives, and other applications that require precise current control. HCS
can be applied to tDCS [19, 20]. In the tDCS, electrodes are placed on the scalp and
a constant DC current is transmitted to the brain region to simulate, regulate, or affect
neural activity, as shown in Figure 5.

Figure 5. HCS structure diagram
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HCS is a commonly used circuit used to provide a voltage controlled constant current
source. It is widely used in fields such as medical and industrial automation. This
current source is particularly suitable for electrical stimulation of the human scalp, as the
impedance of the scalp is usually large and not fixed. HCS was invented by Brad Howland
and is based on a current source of an operational amplifier. According to the principle
of virtual short and virtual break of operational amplifiers, this circuit maintains the
characteristic of equal input voltage of operational amplifiers (Op-amp Input), as shown
in Equation (5).

V+ = V− (5)

In Equation (5), V+ and V− represent the positive and negative voltage. The current
flowing into Op-amp Input is shown in Equation (6).

I+ = I− (6)

In Equation (6), I+ is the positive voltage and I− is the negative voltage. Further, the
negative equation can be obtained as shown in Equation (7).

VG − V−

R70

=
V− − Vs

R69

(7)

In Equation (7), R70 and R69 are the resistances of the 70th and 69th resistors, and the
positive electrode equation in Equation (8) can be obtained.

VIN − V+

R2

=
V+ − VOUT

R4

(8)

In Equation (8), VIN and VOUT represent the input and output voltages, respectively.
The ratio between R69 and R70 can be obtained by changing Equation (7), as shown in
Equation (9).

R69

R70

=
V− − Vs

VG − V−
(9)

In Equation (9), VG = 0. When the ratio between R69 and R70 is equal to n, the
expression for n can be obtained, as shown in Equation (10).

n =
V− − Vs

VG − V−
=

V+ − VOUT

VI − V+

(10)

In Equation (10), VI represents the input voltage. According to Ohm’s law, Vs can be
obtained, as shown in Equation (11).

Vs = IOUT × (R1 +Rx) (11)

In Equation (11), Rx is the impedance of the human body. According to Ohm’s law,
the expression Vout can be obtained, as shown in Equation (12).

VOUT = IOUT ×Rx (12)

In Equation (12), IOUT represents the output current. Assuming that V+ = V− = Va

substitutes Equation (12) into Equation (11), the expression for Va can be obtained, as
shown in Equation (13).

Va =
IOUT × (RK +R71)

1 + n
(13)
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In Equation (13), n represents the ratio between R69 and R70, and then substituting
Equations (13) and (12) into (10) to obtain the output current formula of HCS, as shown
in Equation (14).

IOUT =
nVI

R71

(14)

In Equation (14), as long as the resistance values of R69, R70, R2, and R4 are the same,
the current output by HCS is only related to the resistance R71. Therefore, by selecting
an appropriate resistor ER, the DAC can be controlled by the main control module to
modify the output voltage and thus the output DC power. The front-end analog circuit is
composed of a front-end amplification circuit, a DC correction circuit, a low-pass filtering
circuit, and a voltage rise circuit. In this circuit, the reference signal and the active signal
are first subtracted and amplified by the front-end amplification circuit to enhance the
signal strength, as displayed in Figure 6.

Figure 6. Front end analog circuit structure diagram

Next, the signal is subjected to DC bias correction and high-frequency noise filtering
through a DC correction circuit and low-pass filtering circuit. Due to the fact that ADC
uses a single power supply and can only process positive voltage signals, it is necessary
to raise the corrected filtered signal voltage above the 0 scale to ensure that ADC can
correctly collect negative voltage signals. To achieve this goal, a voltage rise circuit is
used to perform gain processing on the signal. Finally, the raised signal is differentially
inputted with the raised voltage and enters the analog-to-digital converter for analog-to-
digital conversion, converting the analog signal into a digital signal for subsequent DSP or
storage. Then, the digital signal is processed by MCU and interacted with the embedded
platform through Bluetooth receiver.

4. Algorithm performance testing and experimental verification of attention
detection model. This chapter mainly verifies the ability of the proposed attention de-
tection model. The first section mainly compares and analyzes IMobileNet2 SSD with
other algorithms to verify its comparative advantages, and uses different datasets to ver-
ify the model’s generalization ability. The second section mainly conducts simulation
experiments to verify the efficiency of the model in practical environments.

4.1. Comparative analysis and generalization capability verification of Mo-
bileNet2 SSD algorithm. This study established an attention detection system based
on IMobileNet2-SSD, which solved the problem of lacking objective means for attention
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detection. To evaluate the optimization ability of IMobileNet2 SSD on the MobileNet2
SSD algorithm, the experiment used Python 3.8 on the Windows 10 platform and used
the Common Objects in Context dataset (COCO) to perform 600 iterations on the tra-
ditional MobileNet2 SSD and IMobileNet2 SSD models, respectively. Figure 7 shows the
relationship between its training error and the number of iterations.

Figure 7. Comparison of MobileNet2-SSD and IMobileNet2-SSD Training Error

Figure 7 shows the training error trend of MobileNet2 SSD algorithm and IMobileNet2
SSD algorithm on the training dataset. The error reduction rate of IMobileNet2 SSD
is not significantly different from MobileNet2 SSD in the first 120 iterations. But when
the number of iterations between the two reaches the range of [120240], the error of
IMobileNet2-SSD rapidly decreases. After 240 iterations, its training error has converged
and finally converged to 0.05. The training error of MobileNet2-SSD only converged after
410 iterations, and finally converged to 0.35. It can be proven that the IMobileNet2-SSD
model has a faster convergence rate and a lower error during final convergence. To ensure
the effectiveness and reliability of the model, it is necessary to conduct generalization
ability verification. The experiment used the Salient Object Prediction dataset (SALI-
CON) to train the above two algorithms. Table 1 shows the composition of the SALICON
parameter

Table 1. Basic parameters of the action dataset

Parameter type Parameter scale
Natural scene image 10000
Resolution of images 480*640–640*480

Gazing at data 10000
Fixation Maps 9800
Training set 5000
Validation set 2500

Test set 2500

In Table 1, SALICON is a relatively large dataset that contains a large amount of
attention data. Therefore, appropriate preprocessing and sampling are necessary when
using this dataset for analysis. In addition, to conduct a horizontal comparative analysis
of the application effect of IMobileNet2 SSD, the experiment introduced MobileNetV1-
SSD, ShuffleNetV2 SSD (channel shuffling SSD, ShuffleNetV2 SSD), and NASNet SSD
(Neural Architecture Search SSD, NASNet SSD) to compare with IMobileNet2 SSD. The
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results of training the four algorithms using SALICON and COCO are shown in Figure
8.

Figure 8. Comparison of MAWI and CAIDA data set

Figure 8 is the trend curve of the accuracy of various algorithms in the SALICON
and COCO datasets as a function of the number of training rounds. In Figure 8(a), the
IMobileNet2-SSD model performed the best, with accuracy tending to converge after 180
iterations, and the final accuracy converging to 95.3%. The other three models converged
after 240 iterations, and the rate of convergence was slow. In Figure 8(b), the accuracy of
all algorithm models varies to varying degrees when using SALICON. However, the conver-
gence of IMobileNet2-SSD showed relatively minimal changes, with an accuracy decrease
of only 1.1% and tending to converge after 170 iterations. However, MobileNet1-SSD
showed the greatest change, with an accuracy increase of 9.8% during convergence and
ultimately converging to 96.9%. The above results prove that IMobileNet2-SSD has the
advantages of fast rate of convergence, high detection accuracy, good algorithm stability
and strong generalization ability compared with the other three algorithms. Multi-scale
training and prediction strategies were introduced to improve the detection ability of
IMobileNet2-SSD to detect small targets. To further validate the functionality of the four
algorithms in the embedded system, their performance was evaluated using ROC curve
and AUC value as the criteria, with the SALICON dataset employed for testing. The
experimental results are shown in Figure 9.

Among these four algorithms, the IMobileNet2 SSD algorithm performed the best,
with an area under the ROC (AUC) curve of 0.945. This means that in the task of
distinguishing positive and negative samples, the classifier performance of IMobileNet2
SSD algorithm is very excellent, even in cases of very high false positive rates, it can still
maintain a high true positive rate. In contrast, the AUC value of the MobileNet1 SSD
algorithm was 0.913, which was slightly lower than the IMobileNet2 SSD algorithm, but
still showed good classifier performance. The AUC values of IMobileNet2 SSD algorithm
and NASNet SSD algorithm were 0.878 and 0.813, respectively, indicating relatively poor
performance.

4.2. Experimental verification of attention detection model. To verify the.
effectiveness of IMobileNet2 SSD in practical application, five volunteers were invited to
perform tasks such as GO/NOGO, annotating crosses, and resting. GO/NOGO task is
a commonly used experimental task in Cognitive psychology, which is used to study and
evaluate the ability of individuals in inhibition response and attention control. In this
task, participants need to respond or not respond to specific stimuli, usually based on a
predetermined rule or condition. GO/NOGO usually presents a series of stimuli, most
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Figure 9. ROC curves of each algorithm

of which are “GO” stimuli, which require participants to respond. A few are “NOGO”
stimuli, which require participants to suppress their reactions and not make any actions.
Participants need to quickly and accurately distinguish and execute correct responses
according to task requirements. By analyzing participants’ performance in GO/NOGO
tasks, researchers can evaluate their ability to suppress reactions and attentional control,
as well as the frequency of error suppression. This task is commonly used to study
ADHD, addiction, and other cognitive control related diseases, as well as to explore the
mechanisms of attention and self-control in many other fields, as shown on Figure 10

Figure 10. GO/NOGO task diagram

The overall process of the attention detection experiment is as follows. Firstly, volun-
teers are required to perform a GO/NOGO task that takes about five minutes to grow.
After the task is completed, volunteers are required to rest for two minutes. Next, the
volunteers need to focus their attention on the cross on the screen for three minutes. After
the task is completed, the volunteers should rest for two minutes. Finally, rest for three
minutes, during which the volunteers need to divert their attention. After the rest, the
attention detection experiment is completed. After obtaining the attention feature data
of the above three tasks, MATLAB is used to analyze the attention feature data. Based
on the rhythmic components of signals with β and θ: the ratio Eβ/Eθ of frequency band
energy is used as a feature to measure attention. The average value of each task Eβ, the
average value of Eθ, and the average value of Eβ/Eθ is calculated. Simultaneously, the
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Eβ/Eθ-waveform of each task for observation is drawn, and the experimental results are
displayed in Figure 11.

Figure 11. Waveform for each task

Figure 11 shows the Eβ/Eθ waveform of each task. The x-axis in the figure represents
the time axis, the y-axis represents the amplitude axis. The purple, green, and red curves
represent the Eβ/Eθ-waveform of the gaze on the cross, GO/NOGO, and resting tasks.
Their curves fluctuate in the range of [2.5, 4.5], [1.5, 3.0], and [0.5, 1.5], respectively. This
indicates the relaxed state of the volunteers in this task. It is not difficult to find that
the volunteer’s Eβ/Eθ was significantly higher than the Eβ/Eθ of the resting task when
performing two focused attention tasks: gazing at the cross and GO/NOGO. These results
indicated that the two tasks had a distinct effect on volunteer attention. It was possible
that the task was required for increased brain activity in the volunteers, resulting in a
higher brain wave amplitude. These findings facilitated the understanding of individual
cognitive and attention control abilities under different tasks and provide an important
reference for further research and application of brain waves. During the experiment,
the results of the volunteers’ attention regulation through electrical stimulation were also
recorded, as shown in Figure 12.

Figure 12 shows the Eβ/Eθ statistical chart of volunteers performing Schulte tasks
before and after electrical stimulation. In Figure 12, before electrical stimulation, the
Eβ/Eθ ratio of volunteers performing Schulte tasks is between [1.1, 1.9]. After electrical
stimulation, the Eβ/Eθ ratio increased by more than 50%. This means that the system
can increase the attention of volunteers by electrically stimulating the cerebral cortex
when people are not paying attention. The systematic electrical stimulation scheme has
a significant effect on increasing the attention of volunteers. In summary, by electrically
stimulating the cerebral cortex, the system can increase the attention level of volunteers
when they are not paying attention. This discovery is of great significance for further
research and application of EEG stimulation technology to improve people’s attention.
Future research can further explore the parameter settings and stimulus location selection
of electrical stimulation, optimize attention enhancement effects, and apply them to real
life to help people in need of improving attention.

5. Conclusion. After in-depth research on traditional attention detection models, an
embedded attention detection model IMobileNet2 SSD based on the improved MobileNet2
SSD algorithm was successfully designed. This model solved problems such as insufficient
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Figure 12. The results of attention regulation by electrical stimulation

accuracy, limited detection performance, and difficulty in detecting small-sized objects.
To verify the performance of the model in practical applications, volunteers were invited
to participate in experiments, display waveform diagrams, and provide data support. The
MobileNetV1-SSD, ShuffleNetV2-SSD, and NASNet-SSD algorithms were introduced for
horizontal comparison, and rigorous training tests were conducted using SALICON and
COCO datasets. The results showed that IMobileNet2 SSD had excellent performance,
with an AUC value of 0.945, indicating excellent classifier performance with a high true
positive rate.

Compared with other algorithms, IMobileNet2 SSD had significant advantages in com-
putational efficiency and convergence speed, with only a decrease of 1.1%. It tended to
stabilize after 170 iterations with a small change in accuracy. Its superiority was reflected
in the classifier performance, computational efficiency, convergence speed, and stable per-
formance on different datasets. It had higher practical value and broader application
prospects. Compared with other methods, the superiority of the proposed IMobileNet2-
SSD method was reflected in multiple aspects: Firstly, it had excellent performance in
classifier performance, which could maintain a high true positive rate in complex practical
application scenarios. Secondly, it had obvious advantages in computational efficiency and
convergence speed, and could achieve a high accuracy convergence state in a shorter time.
Finally, its performance on different datasets was relatively stable, demonstrating good
model generalization ability. All of these made IMobileNet2 SSD have higher practical
value and broader application prospects in practical applications.

In addition, this study validated the performance of attention detection models, but did
not address how to apply these detection results to real-time feedback systems. Future
work can explore how to combine this attention detection model with real-time feedback
mechanisms for application in education, driving safety, or other scenarios that require
attention regulation. Currently, the application of attention detection technology may
involve personal privacy and ethical issues, especially in environments such as education
and the workplace. Future research needs to address these aspects to ensure the rational
and compliant application of technology.
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