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Abstract. Video target tracking is widely used in many fields such as human-computer
interaction and augmented reality. Since video scenes contain many complex information
such as lighting, occlusion, background interference, etc., and the motion changes of the
target itself, it makes it a great challenge to study robust target tracking algorithms.
Therefore, a specific study on video target tracking algorithms is done and a video target
tracking method based on Kernel Principal Component Analysis (KPCA) and structured
support vector machine is proposed. Firstly, HOG features and LBPHF features are
computed separately in each sliding window, and the overlapping detection windows are
fused using the Non-Maximum Suppression (NMS) method, so that the two are combined
to form the joint features. Secondly, after extracting the joint HOG-LBPHF features of
the video target, they are mapped by KPCA to the feature vectors that are more favourable
for target classification. Then, based on the structured support vector machine, the inter-
frame target matching fluctuation value is used to judge whether the target is abnormal
or not, so as to decide whether to update the support vectors or not, and combined with
Kalman filtering to predict the target position in the next frame and correct the tracking
results. The experimental results show that the proposed method satisfies the requirements
of high detection rate and low computational complexity. For four types of public video
datasets, the proposed method has obvious advantages in four key performance indexes,
such as tracking accuracy rate and tracking rate, and has strong adaptability in dealing
with large-scale video target tracking.
Keywords: Target tracking; structured support vector machine; feature extraction;
kernel principal component analysis; Kalman filtering;

1. Introduction. Video target tracking technology, as an important branch of computer
vision technology, has been widely used in many fields such as automatic driving [1, 2] and
safe city [3, 4]. Target tracking is accomplished by acquiring image samples of video target
data by frame, and performing image feature analysis through the context and internal
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correlation of image data in adjacent frames, and then completing motion prediction [5]
and localisation analysis [6] of the target.

In video target tracking research, feature extraction and target recognition are the core
aspects of target tracking [7, 8], the former requires feature extraction of the calibrated
image samples, while the latter needs to analyse and generalize the features to obtain
the calibrated image recognition results. In recent studies, feature extraction is mainly
done by using various dimensionality reduction methods for feature optimisation [9] to
reduce data dimensionality and redundancy, and target recognition is mostly done by
using support vector machines [10] and neural network algorithms [11, 12].

In the field of video target tracking, Structured Support Vector Machine (SSVM) [13]
can be used to build a structured model of the target and improve the tracking effect by
learning the constraints of the target. Kernel Principal Component Analysis (KPCA) [14],
on the other hand, can be used to extract the nonlinear features of the target, which can
better capture the changes of the target. Combining the two, the structural and nonlinear
features of the target can be taken into account in tracking and optimised to improve the
tracking effect. Therefore, in this paper, KPCA is used for image feature optimisation
to obtain more valuable target image samples and SSVM is used for target classification,
resulting in the KPCA-SSVM algorithm. The aim of this study is to use Structured
Support Vector Machine for video target tracking and with the help of Kernel Principal
Component Analysis for video target feature dimensionality reduction and de-redundancy
place to enhance the video target classification adaptation.

1.1. Related Work. In both the fields of target detection and target tracking, the key
issues are how to effectively describe the target and how to allow the computer to accu-
rately recognise the target.

Collins et al. [15] proposed tracking target features based on the log-likelihood ra-
tio of the foreground histogram to the background histogram. Bousetouane et al. [16]
proposed a target tracking algorithm using colour and texture to describe the target fea-
tures. Weiskopf et al. [17] proposed a tracking method based on texture features, which
overcomes the effect of lighting variations on tracking in time-varying volumetric data.
The segmentation and tracking results are used as inputs and outputs of each other, i.e.,
on the one hand, the segmentation results are provided as inputs to the tracking, while
on the other hand, the information output from the tracking results is also inputted to
the segmentation, so that the tracking can be formed in consecutive frames in a comple-
mentary way. Zhang et al. [18] proposed to classify tracking as a binary classification
algorithm problem, whose main method is to achieve the tracking purpose by classifying
video frames, and the formation of the classifier needs to be learnt from the previous
frames. Li et al. [19] proposed a target tracking method based on online learning, which
mainly introduces the Boosting algorithm to achieve online feature selection. Zhang et al.
[20] proposed the use of Support Vector Machines to train classifiers, in terms of intro-
ducing SVMs into visual tracking, but the disadvantage of this method is that it cannot
be updated online. In addition, it may lead to tracking drift phenomenon due to the
limitation of the training target class. Zhang et al. [21] improved on this by proposing an
SVM-based semi-supervised classification method to achieve target classification, which
improves the classification ability by implementing updates through unlabelled samples.
Li et al. [22] proposed to apply structured output SVM to target detection tracking.

KPCA [23] is a method that extends linear PCA to nonlinear situations. In the field
of video target tracking, KPCA has better nonlinear modelling and higher recognition
accuracy, and can better adapt to nonlinear data. Compared to traditional linear PCA,
KPCA can describe more nonlinear features because it maps the feature space into a
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high-dimensional or infinite-dimensional feature space, thus better adapting to nonlinear
relationships in video target tracking.

1.2. Motivation and contribution. The traditional structured support vector machine
can produce tracking drift phenomenon when target tracking if there are problems of
target half-obscuration and motion crossover. In addition, the HOG feature [24] can
capture the edge and local shape information of the video target well, so this feature is
widely used in the field of video target tracking at this stage. However, HOG features
still have defects, for example, if the background is cluttered, the apparent performance
of HOG becomes poor.

Therefore, in order to solve the above problems, this work proposes a video target
tracking method based on KPCA-SSVM. The main innovations and contributions of this
work include:

(1) Feature extraction is improved to improve the recognition rate of the video target
tracking system. HOG features and LBPHF features [25] are computed separately in each
sliding window, and the overlapping detection windows are fused using the Non-Maximum
Suppression (NMS) [26] method.

(2) After extracting the joint HOG-LBPHF features of the video target, it is mapped
by KPCA to a feature vector that is more favourable for target classification.

(3) Aiming at the existing structured support vector machine tracking algorithms which
cannot cope well with the shortcomings such as motion crossing and semi-obscuration,
Tsai proposed an improved online target tracking method based on SSVM.

2. KPCA-based feature extraction and dimensionality reduction.

2.1. HOG-LBPHF Feature Extraction. Feature extraction, as a fundamental prob-
lem in the disciplines of computational vision and image processing, is mainly used to
describe the image information and verify whether any pixel in the picture represents a
feature. To obtain as much image information as possible in feature extraction, image
preprocessing is needed to pre-process the image, such as basic image processing methods
such as smoothing, sharpening, filtering, etc.; or more advanced processing such as image
fusion, super-resolution, etc.

The HOG feature proposed in 2005 can capture the edge and local shape information of
the video target very well, so this feature is widely used in the field of video target tracking
at this stage. However, HOG features still have defects, for example, if the background
is cluttered, the apparent performance of HOG becomes poor, but the Fourier transform-
based LBP can compensate for the above defects. Therefore, this work improves the
feature extraction to improve the recognition rate of the video target tracking system.
Specifically, the LBPHF features are combined with HOG features. The HOG features
and LBPHF features are computed separately in each sliding window, and the overlapping
detection windows are fused using the NMS method, so that the two are combined to form
a joint feature.

HOG features are feature descriptors based on local information statistics, which consist
of histograms of local gradients of an image by computing and counting them. In an image,
the orientation density distribution of gradients or edges can well describe the local target
representation. The specific extraction method includes the following steps.

(1) Image normalisation.
The input colour image is firstly greyscaled and secondly the image is normalised. The

normalisation uses Gamma correction to normalise the colour space of the image in order
to reduce the effect of local shading and illumination variations in the image.The Gamma
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correction compression method is shown below:

I(x, y) = I(x, y)γ (1)

(2) Gradient calculation.
The 1-D discrete gradient template is the simplest method of calculating the gradi-

ent, and the horizontal and vertical gradients are calculated by the gradient template as
follows, respectively: {

Gh(x, y) = H(x+ 1, y)−H(x− 1, y)

Gv(x, y) = H(x, y + 1)−H(x, y − 1)
(2)

where H is the image; Gh and Gv represent the horizontal and vertical gradients,
and the convolution kernels computed for both are [−1, 0, 1] and [−1, 0, 1]T respectively.

The gradient at pixel point (x, y) is G(x, y) =
√

Gx(x, y)2 +Gy(x, y)2 and the gradient

direction is α(x, y) = tan−1
(

Gx(x,y)
Gy(x,y)

)
(3) Construction of orientation histograms.
A sliding window method is used, where the sliding window slides over the image to

be tested from left to right and from top to bottom. The image is divided into a number
of interval blocks within the sliding window, and the interval blocks are divided into a
number of grid cells. A histogram of the gradient direction is constructed for each grid
cell of the image. The sliding window, interval blocks, and grid cells are extracted as
shown in Figure 1.

Picture to be detected

Sliding window

Interval block

Grid 

element

Figure 1. MMH-PSO algorithm for membrane structure

Each pixel point in a grid cell votes for an orientation-based histogram channel, with
voting taking the form of a weighted ballot, with each weight calculated from the gra-
dient magnitude of that pixel value. The histogram channel is an undirected gradient
distributed evenly over 0-180°. The sliding window parameters were set to 128Ö64, with
3Ö3 grid cells per rectangular block and 6Ö6 pixels in each grid cell. The gradient infor-
mation of the 6Ö6 pixels in the grid cells is counted using 9 histogram channels.
(4) HOG feature vector normalisation.
The histograms of the gradient directions of all cells in the interval block are normalised.

The purpose is to make the feature vector space overcome the effects of light, shadow and
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edge variations. Since L1 normalisation reduces the computational effort to some extent
on the basis of the same effect, L1 is used in this paper to normalise the HOG.

v ← v/ (∥v∥1 + ϵ) (3)

LBP (Local Binary Pattern) operator [27] is an operator used to describe the local
texture features of an image to solve the texture classification problem. LBP operator
has a good classification effect and is computationally efficient, and it has been used in
the field of text recognition with good results, and later used in face recognition as well as
pedestrian detection, which has also achieved good results. Nowadays, LBP is widely used
as an efficient descriptive algorithm in the fields of target detection and face recognition.

The definition of the original LBP operator is shown below:

LBP =
P−1∑
i=0

u(gi − gc)2
i (4)

u(x) =

{
1, x ≥ 0

0, x < 0
(5)

The original LBP operator extraction method is shown in Figure 2.
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Figure 2. Extraction process of LBP

Since the original LBP operator has a small and fixed scale range and cannot be adapted
to different scales as well as different frequency textures, the LBPHF operator is used in
this paper. Based on the rotationally invariant LBP, the LBPHF operator makes use of
the Fourier operator to characterise the rotational displacements, which is able to address
the torsional offsets arising from the target motion while combining the complementary
information of sign and magnitude. The advantage of the LBPHF operator over the
original LBP operator is that it takes into account the frequency characteristics of the
image, rather than just the spatial characteristics, and is therefore able to better capture
and characterise the texture and shape characteristics of the image. LBPHF can be
defined as:

LBP n2 −HF (n1, n2, u) = H (n1, u)H (n2, u) (6)

where 1 ≤ n1, n2 ≤ P − 1 and 1 ≤ u ≤ P − 1, P are the number of feature points in
the neighbourhood; H(n2, u) is the conjugate of H(n2, u).

H ′ (n1, u)H (n2, u) = H (n1, u) e
−i2πua/PH (n2, u)e

−i2πua/P = H (n1, u)H (n2, u) (7)

where the discrete Fourier transform (DFT) is used to compute H(n, u).



Video Target Tracking Based on KPCA and SSVM 2429

H(n, u) =
P−1∑
r=0

hI (Up(n, r)) e
−i2πur/P (8)

where Up(n, r) is a special uniform pattern, (n, r) in which n is the number of 1-bits in
the uniform pattern, r is the rotation angle, the value of the histogram hl is the number
of occurrences of the uniform pattern Up(n, r) on the image I, and H(n, ·) is the n-th row
of the histogram of the Fourier transform of the histogram.

This work uses LBPHF as a general framework where Up(n, r) can be replaced by any
uniform pattern feature. Using this as a basis, a new LBPHF descriptor can be obtained,
which is equivalent to the complete local binary mode. The symbolic computation for the
LBPHF is identical to the formulae used to compute the basic LBP. The magnitude is
calculated as follows.

LBP P,R
M (x, y) =

P−1∑
i=0

u (|gsi − gc| − c) 2i (9)

where c is an adaptively determined threshold that can be set to an average value over
the entire image.

Finally, the two parts were brought into Equation (9), cascaded with the resulting
Fourier histograms to obtain the LBPHF combining sign and magnitude. The LBPHF
extraction method does not use a block structure, but rather directly splits the image into
four parts. In each part a cellular grid of 8×8 was used for segmentation. After extracting
the features, the feature normalisation cascade was performed and the normalisation
criteria were the same as those used for HOG feature extraction, and finally the HOG-
LBPHF features were obtained.

2.2. Fusion of features. Currently, there are many feature fusion methods and all of
them have good results for fusion, but most of them face a problem: when the detection
window is larger than the size of the target in the database, and if an image contains two
targets and the targets are in different regions, it may produce overlapping windows for
different targets.

So in this paper, the non-maximum suppression (NMS) algorithm is used to fuse the
overlap detection results. Firstly, the scores that are not positive samples are set to zero.
Hard truncation is used to fuse the overlapping windows that are close to each other
should be fused together, the reason is that it can reduce the time spent on mean drift
later, and better results can be obtained without any adjustment.

thc(w) =

{
0, if w < c

w − c, if w ≥ c
(10)

The (x, y, scale) is mapped to a 3-D space where scale is the scale so that a number of
pyramid structures are formed. Subsequently a mean shift model (mean shift model) is
applied to each of the detections and the clustering results obtained are the final detec-
tions.

2.3. Feature dimensionality reduction. After the above HOG-LBPHF feature ex-
traction is completed, a dimensionality reduction operation is performed using the Kernel
Principal Component Analysis (KPCA) method to downscale this joint feature to a rel-
atively low dimension to obtain the input features for target tracking. This is because
the initial HOG feature is 36 dimensional and consists of four different normalisations of
the 9-direction gradient histogram. However, 36-dimensional features are still too large
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in dimension for target tracking and are prone to cause tracking drift which can lead to
tracking failure.

KPCA is obtained by nonlinear extension of Principal Component Analysis (PCA),
which can effectively deal with nonlinear features of data. The KPCA method uses a
nonlinear embedding mapping, which is a nonlinear generalisation of the PCA method,
and thus can effectively deal with nonlinear problems.

The traditional PCA method selects the data method with the largest variance as the
projection direction, and this feature limits the application range of traditional PCA.
When the original data feature space is linearly divisible, the traditional PCA method is
able to downscale and classify these data, while when the original data feature space is
linearly indivisible, the downscale and classification performance of the traditional PCA
method will be greatly reduced. To address this shortcoming of traditional PCA, KPCA
maps the features in the low-dimensional space to the high-dimensional Hilbert space by
using kernel functions, and then performs linear PCA operations in the high-dimensional
space to achieve data reduction and classification.

KPCA maps the samples into the high-dimensional feature space by nonlinear mapping,
let the sample set be X = {x1, x2, · · · , xN} ∈ Rd, the nonlinear map is ∅, and the high-
dimensional feature space is F .

∅ : x ∈ X → ∅(x) ∈ F (11)

where ∅(x) is the sample corresponding to x in the high-dimensional feature space F ,
called the kernel sample [28].

After projecting the sample set X into the feature space F , we obtain the sample set in
the high-dimensional feature space X ′ = {∅(x1), ∅(x2), · · · , ∅(xN)}, and PCA downscaling
of X ′, i.e., to get the KPCA downscaling result of the original data X.
Assume that the sample set X ′ in the high-dimensional feature space F satisfies the

centrality condition.

N∑
i=1

∅(xi) = 0 (12)

where m is the total number of data samples, then the covariance matrix of the sample
set X ′ in the high-dimensional feature space F is:

C =
1

N

N∑
i=1

∅(xi)∅(xi)
T (13)

Solve for the eigenvalues and eigenvectors of C in the high-dimensional feature space
F .

λu = Cu (14)

where λ is the eigenvalue of C and u is the corresponding eigenvector.
Since the mapping transformation x → ∅(x) is unknown and the high-dimensional

feature space F is not visible, it is not possible to solve Equation (14) directly. According
to the renewable kernel theory, u· can be obtained by a linear combination of feature
space samples.

u =
N∑
i=1

ai∅(xi) (15)

where ai(i = 1, 2, · · · , N) are the coefficients.



Video Target Tracking Based on KPCA and SSVM 2431

Define a kernel matrix of N ×N .

Kij = K(xi, xj) = ∅(xi)
T∅(xj) (16)

where K(xi, xj) is called the kernel function, which, combined with Equation (14) and
Equation (15), leads to

λ′α = Kα (17)

where λ′ = Nλ is the eigenvalue of the kernel matrix K and α is the eigenvector
corresponding to λ′.
After the feature extraction is completed using KPCA to perform dimensionality reduc-

tion operations on the high dimensional original features, the kernel function is selected as
the radial basis function (Radial basis function), the expression of which is shown below:

Krbf = exp

(
−∥xi − xj∥2

2σ2

)
(18)

With KPCA, the linearly indivisible data in the original feature space can be projected
into the high-dimensional feature space and then downscaled (or reconstructed) [29], so
as to achieve linear divisibility in the new feature space. Figure 3 shows a sample of
linearly differentiable data in the original 2D space after dimensionality reduction and
reconstruction using KPCA. The left figure shows two types of concentric circle data with
radii of 5 and 10. It is easy to see that these two types of data are linearly indivisible
in the original feature space, and the right figure is the data reconstructed after using
KPCA to downscale these two types of data. In the reconstructed feature space, these
two types of data are linearly divisible, and the kernel function used in the downscaling
process is the radial basis function. The parameter 2σ2 takes the value of 9.1208.

Figure 3. Instance of KPCA dimension reduction and reconstruction

3. Improved video target tracking method based on SSVM.
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3.1. Sample selection. The essence of SVM is actually to find the problem of parti-
tioning two classes a hyperplane f(x) = wTx+ b such that the distance of all points from
the hyperplane is kept as maximum as possible. An optimal classification plane. This is
shown in Figure 4.

Class 1

Class 2

Margin b

Margin 

a

Margin 

c

Optimal hyperplane
x

y

Figure 4. The optimal separating hyperplane

In this paper, we use the sample with the highest matching value as the positive sample
to update the support vector, to get the positive sample, we first need to collect the sample,
the collection method is the proximity region search method, we select the sample in the
two-dimensional plane according to the way of Y = {(x, y)|x2 + y2 < r2}, in this paper,
r = 30, and we compute the feature vectors of the sample, and match with the support
vector, this paper mainly uses Haar features, which are generated in the whole area of
the target, using grey histogram and integral histogram as the basis of judgment, which
can effectively reduce the feature computation time. Matched with the support vector,
this paper mainly uses Haar features, generated in the target overall region, using grey
scale histogram and integral histogram as the basis of judgement, can effectively reduce
the feature calculation time. The expression representation of the matching function is
shown as follows.

F (x, y) =
∑
i

βiΦ(x) ∗ Φ(xi) (19)

where βi is the weight of each support vector, x is the test feature vector, and xi is the
support vector.

3.2. Support vector update. The traditional method uses the highest matching value
samples to update, and such samples are given in each frame, but when the target is
occluded, the sample with the highest matching value is often not the target or far away
from the target, and at this time, the support vectors are still updated with positive
samples at a time, which will make the tracking accuracy decrease or even tracking drift.
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In this paper, positive samples are selected using inter-frame matching value fluctuation
as shown below:

|αFn − βFn−1| < T1, n ≥ 2 (20)

where α and β are weights, indicating the degree of importance of the current frame
and the previous frame, here both take 1. T1 is the value of the difference between the
highest matching value of the previous frame and the current frame.

Since the match value reflects the similarity with the target, if the fluctuation of the
match value suddenly becomes large, it means that the target is abnormal, and then we
can not use the sample corresponding to the highest match value directly as a positive
sample to update the support vector, and use the Kalman filter to correct the tracking
results.

When the fluctuation value meets the threshold value T1, the prediction target of the
Kalman filter is used as the reference target, and the radius search method is used to
search for samples as the new support vectors for SVM training. The search and update
methods are: (1) take the current sample with the highest matching value as the centre,
and stagger the points with a certain radius; (2) form a sample net group according to
the method of equal division of radius and angle.

3.3. Kalman filter correction strategy. In the initialisation phase of target tracking,
the first frame is used to calibrate the moving target by human calibration or automatic
detection. A radius search is used to select the samples so as to obtain the first set of
human calibrated samples {xi, yi}Ni=1.
In the subsequent frames, firstly, we obtain the set of samples according to the proximity

search method at the prediction location of the previous frame, calculate the matching
value between the samples and the target, and update the support vectors for the samples
that meet the threshold value of T1, and at the same time, update the Kalman filter with
the coordinates of the samples. If none of the extracted samples meets the threshold value
T1, then stop updating the support vectors and use the Kalman prediction correction
strategy.

The Kalman filter estimates the position of the target from information about the tar-
get’s dynamics, while eliminating the effects of noise. The estimated target position can
be the current frame (filtering), the next frame (prediction), or the previous frame (inter-
polation or smoothing). In this paper, we use a combination of filtering and prediction.√

(xi − xj)
2 + (yi − yj)

2 < T2 (21)

where (xi, yi) is the SVM prediction coordinate, (xj, yj) is the Kalman prediction coor-
dinate, and T2 is the Euclidean distance determination between the two.

In this work, the mentioned threshold range matching fluctuation value T1 is 0.25 and
the Euclidean distance T2 between SVM predicted coordinates and Kalman predicted
coordinates is 8.

4. Experimental results and analyses.

4.1. Testing of network video sequences. In order to visually verify the tracking
effect of the tracking algorithm in this paper, the experimental runtime environment is
Matlab R2017a. The first test video sequences used are all from the web. The single
image size of the videos is 360 Ö 240 and the frame rate is 30 fps. All the videos are
manually labelled at the initial frame. The results of the experimental part of the target
tracking are shown in Figure 5. Because the moving human body is very fast and the
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athletes are similar in appearance and height, so this all brings difficulties in tracking,
and all of them are jittery during the tracking period, and even the phenomenon of drift,
but after a short period of time to learn all of them can be well overcome.

(a) 50 frames

(b) 100 frames

Figure 5. Partial effects of target tracking experiments

4.2. Video target tracking performance comparison. In order to further validate
the performance of the proposed KPCA-SSVM algorithm for video target tracking, ex-
ample simulations are carried out and the dataset is shown in Table 1.

From Table 2, it is known that the tracking overlap rate of the 4 types of video sets
is maintained between [0.76, 0.81], which indicates that the KPCA-SSVM algorithm has
a high degree of overlap between the target borders and the labelled frames predicted
by the video target tracking, and it has a strong performance in adaptively tracking the
target. And the tracking speed is maintained at about 30 fps for the 4-class video set.
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Table 1. Video Collection

Sample name Number of training videos Number of test videos
GOT-10k 7823 2015
VOT2018 1632 335

UAV 5356 1013
OTB100 80 20

Table 2. Tracking performance of KPCA-SSVM

Video collection Average overlap rate Tracking speed (fps)
GOT-10k 0.763 29
VOT2018 0.782 37

UAV 0.779 33
OTB100 0.805 34

In order to verify the effect of KPCA on the video target tracking performance of
SSVM, the tracking performance of four types of video sets are simulated using SSVM
algorithm and KPCA-SSVM algorithm respectively. After KPCA processing of the video
target features, the mapped features are used for SSVM to complete the target tracking
by target classification, and its tracking accuracy rate is significantly improved, which is
due to the fact that the KPCA of the video target features reduces the multidimensional
feature correlation, and at the same time reduces the interference of video noise signals
on the original video target features, which effectively improves the tracking accuracy
rate of the SSVM on the video target. After the feature processing of KCPA, the video
target tracking success rate of SSVM also has a large increase, which is mainly due to
the fact that after the video target feature processing of KPCA, the feature dimensions
are reduced and the feature redundancy is optimised, so that the tracking classification
of SSVM is more effective and it is easier to track to the desired target.

Table 3. Tracking performance of SSVM and KPCA-SSVM

Video collection Arithmetic Average overlap rate Rate (fps)

GOT-10k
SSVM 0.738 17

KPCA-SSVM 0.843 27

VOT2018
SSVM 0.773 23

KPCA-SSVM 0.862 35

UAV
SSVM 0.761 20

KPCA-SSVM 0.859 32

OTB100
SSVM 0.783 23

KPCA-SSVM 0.885 31

From Table 3, the KPCA-SSVM algorithm has improved the average overlap rate and
tracking speed compared to SSVM. For all the given video sets, the KPCA-SSVM al-
gorithm performs better than the SSVM algorithm. On all four video sets (GOT-10k,
VOT2018, UAV, and OTB100), the average overlap rate of KPCA-SSVM is significantly
higher than that of SSVM.This indicates that the KPCA-SSVM algorithm is more ac-
curate in tracking targets. In addition to the average overlap rate, the rate (fps) of
KPCA-SSVM also exceeds that of SSVM. the highest rate occurs in the VOT2018 video
set at 35 fps, while SSVM has a rate of 23 fps in the same video set. this means that
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KPCA-SSVM not only provides more accurate tracking, but also processes video frames
faster.

In order to further compare the performance of KPCA-SSVM algorithm with other tar-
get tracking algorithms, SVM-Meanshift algorithm, FasterMDNet algorithm, RT-MDNet
algorithm and KPCA-SSVM algorithm are used to simulate the performance of 4 types
of video sets, the GOT-10k set for example, which is shown as Table 4.

Table 4. Tracking performance of four algorithms (GOT-10k Set)

Algorithm Accuracy Success rate Average overlap rate Rate (fps)
SVM-Meanshift 0.743 0.917 0.595 27
FasterMDNet 0.745 0.912 0.606 24
RT-MDNet 0.841 0.955 0.711 21
KPCA-SSVM 0.867 0.98 0.843 31

For the four types of video sets, the KPCA-SSVM algorithm outperforms the other
three algorithms in all four metrics, while the other three algorithms have their own
strengths and weaknesses in a single metric. In terms of video tracking rate, the SVM-
Meanshift algorithm is second only to KPCA-SSVM, which is mainly due to the fact that
the classification efficiency of SVM is generally higher than the network optimisation of
MDNet. The comparison reveals that the KPCA-SSVM algorithm better solves the dual
optimisation problem of video target tracking accuracy and rate.

5. Conclusion. In this work, a video target tracking method based on KPCA-SSVM is
proposed. LBPHF is used as a general framework and a new LBPHF descriptor is obtained
based on it. The two features are fused using the non-maximum suppression (NMS)
method to obtain the joint HOG-LBPHF feature. After extracting the HOG-LBPHF joint
features of the video target, it is mapped to a feature vector more favourable for target
classification by KPCA. The inter-frame target matching fluctuation value is used to judge
whether the target appears abnormal or not, and combined with Kalman filter to predict
the target location in the next frame. The experimental results show that the KPCA-
SSVM algorithm achieves high tracking performance in tracking studies of all four types of
public video sets. The subsequent study will consider the use of intelligent algorithms to
optimally solve the core parameters of SSVM from the perspective of optimised solution
of SSVM, in order to further improve the applicability of the KPCA-SSVM algorithm in
video target tracking applications.
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