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Abstract. With the rapidly growing number of vehicles and traffic roads, predicting
traffic flow presents a challenge due to the intricate nature of the traffic network topol-
ogy, the diverse driving behaviors, and the potential impact of unforeseen emergencies on
road conditions. To address the complexity of traffic flow forecasting concerning the spa-
tial structure of the road network. In this work, In this paper, we proposed a new model
that addresses the problem that current research is too homogeneous for the construction
of spatial correlations through multiple spatial views Firstly, recognizing that historical
data inherently carries dynamic information about the spatial structure of road networks,
we propose a dynamic spatiotemporal similarity graph to replace the conventionally prede-
fined static graph used in traditional graph convolution approaches. Secondly, we devise
an enhanced gated graph attention module incorporating multi-scale gated graph attention
mechanisms to capture temporal features from multiple perspectives, thereby bolstering the
model’s ability to perceive the dynamic time dependencies within the road network. The
proposed method substantially improves state-of-the-art techniques through extensive ex-
perimentation on real-world datasets.
Keywords: Traffic flow prediction, Graph convolution network, Multi-view, correlation
matrix

1. Introduction. Traffic flow prediction plays a vital role in traffic management and
planning [1]. It refers to predicting future traffic conditions in road networks, including
traffic flow, speed, and congestion levels. With the deployment of large-scale transporta-
tion facilities on highways, a large amount of traffic data is generated. These generated
traffic data contain the evolution rules of traffic flow, and each road network node presents
a complex space-time relationship and dependency pattern. How to fully utilize the rela-
tionship between these historical flow data and road network nodes to mine various forms
and spatiotemporal dependence patterns of traffic flow is of great significance to future
traffic signal optimization, path planning, and real-time traffic management [2]. However,
traffic flow data often have obvious spatio-temporal correlation and multi-scale nature.
The changes in traffic flow at different time and space are related to each other, and the
distribution and changes of traffic flow at different time and space scales are also differ-
ent. How to effectively model and exploit these correlations and multi-scale properties is
a challenge.
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Deep learning research on traffic flow prediction has made impressive progress in recent
years. Early research mainly focused on using traditional deep learning models such as
recurrent neural networks (RNN) and convolutional neural networks (CNN) for traffic flow
prediction. Traditional deep learning models still have certain limitations in capturing
traffic flow data’s nonlinear and dynamic characteristics. Secondly, traditional models
usually ignore the interaction between the topology of the transportation network and
the traffic flow.

To improve the shortcomings of current research, more complex deep learning models,
such as graph neural networks (GNN) and self-attention mechanisms, are introduced to
better capture traffic data’s nonlinear and dynamic characteristics. Secondly, combine the
traffic network topology information to design a model considering the interaction between
traffic flows. For example, Ma et al. [3] proposed a traffic flow prediction method based
on a space-time graph diffusion network. They utilize graph convolutional neural network
(GCN) and temporal convolutional neural network (TCN) to capture traffic flow data’s
spatial and temporal dependencies, and graph diffusion to capture the propagation effect
of traffic flow. Lv et al. [4] proposed a traffic flow prediction method based on a graph
convolutional recurrent neural network. They combine graph convolutions and recurrent
neural networks to achieve accurate traffic flow predictions by modeling traffic flow data’s
spatial and temporal dependencies.

To further improve the performance of the model, researchers began to explore the
application of attention mechanism in traffic flow prediction. Guo et al. [5] proposed a
traffic flow prediction method ASTGCN based on an attention network and spatiotem-
poral graph convolution network (ST-GCN). They introduced an attention mechanism
to capture the correlation between different nodes and extracted spatial and temporal
features through graph convolution to achieve more accurate traffic flow prediction. How-
ever, most existing GCN methods use predefined static adjacency matrices to describe the
spatial correlation in the road network, which cannot truly reflect the dynamic changes
in spatial dependence between road networks.

Recently, Chen et al. [6] proposed a new position graph convolutional network, which
solves the problem of a predefined adjacency matrix by adding a learnable matrix and
uses the absolute value of this matrix to represent the differences between different nodes
and different levels of influence. Lan et al. [7] proposed a new dynamic spatio-temporal
perceptual graph neural network and proposed a new data-driven strategy for dynamic
spatio-temporal perceptual graphs to replace the predefined static graphs.

In addition, most time series traffic data have similar data patterns and similar func-
tional relationships between road network sites. However, most of the existing graph-
based spatiotemporal network models mine the temporal correlation of traffic flows from
a single time series, lacking attention to short-term and long-term temporal correlations,
and therefore have problems in capturing dynamic temporal correlations within the road
network limitation.

To solve the problems mentioned above, we propose a new traffic flow prediction model
named MSTA-GNN, which can effectively capture the spatiotemporal correlation of differ-
ent periods of the road network. The main contributions of this paper can be summarized
as follows:

(1) A correlation coefficient graph is constructed to capture the dynamic properties
of spatial correlations between nodes by directly mining historical traffic flow data of
nodes without using a predefined static adjacency matrix. The model is named Dynamic
Spatio-Temporal Similarity correlation (DSTS), and it shows better capacity to capture
the dynamic spatial correlation between sites.
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(2) Spatio-temporal correlations for extracting traffic flow in three different historical
periods are proposed. Three modules are used to learn the traffic relationship between
sites in different periods, thereby obtaining the spatial correlation of the corresponding
periods.

(3) An improved gated graph attention module is designed, which uses multi-scale
gated graph attention to capture a variety of temporal features, further enhancing the
model’s perception of the dynamic time dependence of the road network. Extensive
experiments on real road traffic datasets demonstrate the improved performance of our
proposed algorithm compared to multiple baselines, including state-of-the-art algorithms.

The remainder of the paper is organized as follows. Section 2 presents the related works
on Graph Convolution, Multi-view approach, and Spatio-Temporal prediction method;
the proposed MSTA-GNN model is introduced in Section 3, and Section 4 presents the
details of experiments and their results, including datasets, experimental setup, and the
analysis of results. Finally, Section 5 concludes the paper.

2. Related work. In this subsection, we first review and outline related work on Graph
Convolution, followed by an overview of the Multi-view approach and spatiotemporal
prediction model.

2.1. Graph Convolution. Nowadays, graph convolutional neural networks are widely
used in traffic flow prediction, usually including two methods. One is spectral GCN.
Bruna et al. [8] used the Laplacian spectrum to extend the convolution operation on the
graph in the spectral domain. However, calculating spectral domain convolution requires
the calculation of all eigenvalues of the Laplacian matrix, which creates a computationally
intensive problem. The ChebNet model proposed by Defferrard et al. [9] uses Chebyshev
polynomials to expand the diagonal matrix based on eigenvalues to approximate graph
convolution and reduce its computational complexity. In classic GCN [10], graph convo-
lution is used in a CNN-like deep network framework to achieve effective embedding of
graph structure and node attributes. The other is spatial GCN. Micheli and Alessio [11]
performed graph convolution by directly summarizing the neighborhood information of
nodes. Atwood et al. [12] regarded graph convolution as a diffusion process and intro-
duced the probability of information propagation through different paths between any two
nodes. Velickovic et al. [13] proposed a graph attention network in which an attention
mechanism adjusts the weights between adjacent nodes.

2.2. Multi-view based approaches. In recent years, more and more scholars have
applied multi-view learning to traffic flow prediction. Multi-view methods for traffic flow
prediction fall into two broad categories:

The first category is from the perspective of learning relationships between stations, and
many methods capture various spatiotemporal dependencies in traffic flows by defining
or learning different types of adjacency matrices.

The second category is from the perspective of learning temporal dependence. Some
methods divide the data set into different subsets based on temporal attributes, such
as periodic trends, closed flows, etc., or use clustering methods to divide historical data
streams. Create multiple clusters for different attributes, and then learn different patterns
of traffic characteristics from these clustered data.

Wang et al. [14] proposed a new multi-view bidirectional spatiotemporal graph network
(Multi-BiSTGN) to capture the spatiotemporal dependence of traffic flow by constructing
three views: closeness, daily degree, and weekly degree. Jin et al. [15] introduced a multi-
view spatiotemporal virtual graph neural network (DMVST-VGNN) to predict online
ride-hailing demand. DMVST-VGNN captures the dynamic spatial dependencies of traffic
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flows by constructing distance graphs, association graphs, and mobility graphs. Li et al.
[16] proposed a method of extracting dynamic time correlation using multi-view spatio-
temporal graph neural network (MVST-GNN) by constructing near, medium, and long-
distance three-view traffic data. Liu et al. [17] proposed a dynamic multi-view coupled
graph convolution model to predict urban travel demand. However, the multiple attribute
graphs constructed by the above method are all based on the same period, and traffic
characteristics cannot be learned from multiple historical periods, making it challenging
to capture deep spatiotemporal dependencies.

Zhou et al. [18] proposed a data-driven method called MOHER to predict crowd flow,
which uses cities’ geographical proximity and functional similarity to identify adjacent
flow areas and utilizes cross-modal GCN to learn different patterns and correlations. Li et
al. [19] proposed a multi-task synchronized graph neural network (MTSGNN) to predict
the transition between regions, which uses multi-task graph representation learning to
capture multiple types of dynamic spatial dependencies simultaneously. Huang et al. [20]
proposed an attention mechanism for traffic flow prediction based on the convolutional
LSTM model. The model uses clustering to learn the macro and micro patterns of traffic
flow and uses the attention mechanism to combine two different levels of features.

However, the multi-view learning methods used above usually use static relationship
matrices to capture the spatial characteristics of sites while ignoring the dynamics of
relationships between sites over time, making it difficult for the model to capture the
deeper spatiotemporal dependencies of traffic flow and failing to reflect Dynamic spatial
dependence characteristics of traffic network conditions. In contrast, the model in this
paper responds to the dynamic spatial dependence of the traffic network by constructing
different relationship matrices.

2.3. Spatiotemporal prediction methods. Researchers have recently proposed vari-
ous deep-learning methods to capture the spatiotemporal correlation of traffic prediction.
In the ASTGCN model proposed by Guo et al. [5], the attention mechanism is incorpo-
rated into standard convolution to update node information by fusing information from
adjacent time slices. However, the spatial dependence of the ASTGCN model only comes
from the static adjacency graph structure so this method may miss potential dynamic
dependence information. The Graph WaveNet model proposed by Wu et al. [21] and
the AGCRN model proposed by Bai et al. [22] discover hidden spatial dependencies by
embedding learnable nodes. However, these models cannot stack spatiotemporal layers
while expanding the perceptual domain. Park et al. [23] and Wang et al. [3] utilize the
self-attention mechanism to model spatiotemporal correlation. However, due to the use
of autoregressive mechanisms, these algorithms are prone to error accumulation during
the inference phase.

There are also some scholars’ methods that focus on designing new graph structures.
The STFGCN model proposed by Li et al. [24] builds a spatio-temporal fusion graph
for traffic prediction based on the research of Song et al. [25] and supplements historical
sequence information based on the static adjacent graph. The STGODE model proposed
by Fang et al. [26] is based on the combination of the semantic adjacency matrix and the
static space adjacency matrix and introduces ordinary differential equations (ODE) into
GCN, in which the semantic adjacency matrix is also calculated using DTW.

However, these models do not explicitly consider the dynamic spatiotemporal depen-
dencies between road network nodes. The models mentioned above although their per-
formance is good, the spatial dependence derived from these models cannot well reveal
their dynamic nature due to the use of predefined static neighbor graphs.
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3. Preliminaries.

3.1. Problem Description. We represent the road network graph as a graph G =
(V,E), where V represents the set of N nodes in the road network, and E represents
the set of connectivity edges between nodes. The adjacency matrix of G is expressed as
A = A(i,j) ∈ R(N×N), if Vi, Vj ∈ V and (Vi, Vj) ∈ E, then A = A(i,j) are equal to 1, then

the traffic status at any time can be regarded as a graph signal Xt ∈ R(N×Cn) where is the
number of parameter types in the traffic data. In this work, we predict only one parameter
type: traffic flow (Cn hence 1). Given the recorded data Xt0:t0+η−1 ∈ R(N×Cn×η), the traffic
volume on the road network G in the future T time steps Xt0:t0+T−1 ∈ R(N×Cn×T ) can be
predicted by training the model f . The formula is as Equation (1):

Xt0:t0+η−1 = f [Xt−η+1:t;G] (1)

3.2. Create a relationship matrix. Based on the above graph structure, we established
a relevant relationship matrix, which determines the path of information transmission in
the graph, which is the key to performing graph convolution operations. We use the graph

signal Xt0:t0+η−1 in the eta time interval and assign the similarity of Â(0) historical traffic
between stations as a weight on each edge in the graph, thereby obtaining the traffic
relationship matrix:

Arel = Fsim[Xt0:t+η−1] (2)

Â(0) = Norm(Arel) (3)

where t0 represents the first time interval used to generate the relationship matrix,
and η represents the number of time intervals of historical data. By performing a graph

convolution operation on the graph G, represented by the relationship matrix Â(0), the
spatial correlation between sites can be learned.

4. Methodology.

4.1. Network architecture. The proposed MSTA-GNN is shown in the Figure 1 and
consists of stacked spatial-temporal blocks and prediction layers. Each ST block is con-
catenated and concatenated with the original input through residual connections and then
sent to the prediction layer. The specific details of the model are as follows:
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Figure 1. Architecture of MSTA-GNN

The overall framework is composed of several spatio-temporal blocks and a prediction
block. The detailed map shows the detailed information of the ST block, which consists of
a spatiotemporal attention block and a spatiotemporal convolution block. The spatiotem-
poral attention block includes temporal and spatial attention blocks. Spatiotemporal
convolution blocks include temporal convolution blocks and spatial convolution blocks.
The Dynamic Spatiotemporal Similarity Graph (DSTSG) is added to both the spatial
attention block and the spatiotemporal convolution block to adjust the spatiotemporal
attention further, and the predefined static adjacency graph used in traditional graph
convolution is replaced with one with dynamic spatial dependence. Similar space-time
diagram.

The similarity matrix part mainly replaces the traditional predefined adjacency matrix
with a similarity matrix with dynamic spatial dependence, helping the Attention module
adjust spatiotemporal attention. The Spatial-Temporal Multi-Attention Block part of this
method mainly realizes the combination of spatio-temporal attention and further enhances
the expression function of dynamic spatio-temporal correlation. The Spatial-Temporal
Convolution Block part mainly realizes the further extraction of more meaningful traffic
network features in the spatial dimension and captures the temporal dynamics of traffic
flow data.

4.2. Generation of correlation matrix. The relationship matrix of a graph plays a
crucial role in learning feature vectors between nodes. Previous methods usually define
relationship matrices based on connectivity or distance between nodes, but this method
cannot accurately capture the dynamic spatial correlation between sites. To solve this
problem, this paper derives an initial relationship matrix based on the relationship matrix
construction method in related work and captures the spatial correlation between nodes
through dynamic learning.

The above statement emphasizes the importance of the relationship matrix for learning
feature vectors between nodes, and the limitations of previous methods are pointed out.
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By deriving an initial relationship matrix based on related work and introducing a new
normalization method, this paper aims to more accurately capture the dynamic spatial
correlation between sites. In addition, norm normalization is used to maintain the sparsity
of node connections. The normalization formula is as follows:

A(0) = ReLU
(
E

(0)
1 E

(0)T

2

)
(4)

D = ΣjA
(0) (5)

D1 = diag

(
1

D

)
(6)

Ã(0) = D1A
(0) (7)

Among them, E1 and E2 represent the two sub-embedding matrices obtained by SVD

decomposition A(0), and Ã(0) represents the normalized correlation matrix. We name the
obtained correlation as Dynamic Spatiotemporal Similarity (DSTS) and its structure as
Dynamic Spatiotemporal Similarity Graph (DSTSG).

4.3. Spatiotemporal graph attention module. Dynamic spatiotemporal similarity
graph (DSTSG) can provide more accurate relationships between nodes, but the dynamic
characteristics of these relationships need to be further refined to adapt to changes in real-
time data. To this end, we propose a new spatiotemporal attention module that aims to
enhance the representation of dynamic spatiotemporal dependencies further. This mod-
ule enhances the expression of spatiotemporal dynamic correlations through sequential
combination.

The above description emphasizes the accuracy of the dynamic spatiotemporal simi-
larity graph for node relationships, and the need for further refinement in adapting to
real-time data changes is pointed out. To meet this need, a new spatiotemporal attention
module is introduced to enhance the representation of dynamic spatiotemporal dependen-
cies. This module enhances the expression of spatiotemporal dynamic correlation through
a sequential combination method.

4.3.1. Time attention. The multi-head self-attention mechanism can capture different fo-
cus and representation subspaces by applying multiple attention heads in parallel and
then merging their results to obtain the final representation. This can better capture
long-term correlations in the input time series. We exploit this mechanism to capture
dynamic temporal dependencies between nodes.

For the multi-head attention with h heads, we define the variables Q, K, V as:

Qi = XWQi
(8)

Ki = XWKi
(9)

Vi = XWVi
(10)

among them, WQi
,WKi

andWVi
are parameter matrices for each attention head i, used for

linear transformation. X(l) ∈ Rc(l−1)×M×N is derived from the lth ST block X(l) reshape,
which represents the c(l−1)-dimensional feature extracted from the N recording points
output by the l−1th layer at the time step of t−η+1, t−η+2, ..., t dimensional features.
The attention weight for each attention head is calculated as follows:

Att(Q(l), K(l), V (l)) = Softmax(A(l))V (l) (11)
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A(l) =
Q(l)(K(l))⊤√

dh
+ A(l−1) (12)

where A(l−1) is the output of the previous layer’s attention.
At the same time, the residual attention idea is used to directly connect the output

of each st block with the output of the next st block to enhance the connection between
different levels of temporal attention. This allows the model to learn both shallow time
dependence and deep time dependence simultaneously, which can alleviate the vanishing
gradient problem while utilizing the dynamic time dependence in the traffic data stream.

Then Q, K, and V are projected H times using H different matrices and then spliced
together.

O(head) = Att(Qi, Ki, Vi) (13)

OT = concat(O1, O2, ..., Ohead) (14)

Where head represents the H − th attention head, and O(head) represents the output of
the h− th attention head.

It is then added to the input of the residual connection and passed through the nor-
malization layer to get the output of the temporal attention layer, which is input to the
spatial attention (SA) module. The formula is as follows:

TemO = LayerNorm(Linear(OT ) +X) (15)

where TemO is the final output of temporal attention, and LayerNorm is layer normal-
ization.

4.3.2. Spatial attention. The temporal attention module adaptively encodes time series
data and obtains feature representations with global dynamic temporal dependence [27].
In terms of extracting spatial dependence, we designed an improved multi-head graph
attention mechanism to obtain. The weight coefficients of the two branches (i.e., Query
and Key) from the input embedding vector from the temporal attention module are cal-
culated. However, the obtained weight coefficient is not used to weight the Value branch
of the input embedding vector but is used to adjust the correlation coefficient map.

We first use the weight matrix to generate Q,K, V , whose dimensions are W
(h)
q , W

(h)
k ,

W
(h)
v ∈ RD×H×h. In forward propagation, we first linearly transform the node features and

then calculate the weight of the multi-head attention. Finally, the values are weighted and
aggregated using attention weights. The formula of Linear transformation is as follows:

qh = TemOW
(h)
q (16)

kh = TemOW
(h)
k (17)

vh = TemOW
(h)
v (18)

Among them, TemO is the output of the TA module W
(h)
1 , W

(h)
k , W

(h)
v are the weight

matrices corresponding to each attention head h.
The input TemO is mapped to obtain Tem

′
O two-dimensional matrix a, representing the

set of embedding vector representations of each recording point. Then add the position
information to Tem

′
O through the embedding layer to get Tem

′
E. At the same time,

when calculating the self-attention weight of the graph, we correct the calculation of the
attention module through the DSTS graph. The calculation formula for self-attention
weight and weight splicing is as follows:
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P (h) =
exp(LeakyReLU(aT [W h

q hi|W h
k hj|W h

s hi]))∑
j′∈Ni

exp(LeakyReLU(aT [W h
q hi|W h

k hj|W h
s hi]))

+Wm ⊙ Asim (19)

P = [P (1), P (2), ..., P (H)] (20)

Here, we introduce a new self-attention term, namely W h
s hi. It represents the self-

attention item of node i, which is used to capture the characteristic relationship of the
node itself. k is the number of attention heads; Wm is a learnable parameter to adjust
the learning of attention by the similarity graph. a is the learnable parameter vector in
the h− th attention head;

4.4. Spatiotemporal graph convolution module.

4.4.1. Spatial graph convolution. Currently, many studies focus on the connectivity and
globality of traffic networks and use predefined graph structures to perform graph convo-
lution operations to obtain node features by aggregating information from adjacent nodes
[28]. To fully utilize the topological characteristics of transportation networks, we adopt
the above ideas and a graph convolution method based on Chebyshev polynomial approx-
imation to learn structure-aware node features. However, unlike existing methods, we
use correlation coefficient graphs instead of predefined graph structures. Furthermore, we
dynamically adjust each term of the Chebyshev polynomial to extract more meaningful
and broader traffic network features in the spatial dimension.

The above statement emphasizes the trend in current research to focus on the connectiv-
ity and globality of traffic networks and the method of using predefined graph structures
for graph convolution. This paper adopts a similar idea, but unlike existing methods,
we use correlation coefficient maps to capture the topological characteristics of trans-
portation networks. Furthermore, by dynamically adjusting each term of the Chebyshev
polynomial, we can extract more meaningful and broader traffic network features. In this
paper, the scalar Laplacian matrix of the Chebyshev polynomials is defined as:

L̃ =
2

λmax

(D − A⋆)− IN (21)

Where A∗ is the correlation coefficient matrix graph DSTSG, IN is the identity matrix,
and D is the degree matrix. λmax is the largest eigenvalue of the Laplacian matrix.

In graph convolution, the information at each node is derived from the nodes in its
domain. To incorporate the dynamic properties of nodes, we use the K-order Chebyshev
polynomial Tk to aggregate the information of the graph signal x ∈ N at each time step.
The formula is as follows:

gθ ∗Gx = gθ(L)x =
K−1∑
k=0

θk(Tk(L̃)⊙ P (k))x (22)

where gθ is the approximate convolution kernel, ∗G represents the graph convolution
operation, and the learnable vector θ ∈ Rk contains polynomial coefficients. P (k) ∈ RN×N

is the spatiotemporal attention matrix of the kth attention head. Finally, each node can
aggregate information from adjacent nodes of order 0 ∼ (K − 1).
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4.4.2. Gated Recurrent Graph Attention Module(GRGU). As a variant of RNN, GRU can
better solve the vanishing gradient problem. Inspired by Li et al. [16], we use GAT to
replace the linear transformation in GRU, and the output given by the spatial convolution
is first passed through GAT to capture the temporal dynamic information of traffic flow
data. In this paper, we use three gated recurrent graph convolution modules to extract
the temporal characteristics of traffic flow data in three different periods. Gated recurrent
graph convolution (GRGU) on traffic data for hourly view periods is defined as:

r
(t)
D = σ

(
Θr ∗GAT

[
h
(t)
D , O

(t−1)
D

]
+ br

)
u
(t)
D = σ

(
Θu ∗GAT

[
h
(t)
D , O

(t−1)
D

]
+ bu

)
c
(t)
D = tanh

(
Θc ∗GAT

[
h
(t)
D ,

(
r
(t)
D ⊙O

(t−1)
D

)]
+ bc

)
O

(t)
D = u

(t)
H ⊙O

(t−1)
H +

(
1− u

(t)
D

)
⊙ c

(t)
D

(23)

where h
(t)
D and O

(t)
D represent the output of GAT and GRU respectively at the t time

interval in each day, and ⊙ represents the Hadema product. σ is the activation function.
Θr,Θu,Θc are the corresponding filtering parameters. You can also obtain the recent and
weekly cycle views through these operations.

5. Experiments and result analysis. To evaluate the performance of the model, com-
parative experiments were conducted on two real traffic datasets. In addition, we further
conducted ablation experiments to demonstrate the effectiveness of the different modules.

5.1. Datasets. To evaluate the performance of the model, we conducted comparative
experiments on four sets of real road traffic data sets PEMS04, PEMS03, PEMS07, and
PEMS08 released by California, USA. These data sets are provided by [25]. Raw traffic
data are aggregated into 5-minute intervals and normalized to zero mean. And construct
the spatial adjacency graph of each data set based on the actual road network in Table 1.

Table 1. Description and statistics of the datasets

Datasets Node Edges Timesteps Missing Rate

PeMS03 358 547 26208 0.672%

PeMS04 307 340 16992 3.182%

PeMS07 883 866 28224 0.452%

PeMS08 170 295 17856 0.696%

5.2. Experimental environment and parameters. For the sake of fairness, we divide
the data into a training set and a validation set and then test the method in the same
way as the baseline, that is, 6:2:2 on the PEMS dataset. We use one hour of historical
data to predict the next hour’s Stream flow traffic. All experiments were run on the
same platform, NVIDIA 3090, 24GB card. The training process is implemented using
PyTorch 1.10.1 in the Python 3.8.10 environment for all deep learning models. We set
the following hyperparameters: The number of terms of the Chebyshev polynomial (equal
to the number of spatial attention heads) K=3. The pooling layer window size W is set
to 2. The number of attention heads in the spatiotemporal attention module is 32. All
graph convolutional layers and temporal convolutional layers use 32 convolution kernels.
All experiments use two spatiotemporal module stacks. In this paper, we use MSE as the
loss function. We adopt the Adam optimizer to train our model with epoch 150, learning
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rate 0.0001, and batch size 64. Mean absolute error (MAE), mean absolute percentage
error (MAPE), and root mean square error (RMSE) are used to measure the performance
of the model.

5.3. Evaluation Metric and Baselines. In our experiments, we use root mean square
error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)
as metrics to evaluate the quality of the model:

MAE =
1

n

∑
i=1

|ŷi − yi| (24)

RMSE =

√
1

z

∑
i

(yi − ŷi)2 (25)

MAPE =
1

n

n∑
i=1

|ŷi − yi|
ŷi

(26)

Among them, yi and ŷi represent the site’s actual value and predicted value, respectively.
n represents the number of all predicted values;

The baselines compared to the proposed model include both traditional and state-of-
the-art methods.

i) FC-LSTM [29]: It is a special RNN model, a recurrent neural network with a fully
connected network.

ii) TCN [30]: It is a time series modeling method based on convolutional neural networks
that uses one-dimensional convolution operations to capture long-term dependencies
in time series data.

iii) DCRNN [31]: Integrating graph convolution into gated recurrent units, graph con-
volution, and LSTM are used to capture traffic’s spatial and temporal dependence,
respectively.

iv) STGCN [28]: Integrate graph convolution into a one-dimensional convolution unit
and use graph convolution and gated CNN to extract spatiotemporal features of
traffic data.

v) ASTGCN [5]: Attention-based spatio-temporal graph convolutional network, which
utilizes spatio-temporal attention mechanism to model spatio-temporal correlation.

vi) STSGCN [25]: Includes a local spatiotemporal subgraph module that considers spatial
and temporal information.

vii) AGCRN [22]: The learnable embedding of nodes is utilized in graph convolution, and
an attention mechanism is introduced to strengthen the correlation between nodes.

viii) STGODE [26]: In multivariate time series forecasting, the concepts of graph convolu-
tional neural network (GCN) and ordinary differential equations (ODE) are combined
to apply continuous graph neural network to traffic forecasting.

5.4. Experimental Results and Analysis. The Table 2 shows the comparison results
of MSTA-GNN and eight baseline methods. It can be seen that our model achieves the
best results on all three indicators in the four data sets. The dynamic spatio-temporal
similarity graph proposed by us can help the model better capture the dynamic spatial
dependence between nodes, which shows that our model can achieve better results than
models using pre-defined graphs without a pre-defined adjacency matrix.
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Table 2. Performance comparison of MSTA-GNN

Datasets Metric FC-LSTM TCN DCRNN STGCN ASTGCN STSGCN AGCRN STGODE MSTA-GNN

PEMS03 MAE 21.41 19.37 18.38 17.60 17.13 17.03 15.94 16.61 15.92

MAPE(%) 22.48 19.85 18.97 17.32 19.11 16.90 15.43 16.50 14.86

RMSE 35.20 34.03 30.54 30.06 29.10 28.93 28.39 27.91 27.02

PEMS04 MAE 26.44 23.37 24.70 22.84 22.58 21.20 19.89 20.41 19.33

MAPE(%) 19.40 15.58 17.32 14.60 16.59 13.90 12.98 13.79 12.88

RMSE 40.50 37.31 38.22 35.45 35.20 33.67 32.29 32.87 31.41

PEMS07 MAE 29.89 32.66 25.34 25.38 28.10 24.37 22.31 22.59 21.73

MAPE(%) 14.40 14.39 11.56 11.10 13.78 10.24 9.62 9.58 9.54

RMSE 43.80 42.24 38.60 38.81 42.55 39.03 35.54 37.45 35.05

PEMS08 MAE 22.20 22.66 17.96 18.12 18.65 17.23 15.98 16.80 15.77

MAPE(%) 15.12 14.06 11.50 11.47 13.09 11.03 10.10 10.77 9.97

RMSE 33.06 35.80 27.85 28.19 26.80 25.32 26.19 25.88 24.98

In addition, our proposed spatiotemporal attention mechanism can better capture the
dynamic changes of data to improve prediction performance. We quantified the test data
and plotted 60 minutes of predicted values versus true values. As shown in the Figure
2, it can be seen from the peak point that MSTA-GNN predicts peak changes relatively
well, and the trend can fit well with the real value.

Figure 2. Comparison of prediction curves on PEMS04

5.5. Abaltion experiment. To verify the effectiveness of individual components in
the model, we made the following variants of the model: (1) MSTA-GNN/oSTA: com-
pletely remove the spatiotemporal attention mechanism; (2) MSTA-GNN/oMA: remove
the multi-head attention mechanism; (3) MSTA-GNN/oGRGU: Remove gated graph con-
volution units; we performed ablation experiments on the above variants on the PEMS04
dataset. The Figure 3 shows the measurement results of MAE and MAPE. Our model
performs better than other variants, which also verifies the effectiveness of each component
in our model.
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(a) MAE per prediction step (b) MAPE per prediction step

Figure 3. Ablation experiment of module effectiveness.

6. Conclusion. We propose a novel deep-learning model for traffic flow prediction, named
MSTA-GNN, which fully utilizes dynamic Spatio-Temporal similarity generated from his-
torical traffic data without relying on predefined static adjacency matrices. The method
could effectively enhance the expression of dynamic correlation attributes between road
network nodes. In addition, the model pays attention to the graph attention mechanism
and performs graph convolution operations on the dynamic spatio-temporal similarity
graph generated by dynamic spatio-temporal similarity, being beneficial to reduce the
dependence of the prediction process on prior knowledge.

At the same time, the spatiotemporal attention module is sequentially combined with
the spatiotemporal convolution module, and GRGU is used to capture practical relevance
under multiple views. As a result, on the four publicly available datasets, our model
improves on all metrics compared to recent baseline methods, and on the Pems04 dataset,
our model improves by 2.8% compared to state-of-the-art models.

However, our model still lacks the consideration of different fine-grained relationship
matrices, so we plan to further explore the construction of relationship matrices in the
future and generate relationship matrices from different aspects to capture more types of
spatial correlations and further enhance the construction of spatial relationship matrices
for road networks.
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