
Journal of Network Intelligence ©2024 ISSN 2414-8105

Taiwan Ubiquitous Information Volume 9, Number 4, November 2024

A Novel Deep Learning Model Watermark Algorithm
with Strong Anti-pruning Robustness

Xiuyan Sun

Public Education Department of Laiwu Vocational and Technical College
sunxiuyan0634@163.com

Chengling Gu

Teaching Affairs Office of Laiwu Vocational and Technical College
chengling 2119@163.com

Linlin Tang∗

Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies
Harbin Institute of Technology (Shenzhen), Shenzhen 518067, P. R. China

hittang@126.com

Lingping Kong

Faulty of Computer Science
VSB-Technical University of Ostrava, Ostrava 708 00, Czech Republic

lingping.kong@vsb.cz

∗Corresponding author: Linlin Tang

Received January 15, 2024, revised April 18, 2024, accepted August 1, 2024.

Abstract. Deep learning has developed rapidly in recent years and has achieved sur-
prising results in multiple fields. A trained model consumes a considerable amount of
computational resources from the trainer and has certain value. Therefore, copyright
protection for deep learning models is an issue that cannot be ignored. This article pro-
poses a framework consisting of three neural networks: Encoder, Decoder and Adversary,
and uses three steps: graphic watermark embedding, model watermark embedding, and
extraction reinforcement to complete the training of neural network. In order to verify
the effectiveness of the framework, this article sets up three experiments: effectiveness
verification, uniqueness verification, and robustness verification. The experimental re-
sults indicate that the model embedded with watermarks in this framework has certain
robustness against some attacks against watermarks.
Keywords: Model Copyright Protection, Black Box Scene, Model Watermark

1. Introduction.
In recent years, field of artificial intelligence has developed rapidly and has been used in
various fields such as image processing and speech recognition, providing excellent and
concise solutions to solve various problems in these fields. In the realm of smart city traffic
network prediction, the integration of quantum genetic optimization with Learning Vector
Quantization (LVQ) neural networks [1] has been demonstrated to significantly enhance
the accuracy and efficiency of predictions. Within the field of medical image analysis, the
application of transfer learning models employing sparse coding and deep learning [2] has
effectively reduced the issue of false positives, thereby increasing the accuracy of lymph
node detection.

2516

A Novel Deep Learning Model Watermark Algorithm with Strong Anti-pruning Robustness 2517

Notably, Deep Neural Networks (DNNs) [3, 4] have been increasingly used and com-
mercialized in various fields due to their powerful performance. However, training DNN
model is a labor-intensive and time-consuming process. It requires a large amount of data
and computing resources, and requires the programmer’s efforts to further adjust network
topology structure and set parameters correctly. The production resources consumed by
these behaviors have extremely high value. However, artificial intelligence models are
very easy to steal [5, 6], and in the future, more and more data information will be saved
in the form of artificial intelligence models for completing various tasks. How to ensure
the security of these artificial intelligence models and safeguard the rights and interests
of model owners has become a problem that must be considered.

The process of training a model is quite difficult, while stealing a model is very simple.
The value contained in these models is sufficient to attract a large number of malicious
attackers to attack. These attackers often steal their functions and undergo simple mod-
ifications to make these models provide their own paid services, which is undoubtedly a
property infringement on model owner. These attackers have many ways to steal models,
such as model extraction attack proposed by Tramer et al. in 2016. This approach in-
volves attackers iteratively sending data and viewing the corresponding response results
to infer the parameters or functions of the machine learning model, thereby replicating a
machine learning model with similar or even identical functions.

It is precisely in order to confront these attackers that Uchida et al. first proposed
the concept of artificial intelligence model watermarking [7]. Watermarking is a way
to claim copyright by embedding identity information into some original data without
affecting the use of data. Model watermarking [8, 9], on the other hand, applies traditional
digital watermarking techniques and ideas used to protect multimedia content to the
field of artificial intelligence. Before publishing a model, the watermark is embedded
in the model. In the event of disputes over the copyright of the model, the watermark
information can be extracted from the model in a predetermined manner. The proposal
of model watermarking has provided model researchers with a powerful tool to combat
model theft, which is of great significance.

This paper proposes a copyright protection algorithm for image processing models,
which uses three steps: graphic watermark embedding, model watermark embedding, and
extraction reinforcement to complete the training of neural networks.

In order to verify the effectiveness of the framework, this article sets up three experi-
ments: effectiveness verification, uniqueness verification, and robustness verification. The
experimental results are relatively acceptable, indicating that the model embedded with
watermarks in this framework has a certain degree of robustness against some attacks
against watermarks.

2. Realted work.

2.1. Model Watermarking in Black Box Scenes.
In a black box scenario, model owner or validator is unaware of the internal structure
and weights of suspicious target model, and can only access the target model through the
application program interface (API) to obtain specific output for copyright verification.
Usually, in this case, black box watermarking method selects specific samples to form a
trigger set. When model classifies these specific samples into preset incorrect labels, it
can be inferred that the model has been stolen. For example, for an image that is clearly
’cow’, set it to the wrong specific label ’cat’, create a trigger set for samples like this, and
train the model together with the trigger set and ordinary samples. After the training is

2518 X. Sun, C. Gu, L. Tang and L. Kong

completed, the model will classify these specific images into specific error labels. If these
trigger sets are not trained, the model will correctly classify them as ’cows’. When there
is a dispute over model ownership, if the model categorizes a large number of trigger sets
into preset error labels, it indicates that the model was obtained by stealing someone
else’s model.

Method proposed by Merrer et al. [10] embeds watermarks by fine-tuning the pre-
trained model, so that the boundaries of the classification area present the desired shape.
More specifically, by stitching it around a set of inputs that correspond to a set of adver-
sarial examples calculated on a pre-trained model, the desired shape is obtained.

Another method proposed by Zhang et al. [11] closely tracks watermarks through
backdoor mode. The key image is generated by overlaying visible patterns (watermark
triggering patterns) unrelated to the host image onto some training images. Then, by
changing the original true class of the image, the images with patterns are re labeled
and used to train the watermark vector to output the selected label in the presence of
watermark triggering patterns. Three different ways of generating trigger patterns were
proposed. To verify the existence of the watermark, owner inputs the key image into DNN
and verifies whether the response matches the required key label.

In Guo et al. [12], key images are also generated by adding trigger patterns, but
these patterns are invisible and can be seen as a method of labeling image subsets in
the training set. The labeled image is assigned a set of predefined (possibly random)
labels. DNN first trains on non-labeled images, and then applies fine-tuning to guide the
network in classifying labeled images as needed. Due to the invisibility of the mark, the
non-watermark model will continue to classify the marked image as a pre-trained model,
while marked model will recognize the presence of the watermark and exhibit consistent
behavior.

Image classification model is a neural network that completes the classification of im-
ages by processing the input images and mapping them to a certain category label. In
this classification model, trigger set can be constructed by selecting some special images,
so model can correctly classify most of images, meet the requirements, and have a certain
degree of specificity. This is implementation method of most image classification water-
marking methods. For those image processing models, both the input and output are
images, but similar ideas to image classification models can also be used to embed model
watermarks.

At present, research on model copyright protection mainly focuses on image classifi-
cation model watermarking, while there is relatively little research in the field of image
processing model watermarking, and it is not possible to simply apply watermarking
methods of image classification models directly to image processing models. This project
aims to consider a method that can embed watermarks into the output during image
processing. Method of embedding watermarks should not be easily removed by attackers
by directly deleting some modules, and should be integrated with the entire model to pre-
vent model thieves from directly removing the watermark code after finding it to obtain
a model without embedded watermarks.

2.2. Image Watermarking Algorithm Based on Deep Learning.
Some deep neural networks are very sensitive to small and difficult to distinguish changes
in the input image with the naked eye, so it is possible to try using partial models for
watermark embedding and extraction. Jiren Zhu et al. attempted to embed watermarks
using the HiDDeN model. HiDDeN is a data hiding framework that uses three convolu-
tional networks for data hiding. The first convolutional network attempts to hide data
into the image, the second convolutional network attempts to extract hidden data from

A Novel Deep Learning Model Watermark Algorithm with Strong Anti-pruning Robustness 2519

the image, and the third convolutional network is a supervisor that attempts to extract
hidden data from the image. This network ensures that the data hidden by the first
convolutional network is not too obvious.

In model training, for encoder Ee, it receives carrier image Ico and binary message Min

with length L, generating Ien similar to Ico; The noise layer N receives Ico and noise Len

as inputs, generating a noisy image Ino; Decoder D attempts to reply with a message of
Mout from Ino; The discriminator trains on a mixed dataset of Ico and Ien, and predicts a
probability of Ien, which is called AĪ.

For image distortion loss λI , there are: (S is the image size) as shown in Formula (1).

λI (Ico, Ien) = |Ico − Ien|22 /S (1)

For adversarial losses, as shown in Formula (2).

λG (Ien) = log (1− A (Ien)) (2)

The classification loss caused by the discriminator’s prediction as shown in Formula
(3).

λA (Ien, Ien) = log (1− A (Ico)) + log (A (Ien)) (3)

This method takes advantage of the strong learning ability of neural networks, without
the need to design the embedding method and embedding position of watermarks. The
embedding and extraction of watermarks are completed by training encoders and decoders,
and noise layers are used in training to enhance the robustness of the neural network
against various attack methods.

Merrer et al. [10] propose a zero-bit model watermarking algorithm by generating
adversarial examples. To achieve this, they fine-tune model through carefully adjusting
decision boundaries to fit the adversarial examples. Adi et al. [13] generate trigger keys
with abstract images that are far from each other and also the training data. All methods
mentioned above focus on watermarking image classification models. But watermarking
the image processing models is seriously under-researched. Quan et al. [14] propose the
first model watermarking method for image processing networks. They watermark the
target model by fine-tuning it with elaborately generated trigger images and verification
images. Specifically, trigger images are sampled from i.i.d. uniform distribution. So
trigger images are far from both each other and often-used training data. As a result,
this method is robust to fine-tuning attacks. Corresponding verification images are con-
structed by a task-specific operation on the trigger images. To guarantee fidelity of the
watermarking method, operation should be similar to function of the original model. At
the same time, to distinguish watermarked model from the original one, the operation
should also maximize the difference between verification images and output of the orig-
inal. After model fine-tuning is done, they update verification images by output images
of the fine-tuned model on the trigger images. One big limitation of this method is that
such a method of generating trigger images can fail for many different tasks. For example,
such trigger images contain no bone to remove if this method is applied to the task of
Chest X-ray image de-bone [15]. In addition, it is too difficult for model owner to find
such a suitable operation. Because two requirements for the operation are contradictory
to some extent. Therefore this method fails to generalize under many different image
processing tasks. Distinct from [13], Zhang et al. [11] start paying attention to protecting
output images of image processing models. They argue that attacker can replicate target
model by training a surrogate model on output images of target model. So they append
an embedding sub-network behind target model, which conceals an invisible watermark in

2520 X. Sun, C. Gu, L. Tang and L. Kong

output images of target model. And another extractor sub-network is trained to extract
watermark out from output images of surrogate model.

It is worthy of reference and reference for future image watermarking methods based
on deep learning.

3. Our Proposed Method.
We propose a universal neural network framework to embed watermarks in image pro-
cessing models.

SetM(θ; ·) represents a trained image processing model, where θ is the model parameter
of the model. This parameter is trained on the training set (X, Y), where X is the set
of input images in the training set, and Y is the expected output of the original training
data X after passing through the model, which is the reference for the model output,
expressed as Formula (4).

M(θ; X) ≈ Y (4)

If an attacker Bob illegally steals model M and deploys it in his own product, only
providing APIs for users to use, for such a suspicious model M ′, the owner of model M
can only attempt to verify their ownership with the output of the suspicious model M .
At this point, if the output of the suspicious model M ′ contains watermarks, it can be
proven the ownership of the model. At present, there are also ways to embed invisible
watermarks in images. Therefore, our article considers designing a model watermarking
method can embed watermarks, so that the watermark can be extracted in a specific way
from the output image of the model. At the same time, watermark will not cause image
distortion and will not affect model performance as much as possible. The embedding
process is shown in Figure 1.

Figure 1. Image Watermark Embedding

In a black box scenario, we cannot obtain specific parameters within the model and
can only verify model ownership based on the output of the target model. For image
processing models, their output is an image, and if watermarks can be extracted from
image, ownership verification can be completed. Relatively simple approach is to directly
embed plaintext watermarks, i.e. unencrypted and visible simple watermarks, in the
expected output image, and then use the expected output image and input image to
construct a training set to complete the training of the model, as shown in Figure 2.

However, this type of plaintext watermark is easily removed by attackers using some
simple graphic editing tools, such as Photoshop.

Therefore, this article needs to find a way to enable the trained model to embed invisible
watermarks in the output image without causing a significant decrease in its performance
on the original task.

For this, we firstly use an invisible watermark embedding method to embed watermark
w into Y , and obtain Y ′. Y ′ should maintain visual consistency with Y , as shown in
Formula (5).

A Novel Deep Learning Model Watermark Algorithm with Strong Anti-pruning Robustness 2521

Figure 2. Plaintext Watermark Embedding

Y ′ ≈ Y (5)

Afterwards, we train the model based on the training data (X, Y ′) after embedding the
watermark w, in order to embed the watermark into the model and obtain the modelM(; ·)
after embedding the watermark w, where is the model parameter after embedding the
watermark. Therefore, for the input X, the output of the model M(; ·) should approach
Y ′, as shown in Formula (6).

M (θ′;X) ≈ M(θ;X) (6)

In this way, the model M(; ·) obtained by embedding watermark w can embed the
watermark w in its own output image while ensuring its performance is not affected. In
this way, if the model M(; ·) is stolen by the attacker Bob, the owner of the model can
extract the watermark from the output of the stolen model in a specific way to prove their
ownership of the model.

3.1. Framework Implementation.
We need to solve two problems: 1. Embedding invisible watermarks w; 2. Extracting
watermarks from output images.

In order to achieve the watermark embedding of the Black Box model mentioned above,
this paper designs a model training strategy based on DNN, which is divided into three
stages: image watermark embedding, model watermark embedding, and extraction rein-
forcement. To complete the training of the model and obtain an Encoder for embedding
invisible watermarks into the model; A decoder for extracting watermarks from the output
image, as shown in Figure 3.

Figure 3. Framework of Embedding and Extracting Watermarks

At this stage, we need to train to obtain the watermark embedder Encoder. We process
the watermark and training set X as inputs to the Encoder, then use another model De-
coder as the watermark extractor and set up a supervisor, Adversary. Task of Encoder is
to embed watermarks in the GT (Ground Truth) image, which refers to the model output
reference Y mentioned earlier, while ensuring visual invisibility. Task of the Decoder is to

2522 X. Sun, C. Gu, L. Tang and L. Kong

extract watermark information from the embedded image. Note that the Decoder should
also ensure that watermark information can be extracted from the image embedded with
the watermark, and the watermark cannot be mistakenly extracted from the image with-
out the watermark. Task of Adversary is to supervise the correct completion of task by
the Encoder, which can identify differences between watermarked images and the original
image. Through continuous training, the encoder is ultimately equipped with the ability
to embed invisible watermarks.

To ensure embedding of watermark does not affect the visual consistency between
embedded watermark image and original image, it is necessary to minimize unnecessary
information in the watermark. A normal RGB image contains values of three channels:
red, green, and blue, while in a grayscale image, the values of the three channels are equal,
so only one byte can store the pixel values stored in the original RGB image. Therefore,
when embedding the watermark, we use a grayscale image containing only one channel as
input of Encoder, and also use the three channel values of the original image as the input
of the Encoder. In this way, the image volume of the watermark image is smaller, which
can better avoid the impact of watermark embedding on the visual effect of the original
image.

This article uses three loss functions to measure the visual similarity between the orig-
inal image Y and embedded watermark image Y ′. They are image loss, perceptual loss
and adversarial loss. Their respective algorithms are shown in Formulas (7), (8), and (9):

Limg = ∥Y ′ − Y ∥2 (7)

Lvgg = ∥V GG (Y ′)− V GG(Y)∥2 (8)

Ladv = log (1− A (Y ′)) (9)

Therefore, the total embedded loss is shown in the Formula (10).

LE = λimgLimg + λvggLvgg + λadvLadv (10)

Similarly, when the extractor Decoder extracts watermark image Y ′ with watermark
and watermark image Y without watermark, loss function defined in this article is shown
in Formula (11).

LD = ∥D (Y ′)− w∥2 + ∥D(Y)− c∥2 (11)

Among them, the above c is a blank image as a control.
In summary, the loss function used for both Encoder and Decoder training in this article

is shown in Formula (12).

LE = λimgLimg + λvggLvgg + λadvLadv + λDLD (12)

3.2. Model watermark embedding.
At this stage, we obtain (X, Y ′) by embedding watermarks into the training data (X, Y)
using the Encoder trained in the previous stage, and train the target model using the
training data after embedding the watermarks. After training, the target model can
perform image processing on the output image without affecting its original performance,
while also completing the task of embedding watermarks, as shown in Figure 4.

We further train extractor Decoder to enhance its ability to extract watermarks. The
training data is used as original modelM(θ;X) and model after embedding the watermark
M(θ′;X), respectively, to obtain output image without embedding watermark X̃ and the
output image with embedding the watermark X̃ ′. We mix them with original GT image
set Y and the watermarked GT image set Y ′ as inputs to the Decoder. We require the

A Novel Deep Learning Model Watermark Algorithm with Strong Anti-pruning Robustness 2523

Figure 4. Model Watermark Embedding Process

Decoder to extract blank image c in Y and watermark image w in Y ′ to enhance its
extraction ability. The loss functions set during training are as shown in the following
four Formulas (13), (14), (15) and (16).

LRD = λwdLwd + λbidLbid + λcLc (13)

Lwd = ∥D (Y ′)− w∥2 +
∥∥∥D (

X̃ ′
)
− w

∥∥∥2

(14)

Lbid = ∥D(Y)− c∥2 + ∥D(X̃)− c∥2 (15)

Lc =
∥∥∥D (Y ′)−D

(
X̃ ′

)∥∥∥2

(16)

Among them, Lwd is watermark distortion loss, representing L2 distance between w and
the information extracted from watermark Y ′ and X̃ ′, Lbid is the blank distortion loss,
representing L2 distance between the blank image and the information extracted from Y
and X̃, Lc is watermark consistency loss, representing the L2 distance of the information
extracted from Y ′ and X̃ ′.

This stage will not affect the already trained Encoder and target model, only to enhance
the Dncoder’s ability to correctly extract watermarks from the output image of the target
model, as shown in Figure 5.

Figure 5. Strengthening Process of Watermark Extraction

Model ownership verification is to ensure the rights of the model owner. In reality,
when a suspicious model Ms appears, if the model only provides an API interface and
cannot obtain its internal parameters, we can only verify ownership through the output
of model. When conducting ownership verification, we first randomly select images to

2524 X. Sun, C. Gu, L. Tang and L. Kong

form the trigger set Z, and then input each image of the trigger set Z into the suspicious
model’s API interface to obtain the output Ms(Z). From this output, we use Decoder to
extract watermark information, and calculate the watermark extraction success rate SR
based on the success of extraction, as shown in Formula (17).

SR =
1

k

∑
zi∈Z

f(zi) (17)

(zi) =

{
1, NCC (D (Ms(zi)) , w) > 0.95

0, otherwise
(18)

where NCC(D(Ms(zi)), w) is the normalization coefficient value between the extracted
watermark and the original watermark. The closer the value is to 1, the smaller the
difference between the two. Therefore, when value is greater than 0.95, we consider the
watermark extraction successful. If the success rate of watermark extraction is high, we
can assume that the suspicious model was stolen from the model owner, thus completing
the copyright protection of the image processing model.

3.3. Experimental Setup.
This paper uses VDSR as the target model for training and embeds watermarks in it.
VDSR proposed a model for completing super-resolution tasks by Kim et al. [10] in 2016.
It uses a very deep network to complete super-resolution tasks, optimizes and accelerates
network training using methods such as residual learning, and achieves good results. The
structure of the network is shown in Figure 6.

Figure 6. VDSR Model Structure

We use 291 images used in the original experiment, 200000 small images were cropped
to obtain the real image Y . Then, each image was zoomed in and out (i.e. upsampling
and downsampling) to artificially reduce the resolution of the images and obtain image
X. During training, X is the processed image, while Y is the GT image.

In terms of model structure selection for Encoder and Decoder, this framework follows
the strategy of Zhang et al., using Unet as the Encoder, CEILNet as the Decoder, and
PatchGAN as the Adversary.

4. Experimental Results.

A Novel Deep Learning Model Watermark Algorithm with Strong Anti-pruning Robustness 2525

4.1. Fidelity Experiment.
Tested on three datasets, Set5, Set12, and BSD100, with 5, 14, and 100 images, com-
monly used in super-resolution task testing. Use Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) as evaluation indicators. For the real image I of m× n and
the output image I ′ of model, PSNR is defined as Formula (19):

PSNR = 10 log10

(
2d − 1

)2 ∗m ∗ n∑m
i=1

∑n
j=1 (I(i, j)− I ′(i, j))2

(19)

Among them, (2d−1) is the maximum pixel value of an image, which is the amplitude.
SSIM can be defined as Formula (20).

SSIM (I, I ′) =
(2µIµI′ + c1) (2σII′ + c2)

(µ2
I + µ2

I′ + c1) (σ2
I + σ2

I′ + c2)
(20)

where µI and µI′ represent the mean of I and I ′, σI and σI′ represent the standard
deviation of I and I ′, σII′ is the covariance between I and I ′, c1 is defined as (k1(2

d−1))2,
c2 is defined as (k2(2

d − 1))2, and k1, k2 are far less than 1.
The final results are shown as in the following Table 1.

Table 1. Fidelity Test Results for VDSR

Model
PSNR/SSIM

Set5 Set14 BSD100
VDSR [8] 30.87/0.9381 27.45/0.8607 27.09/0.8303
VDSRw 30.91/0.9388 27.55/0.8627 27.13/0.8302

Among them, VDSR is the model without embedding [16] the watermark, and VDSRw

is the model with embedding watermark. It can be seen that before and after embedding
the watermark, the peak signal-to-noise ratio and structural similarity are equivalent, and
the difference in PSNR does not exceed 0.07dB. It can be judged that there are no changes
that affect the performance of the model before and after embedding the watermark, and
the fidelity of the model is guaranteed.

4.2. Uniqueness Experiment.
When verifying model ownership, we need to ensure that the suspicious model is the one
we are looking for, embedded with watermarks, and not other models used to complete
the same task. Therefore, by mixing the output of the embedded VDSR model, DPSR,
IMDN, ESRGAN models that complete similar tasks, as well as the VDSR model without
embedding the watermark, the experimental Decoder can correctly extract the watermark
from them. We require it to be able to extract watermarks from the output images of
VDSR and blank images from the output images of the other four models. Based on this,
record the success rate of watermark extraction.

The final results can be shown in the following Table 2.

Table 2. VDSR Uniqueness Experiment Results

Decoder
Watermark Extraction Success Rate

VDSRw VDSR [16] DPSR IMDN ESRGAN
DV DSR 100% 0% 2.89% 3.02% 0%

It can be seen that the success rate of watermark extraction in Decoder fully meets the
requirements. In fact, there are also examples of extracting fuzzy watermarks from images

2526 X. Sun, C. Gu, L. Tang and L. Kong

that have never been embedded with watermarks. However, in this case, the watermarks
are fuzzy and rare, which does not affect our ability to distinguish model ownership.

4.3. Robustness Experiment.
This experiment mainly focuses on the robustness of the experimental model to model
pruning. Model Pruning refers to the technique of modifying and optimizing neural
network models to achieve the goals of reducing the number of model parameters, reduc-
ing model size, improving model operation efficiency, and reducing model storage space.
Model pruning technology can be used to reduce the computational complexity of the
model, improve inference speed of the model, reduce the storage requirements of the
model, etc., so that the model can run on smaller devices or perform inference in slower
environments. Commonly used model pruning methods include structural pruning, chan-
nel pruning, weight pruning, etc.

Pruning method of experiment is to set parameter with a certain proportion of the
minimum absolute value of each layer in the model to 0, and this proportion increases
from 10% to 90%, which is called pruning rate. The results are shown in Table 3. The
algorithm used for comparison comes from reference [17].

Table 3. VDSR Robustness Experimental Results

Model pruning rate (%)
Watermark extraction success rate

DV DSR

Ours Reference [15]
10 100% 99%
20 100% 97%
30 100% 95%
40 99% 92%
50 97% 89%
60 87% 77%
70 39% 29%
80 24% 11%
90 5% 3%

It can be seen that as the pruning rate increases, the success rate of extraction continues
to decrease. Fortunately, in actual situations, the pruning rate is greater than 40%,
and the model is basically distorted, making it difficult to complete the model function.
Therefore, within this range, the success rate of watermark extraction is still close to
100%, which is sufficient to complete the watermark task.

5. Conclusion.
This paper analyzes the scenario of copyright verification of image processing models in
black box scenarios. Starting from the conditions required to complete model copyright
verification in this scenario, it analyzes and summarizes a method that can complete wa-
termark embedding in black box scenarios, which can complete ownership verification of
the model. Starting from this, a framework was designed to accomplish this task, which
includes three roles: Encoder, Decoder, and Adversary, each completing their respective
tasks. This enables the target model to autonomously embed invisible watermark informa-
tion in its output image without affecting its own performance. Use of fidelity, uniqueness,
robustness as evaluation criteria has demonstrated the feasibility of this framework.

A Novel Deep Learning Model Watermark Algorithm with Strong Anti-pruning Robustness 2527

Acknowledgment.
This work is supported by school research of Laiwu Vocational and Technical College
named Application of Wavelet Domain Features in Facial Recognition Algorithm Re-
search(2021qnzx05). And it is also supported by Guangdong Provincial Key Laboratory
of Novel Security Intelligence Technologies (2022B1212010005). This research is also sup-
ported by Key Basic Research Projects of Shenzhen with Grant No. JCYJ20220818102414030.

REFERENCES

[1] F. Zhang, T.-Y. Wu, Y. Wang, R. Xiong, G. Ding, P. Mei, L. Liu, “Application of Quantum Genetic
Optimization of LVQ Neural Network in Smart City Traffic Network Prediction,” IEEE Access, vol.
8, pp. 104555-104564, 2020.

[2] Y. Ma, Y. Peng, T.-Y. Wu, “Transfer Learning Model for False Positive Reduction in Lymph Node
Detection via Sparse Coding and Deep Learning,” Journal of Intelligent & Fuzzy Systems, vol. 43,
no. 2, pp. 2121-2133, 2022.

[3] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016, pp. 770-778.

[4] K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for Largescale Image Recognition,”
in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014, pp.
1409-1556.

[5] M. Juuti, S. Szyller, S. Marchal, N. Asokan, “PRADA:protecting against DNN model stealing at-
tacks,” in 2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2019, pp.
512-527.

[6] F. Tramèr, F. Zhang, A. Juels, M.-K. Reiter, T. Ristenpart, “Stealing Machine Learning Models via
Prediction Apis,” in 25th USENIX Security Symposium (USENIX Security 16). USENIX, 2016, pp.
601-618.

[7] Y. Uchida, Y. Nagai, S. Sakazawa, S. Satoh, “Embedding Watermarks into Deep Neural Networks,”
in 2017 ACM on International Conference on Multimedia Retrieval. ACM, 2017, pp. 269-277.

[8] J. Wang, H. Wu, X. Zhang, Y. Yao, “Watermarking in Deep Neural Net-works via Error Backprop-
agation,” Electronic Imaging, vol. 32, pp. 1-9, 2020.

[9] T. Wang, F. Kerschbaum, “Attacks on Digital Watermarks for Deep Neural Networks,” in ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 2622-2626.

[10] E. Le Merrer, P. Perez, G. Trédan, “Adversarial frontier stitching for remote neural network water-
marking,” Neural Computing and Applications, vol. 32, pp. 9233-9244, 2019.

[11] J. Zhang, Z. Gu, J. Jang, H. Wu, M.-P. Stoecklin, H. Huang, I. Molloy, “Protecting Intellectual
Property of Deep Neural Networks with Watermarking,” in ACM Asia Conference on Computer
and Communications Security. ACM, 2018, pp. 159-172.

[12] J. Guo, M. Potkonjak, “Watermarking Deep Neural Networks for Embedded Systems,” in 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE/ACM, 2018, pp.
1-8.

[13] Y. Adi, C. Baum, M. Cisse, B. Pinkas, J. Keshet, “Turning Your Weakness Into a Strength: Water-
marking Deep Neural Networks by Backdooring,” in 27th USENIX Security Symposium (USENIX
Security 18). USENIX, 2018, pp. 1615-1631.

[14] Y. Quan, H. Teng, Y. Chen, H. Ji, “Watermarking Deep Neural Networks in Image Processing,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 5, pp. 1852-1865, 2020.

[15] W. Yang, Y. Chen, Y. Liu, L. Zhong, G. Qin, Z. Lu, W. Chen, “Cascade of Multi-Scale Convolutional
Neu- ral Networks for Bone Suppression of Chest Radiographs in Gradient Domain,” Medical Image
Analysis, vol. 35, pp. 421-433, 2017.

[16] J. Kim, J.-K. Lee, K.-M. Lee, “Accurate Image Super Resolution Using Very Deep Convolutional
Networks,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2016, pp. 1646-1654.

[17] S. Kakikura, H. Kang, K. Iwamura, “Deep Learning Model Protection Using Negative Correlation-
based Watermarking with Best Embedding Regions,” in 2023 25th International Conference on
Advanced Communication Technology (ICACT). IEEE, 2023, pp. 1438-1445.

