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Abstract. Accurate identification and classification of marine organisms is of partic-
ular importance. To investigate marine ecosystems and elucidate the biodiversity within
the marine crab family, this research primarily focuses on Portunus pelagicus, while
also encompassing Portunus sanguinolentus, Portunus sayi, and Portunus tritubercula-
tus. Portunus pelagicus is a commercially important marine organism widely distributed
in Asia and the Pacific. This study uses the You Only Look Once (YOLO) object detec-
tion model but improves its robustness and generalization ability by introducing certain
modifications. Namely, the Mixup data enhancement method is used in the dataset pre-
processing phase, which improves the mean average precision (mAP) of the model from
88.88 to 94.67 % for Portunus pelagicus, while the F1 score is improved from 0.79 to
0.89. Then, the convolutional block attention module (CBAM) attention mechanism is
added to the YOLOv5 model. The addition of the spatial and channel attention module
improves the mAP of the model for Portunus pelagicus to 99.2 %, while the overall mAP
value of the model reaches 87.30 %. Further applying the YOLOv8 model with a CBAM
module increases the model’s mAP for Portunus pelagicus to 99.9 %, while the model’s
overall mAP value reaches 92.89 %. The overall F1 score is 0.86 at a confidence threshold
of 0.5, and the model’s mAP value after 75 epochs reaches 93.2 %. Finally, the proposed
method is compared with the SSD, Efficientdet, and Faster-Rcnn algorithms. The com-
parison results indicate that the proposed optimized YOLOv8(CBAM) model performs
well in recognition and classification tasks on small datasets and outperforms other mod-
els. The results presented in this study provide a useful reference for future applications
of deep learning techniques in similar environments.
Keywords: YOLOv5, CBAM, YOLOv8, Portunus pelagicus, Mixup

1. Introduction. Deep learning is gradually being integrated into various scientific fields.
Ma et al. [1] proposed a novel point-by-point filtered CNN branch for automatically in-
tegrating and passing features to a learning architecture for processing medical images.
Wu et al. [2] proposed a spectral convolutional neural network model based on Adaptive
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Fick’s Law Algorithm aimed at solving the remote sensing image classification problem.
Zhang et al. [3] applied motion classification algorithms with linear decision making and
support vector machine to human motion recognition. In this paper, deep learning and
marine life image recognition are combined.

Recent advances in the field of deep learning have revolutionized the detection and
classification methods of marine organisms. Knausg̊ard et al. [4] used the You Only
Look Once (YOLO) algorithm for object detection in temperate fish. A convolutional
neural network (CNN) and a squeeze and excitation architecture were used to classify
the identified temperate fish. Guénard et al. [5] employed a deep feed-forward artificial
neural network (ANN) approach. The ANN was used to model the distribution of lake
sturgeon and white bass in a changing estuarine environment. The application of multiple
descriptors provided a classification accuracy of 94%. Han et al. [6] successfully identified
and localized targets in underwater environments with the help of area proposal networks.
This model allowed underwater robots to achieve effective marine product collection. Jose
et al. [7] used a cubic support vector machine (SVM) classifier along with the complex
wavelet transform for feature extraction and proposed an automatic tuna classification
system, which could achieve an accuracy of approximately 95%. Mana et al. [8] proposed
an intelligent deep learning network based on marine fish species classification technology.
A water wave optimization technique was used based on classification with an optimal deep
kernel limit learning machine. Tan et al. [9] explored the application of data enhancement
in the field of marine image classification and found that traditional enhancement methods
performed poorly in this task. They proposed an innovative enhancement strategy that
can outperform the AutoAugment method in marine image classification. Purcell et
al. [10] trained neural networks based on the ResNet-50 and MobileNet V1 architectures
and achieved the detection and recognition accuracy of approximately 80% for 10 types
of marine objects.

However, the identification of challenging organisms in complex environments is a highly
demanding task. The related studies used the MobileNet, Mask Rcnn, capsule networks,
and wavelet kernel extreme learning machine approaches to address this problem. Zhang
et al. [11] used the MobileNetv1 as a backbone of the SSD; they investigated the enhance-
ment of small target features and suppression of irrelevant features by using the feature
receptive domain block and attention mechanism. The average accuracy was improved by
5.1%, and better robustness was achieved. Al Duhayyim et al. [12] proposed the IDLAFD-
UWSN model, which combines the Mask RCNN, capsule network, and wavelet kernel
extreme learning machine. Cao et al. [13] proposed Faster MSSDLite, which is a real-
time robust underwater live crab detector based on deep learning; this model combines
MobileNetV2, deep separable convolutional, and feature pyramid networks. In addition,
a uniformly quantized CNN was employed for error correction. Ridge et al. [14] devel-
oped the OysterNet model, which helps unmanned aircraft systems determine the extent
of oyster reefs. Piazza et al. [15] applied deep learning to scanning electron microscope
images and developed a CNN-based classification model using a dummy classifier.

Information feature recognition with invisible features (e.g., age of marine organisms
and voice) has been a hot topic in current research. The related studies have experi-
mented with neural network structures that are more biased toward data processing, such
as DNCNN and Mask LaC R-CNN. Martinsen et al. [16] used an automated process based
on CNNs to estimate the age of fish. The resulting CV values averaged about 10%, and
the model’s decision-making process was resolved. Vickers et al. [17] developed a research
method based on denoising CNNs (DNCNNs) and denoising autoencoders (DAEs) and
achieved a significant improvement in the sound classification accuracy of North Atlantic
right whales. Bermant et al. [18] trained recurrent neural networks to classify whale tail



CBAM in Marine Biodiversity: Deep Learning for Crab Recognition 2545

segment types and vocal clades; the overall accuracy was over 93%, while a 99.4% recog-
nition accuracy was achieved for specific individual whales. Zhong et al. [19] developed
a deep learning-based model to categorize sounds automatically. The main goal was to
reduce the labor and time of manually identifying beluga whale sounds. They achieved
an accuracy rate of 96.57% and a recall rate of 92.26%. Han et al. [20] designed a non-
contact fish morphological parameter measurement system. In their work, the real scene
was simulated by various data extension techniques, and the loss function and network
structure of the Mask R-CNN were improved. Chang et al. [21] proposed a preprocessing
CNN, using semi-supervised learning training to process continuous sonar images and
standardized feature mapping to solve the fish segmentation problem of the Mask R-CNN
in different shallow-water fish farms.

The monitoring of mass migration of marine organisms is crucial in the context of marine
ecological protection. In related research, different advanced techniques, such as Kalman
filter and transfer learning, have been widely used for tracking marine fish communities.
Kandimalla et al. [22] developed an unlabeled fish monitoring platform and constructed a
deep learning framework by incorporating a Kalman filter. Public sonar and optical data
were employed to detect, categorize, and track multiple fish species. Lumini et al. [23]
proposed an automatic plankton identification system that incorporates different deep
learning-based methods. Their system can enhance the diversity of classifiers using the
fine-tuning of deep learning-based models and migration learning. Conrady et al. [24] used
the Mask R-CNN target detection framework for automatic localization, classification,
counting, and tracking of fish in underwater environments. Alshdaifat et al. [25] proposed
an improved framework for the segmentation of fish instances in underwater videos. This
framework uses enhanced detection and dynamic instance segmentation methods based on
the area proposal networks. Xu et al. [26] developed an innovative classification method
for PSP and non-PSP microalgae by combining three-dimensional fluorescence, machine
learning, and deep learning. This method achieved an accuracy above 94% in classifying
12 microalgae, and the identification accuracy of PSP microalgae was even higher, 96.25%.
This technique could help to identify toxic microalgae accurately in real-time. Baek et
al. [27] simulated an ocean model of Chained Alexandrium bloom by using the CNN
models. The classification CNN determined the bloom onset, and the regression CNN
estimated the bloom density. The accuracy and root mean square error reached 96.8% and
1.20 [log(cell L−1)], respectively. Martin-Abadal et al. [28] proposed an automatic jellyfish
detection and quantification model based on deep target detection neural networks. The
proposed model achieved an accuracy of 93.8% in the jellyfish detection and quantification
task for real-time processed video sequences. This study provided an effective monitoring
method for developing a jellyfish early warning system.

Recognizing intricate organisms in complex environments is an ongoing challenge. As
both MobileNet and Mask RCNN exhibit limitations in robustness, feature detection,
and real-time performance, an integrated approach is needed. This study considers the
diversity of marine organisms and their significant impact on global ecosystems. This
study examines Portunus pelagicus, Portunus sanguinolentus, Portunus sayi, and Por-
tunus trituberculatus, but the main focus is on Portunus pelagicus, which is a commercially
important marine organism with a wide distribution in Asia and the Pacific. This study
uses deep learning-based techniques to accurately recognize and classify the aforemen-
tioned creatures. The YOLO object detection model is selected. In the model training
phase, the Mixup data enhancement method is employed to enhance the robustness and
generalization ability of the model. The convolutional block attention module (CBAM)
attention mechanism is also introduced to enhance the recognition accuracy of the model
further.
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2. Detection target: Portunus pelagicus. Brief descriptions of P. sanguinolentus,
P. trituberculatus, and P. sayi are provided below, as well as a more detailed introduction
to P. pelagicus, which is the focus of this study. Photographs of the four crab species in
the genus Portunus are shown in Figure 1.

Figure 1. Four species of genus Portunus

Portunus pelagicus is a tropical marine crustacean belonging to the family Portunidae.
Its cephalothoracic armor is transversely ovate, roughly muscled, and the granular surface
is clearly visible. The chelicerae of the distant water pike crabs are relatively long and
asymmetrical, and the same granular texture is visible on them. Also, there are two
distinct ridges on the dorsal side of the chelicerae. Several images from the dataset used
for target detection for distant pike crabs are shown in Figure 2.

Figure 2. Images used for the detection of Portunus pelagicus objects

Portunus sanguinolentus is an invertebrate marine organism belonging to the family
Portunidae. Its cephalothoracic armor has a coxal shape, which is slightly elevated in
the middle, with three conspicuous wart-like projections on the surface. The chelicerae
are well-developed, with long segments that are prismatic and equipped with blunt teeth
on the inner side. The underside of its shell has three eye spots, and the shell color is
grayish-green.

Specimens of Portunus trituberculatus have a considerable size, with individuals reach-
ing a weight of up to 1,000 g and a carapace width of up to 200 mm. The structure of
the P. trituberculatus consists of a head, a thorax, an abdomen, and appendages. The
species is similar to P. pelagicus in general appearance, but P. trituberculatus can be easily
distinguished from P. pelagicus because it has three frontal teeth (P. pelagicus has four
frontal teeth) and four spines in the merus of chelipeds (P. pelagicus has three spines).
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Portunus sayi is a special type of crab from the family Portunidae. The thoracic armor
portion has many unique features, including long, straight dorsal spines and full lateral
spines. Its head has long mouth spines that are slightly longer than the base of the
antennae, and its antennae have a single-branched form, fuller at the base, equipped with
17 or 18 sharp spines. These traits denote a powerful tool for defending from predators
or competing conspecifics.

3. Detection algorithm: the YOLO Series.

3.1. Algorithmic structure. This study employs the YOLOv5 algorithm with an added
Convolutional Block Attention Module (CBAM) for the image recognition of P. pelag-
icus. The main framework of the YOLOv5 algorithm is primarily divided into three
components.

First, feature extraction of P. pelagicus is performed by the backbone network CSP-
Darknet. Then, feature enhancement is realized on the recognized target using a feature
pyramid network. Finally, the object corresponding to the feature point is predicted by
the Yolo head. The specific process is illustrated in Figure 3.

Figure 3. Integrated framework of the YOLOv5 model for the detection
of pike crab

CBAM includes a spatial attention module and a channel attention module. The spatial
attention module facilitates the determination of the extent to which specific regions or
parts of an image, such as the crab shell and crab legs, affect the recognition or behavioral
analysis result of P. pelagicus. The channel attention mechanism helps in ascertaining the
impact of channels (e.g., color) on the recognition or classification result when processing
the stone crab images. In summary, image data of P. pelagicus can be analyzed with
high precision and efficiency by incorporating the CBAM into the detection model. This
aids in a deeper understanding of its biological characteristics and behaviors. The CBAM
module is presented in Figure 4.

Figure 4. An overview of the CBAM

Moreover, this study employs the YOLOv8 algorithm with an added CBAM to optimize
the recognition results. The network framework of the YOLOv8 algorithm mirrors that
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of the YOLOv5 algorithm. YOLOv5 utilizes the focus structure for feature extraction,
whereas YOLOv8 employs a standard 3Ö3 convolution with a step size of 2. This approach
enhances recognition speed at the expense of some perceptual nuance. The preprocessing
steps of the CSPlayer module are also reduced from three to two. Finally, the Dense
Label Fusion module is introduced to calculate the regression values. The specific process
is illustrated in Figure 5.

Figure 5. Integrated framework of the YOLOv8 model for the detection
of pike crab

3.2. Mathematical derivation of the algorithm. In the research on P. pelagicus,
there have been many core techniques and methods that require in-depth understanding.
In some cases, multiple detection boxes can overlap at certain locations in an image, which
can cause multiple detections of the same target. The non-maximum suppression (NMS)
has been introduced to eliminate redundant detection boxes, ensuring that only the most
representative prediction boxes are retained.

Anchor boxes denote a set of predefined rectangular boxes with different aspect ratios
and scales. The purpose of anchor boxes is to adapt to various shapes of target objects.
Each grid in the YOLOv8 model with the added attention mechanism is equipped with
three types of anchor frames. Considering different feature map scales, there are three
specific anchor boxes for each scale, which results in a total of nine anchor boxes. The
IOU definition and the relationships between various boxes are presented in Figure 6.

Figure 6. The definition of intersection over union and the relationships
between various boxes

In this study, two evaluation metrics are used, precision and recall, which are defined by
Equations (1) and (2), respectively. Precision is calculated as the number of true positives
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divided by the sum of true positives and false positives, whereas recall is calculated as
the number of true positives divided by the sum of true positives and false negatives.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Based on the IOU, this study proposes the concepts of generalized intersection over union
(GIOU), dense intersection over union (DIOU), and complete intersection over union
(CIOU). The proposed algorithm uses the CIOU as a loss for bounding box regression.

The geometric relationships between the ground truth box and the predicted box in
images are illustrated in Figure 6. The CIOU combines the IOU, the distance from the
center of the frame, and the aspect ratio, and its penalty items are defined as follows:

RCIOU =
ρ2 (b,bgt)

c2
+ αv (3)

where bgt represents the ground truth; ρ(b, bgt) is defined as the distance between the
centroid of the prediction box and the ground truth box; c represents the length of the
diagonal of the large rectangular box formed by the union of the predicted box and
the ground truth box; v is defined as the fit of the aspect ratio, and α is the trade-off
parameter, and they are respectively defined as follows:

v =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)2 (4)

α =
v

(1− IOU) + v
(5)

The IOU definition is presented in Figure 4, where wgt and hgt represent the width and
height of the ground truth box, respectively; meanwhile, w and h represent the width and
height of the predicted box, respectively.

Finally, the loss function of the CIOU is defined as follows:

LCIOU = 1− IOU +
ρ2 (b,bgt)

c2
+ αv (6)

The area factor is given a higher priority in the bounding box regression when the CIOU
is used as an assessment metric. This means that the CIOU puts more emphasis on
the actual area overlapping of the two bounding boxes than on other similarity metrics.
Therefore, the evaluation of bounding boxes is more comprehensive and accurate.

4. Algorithm recognition procedure.

4.1. Parameter settings. The parameter settings of the YOLOv8 algorithm are shown
in Table 1. The batch size is set to 32, and the confidence threshold is set to 0.001 to
filter out unreliable detection results rigorously. A larger number of training epochs can
allow the model to fit the data better, but an excessive number of training epochs can also
lead to model overfitting. Therefore, the number of epochs is set to 100. Weight Decay
is a regularization technique that can help control model complexity and prevent model
overfitting. The weight attenuation factor, also known as λ, was set to 5× 10−4. Namely,
selecting appropriate weight decay can improve the generalization ability of the model.
Further, momentum is a parameter of an optimization algorithm used to accelerate the
convergence process. In this study, the momentum value is set to 0.937, which means
that the effects of the previous update steps are considered in each update. Finally, the
image size is set to 640, meaning that an image has 640× 640 pixels.
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Table 1. Model parameter settings

Hyperparameter Numerical value
Batch size 128
Confidence threshold 0.001
Epoch number 100
Weight attenuation factor 5e− 4
Momentum 0.937
Image size 640

4.2. Data processing. Image processing was initially conducted using the HSV color
model in the training phase. Certain changes were made to the training images of the
dataset in terms of hue, saturation, and value. In addition, image transformations, such
as rotation, translation, scaling, and shearing, were employed.

The image rotation angle ranged from −45◦ to 45◦. The horizontal (left–right) and
vertical (up–down) pans encompass approximately 90% of the image’s width and height,
respectively. The image scaling range was 90%. The image shear was tilted horizontally
and vertically in the range of (−10, 10). Also, the translation and image perspective trans-
formations were implemented. The image perspective transformation is a technique that
simulates a three-dimensional viewpoint, making an image appear as if it is viewed from a
different angle. Finally, the two methods, mosaic and Mixup, were used to merge the four
images together. Image blending denotes the process of mixing the pixel values of two
images according to a certain ratio. There were 1,034 images before image enhancement
and 1,212 images after image enhancement.

The data distributions for the four identified targets are shown in Figure 7(a). The
sample sizes for the marine organisms were as follows: 865 specimens were P. pelagicus,
129 were P. trituberculatus, 168 were P. sanguinolentus, and 50 were P. sayi. Figure
7(c) illustrates the distribution of the location of the center of the prediction box. Figure
7(d) shows the height and width information of the prediction box. The majority of the
samples are predominantly dispersed within a region demarcated by relative coordinates
ranging from (0 to 0.4, 0 to 0.4).

5. Recognition Results.

5.1. Preliminary preparation. The YOLOv5 algorithm was executed using both its
standard configuration (YOLOv5) and the configuration with data augmentation used
in the preprocessing stage (YOLOv5 (Mixup)) as separate runs. Figure 8 presents a
visual representation of the mAP values for various categories using the two methods.
The results in Figure 8 show that P. pelagicus had the highest accuracy, which was
much higher than that of the other species. The mAP values of the two methods for P.
sanguinolentus, P. sayi, and P. trituberculatus were 17% and 20%, 8% and 17%, and 19%
and 45%, respectively.

Figure 9 shows the comparison results of the F1 values between the two algorithms.
The YOLOv5 algorithm achieved the highest F1 value for P. pelagicus, having a value of
0.79. The F1 value of the YOLOv5 (Mixup) algorithm for P. pelagicus was 0.89. Thus,
using the data augmentation method during the preprocessing stage resulted in a 10%
improvement in the F1 score in target recognition.

The PR plots of the two algorithms for P. pelagicus are shown in Figure 10, showcasing
mAP values of 88.88% for the YOLOv5 algorithm and 94.67% for the YOLOv5 (Mixup)
algorithm.
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Figure 7. Distribution of data within the training set and the distribution
of annotated frames during the training process

Figure 8. Comparison of mAP values between the two algorithms

Based on the results, the algorithm without data preprocessing performed slightly worse
compared to the post-processed algorithm. Thus, this processing can result in perfor-
mance improvements. However, excessive data enhancement in the data preprocessing
stage can lead to model overfitting and even have a negative effect on the model perfor-
mance.
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Figure 9. Comparison of F1 values for Portunus pelagicus using the two algorithms

Figure 10. Comparison of PR maps for Portunus pelagicus between the
two algorithms

5.2. Subsequent Identification results. The bounding box loss results on the training
data are presented in Figure 11(a). The CIOU approach was employed to calculate the
difference between the measured bounding box and the actual bounding box. In epochs
0–100, the loss values were gradually reduced from 0.1 to close to zero, suggesting that the
accuracy of predictions for bounding boxes improves rapidly during the learning process.

Figure 11(b) represents the target loss results on the training set. This loss function
ensures that the model can correctly predict the presence or absence of a target. In the
dataset, there were some unpredictable samples, so regardless of how much the model
learned from the data, it was difficult to predict the existence of the target with high
accuracy for all samples. Therefore, the loss value gradually reduced from 0.032 to 0.015
instead of reducing to close to zero.

Figure 11(c) shows the classification loss results on the training dataset. This loss
value indicated the difference between the categories predicted by the model and the true
categories when the model needed to predict multiple categories.
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Figure 11. Loss results on the training dataset during training

Figure 12(a) illustrates the boundary loss results on the validation dataset. The bound-
ing box loss (BBL) value commenced at 0.074 at the beginning of training. Subsequently,
the bounding box loss gradually diminished with the progression of model training and
stabilized at 0.016 at the training process’s conclusion. This fluctuating downward trend
indicated that the model gradually learned to localize the target accurately during train-
ing. The overall trend suggested a consistent increase in the model’s bounding box pre-
dictive power, despite certain fluctuations in the loss decline.

Figure 12(b) presents the target loss results on the validation dataset. The initial value
of the target loss was 0.028. Mirroring the bounding box loss, this loss also exhibited
a fluctuating descending trend and stabilized at approximately 0.01 at the end of the
training process. The decrement in the target loss indicated a gradual enhancement in
the model’s capability to distinguish between the foreground targets and the background.

Figure 12(c) displays the classification loss results on the validation dataset. The classi-
fication loss diminished gradually from the initial value of 0.036 and ultimately converged
to zero. This was a highly positive indication, signifying that the model had learned
to categorize detected targets with high accuracy. An approaching-zero classification loss
denoted a very low classification error rate of the model on the validation dataset, thereby
further reinforcing the model’s robustness and reliability.

Figure 13(a) illustrates the accuracy results on the validation dataset. The results
demonstrated that the model could learn very rapidly in the initial training phase, with
almost all samples with positive predictions being truly positive. During the initial phase
of model training, in epochs 0–25, the accuracy escalated swiftly to close to one, where
one denotes the perfect accuracy of 100%. However, a subsequent rapid decline to approx-
imately 0.3 highlighted that indistinguishable samples or noisy data precipitated model
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Figure 12. Loss results on the validation dataset during training

overfitting, leading to inaccuracies in the predictions in the short term. The gradual fluc-
tuation up to 0.8 in epochs 30–100 indicated that the model was gradually adapting to
the data and finding a better equilibrium to enhance its prediction accuracy.

Figure 13(b) depicts the change in the recall value during the model training process.
The results revealed a rapid increase in the recall value to 0.2 in the early training phase,
signifying the model’s proficiency in correctly identifying positive samples in the dataset.
However, thereafter, the recall value plummeted rapidly and converged to zero. The
appearance of a peak value indicated that the model abruptly regained its predictive
capability in a particular iteration; however, this capability was rapidly diluted by the
stable training process.

Figure 13. The loss results on the validation dataset during training
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Figure 14(a) displays the average accuracy results obtained at the IOU threshold of
0.5. The results indicate that the accuracy gradually increased from zero during training
and finally stabilized at 90%. This indicated that the model achieved predictions with a
high degree of overlap with the true labeling in most cases.

Figure 14(b) shows the average accuracy results obtained as the IOU threshold changes
from 0.5 to 0.95. The result was obtained by summing the mAP values at each IOU
threshold value (10 threshold values from 0.5 to 0.95, with a 0.05 increment) and dividing
the sum by 10. In this way, the performance of the model could be evaluated more
comprehensively under different IOU threshold values. The description of the loss function
of the YOLOv8(CBAM) algorithm is described above.

Figure 14. Average accuracy under different IOU threshold values

The variations in the accuracy rate of the YOLOv5(CBAM) algorithm under different
confidence threshold values are illustrated in Figure 15. At the confidence threshold of
0.947, the accuracy rate reached 1.00 for all categories. The findings demonstrate that
the precision of the detection results for the P. sanguinolentus category was higher than
that for P. sayi in some medium-confidence cases. The recall-confidence plot was em-
ployed to assess the algorithm’s efficacy in target detection. The correlation between the
confidence and recall values is depicted in Figure 16. Remarkably, the recall value for all
target categories reached 0.99 when the confidence threshold was adjusted to zero. The
YOLOv5(CBAM) algorithm could accurately detect 99% of the actual positive samples.
Furthermore, the algorithm managed to identify almost all actual positive samples with a
high recall value at significantly low confidence threshold values. However, this scenario
potentially increased the number of incorrect positive sample predictions due to the low
confidence threshold, making the algorithm more susceptible to including low-confidence
detections as positive samples. Notably, the recall value of the algorithm for P. tritu-
berculatus surpassed that for P. sayi when the confidence threshold level was above 0.5.
Variations in the accuracy rate of the YOLOv5(CBAM) algorithm at distinct recall values
are illustrated in Figure 17. The differential performance of the algorithm across cate-
gories, determined by analyzing under varying threshold conditions, is presented. The
PR curve exhibits a gradual downward stepwise trend. Among the PR curves, the curves
for the P. pelagicus category had the largest area, indicating superior model precision for
this category. At a recall of 0.3, the model’s precision for the P. sanguinolentus category
was slightly higher than for the P. sayi category. The PR curve for P. pelagicus was
closer to the upper right corner, suggesting that this category maintained a high precision
rate even at lower recall values. The average precision was 0.873 for tests with a confi-
dence threshold level greater than or equal to 0.5. A remarkable mAP value of 0.992 was
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Figure 15. Precision-confidence curves of the YOLOv5(CBAM) model

Figure 16. The recall-confidence curves of the YOLOv5(CBAM)

achieved for P. pelagicus, while the mAP values for P. trituberculatus, P. sanguinolentus,
and P. sayi were 0.756, 0.833, and 0.913, respectively.

Figure 18 showcases the mAP values for the YOLOv8(CBAM) algorithm. An impres-
sive mAP value of 0.9978 was obtained for P. pelagicus, 0.9812 for P. trituberculatus,
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Figure 17. Precision-recall curves of the YOLOv5(CBAM)

0.9868 for P. sanguinolentus, and 0.75 for P. sayi. The YOLOv8(CBAM) algorithm en-
hanced the mAP values significantly for the majority of the targets while reducing the
mAP value by 0.163 for P. sayi.

Figure 18. The precision-recall curves of the YOLOv8(CBAM)

Figure 19 presents the normalized confusion matrix, representing the performance eval-
uation results of the YOLOv8(CBAM) detection algorithm across different categories.
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The recall for the P. sayi category was 0.94, indicating a 94% detection accuracy for
samples belonging to this category. For the P. pelagicus category, the model achieved
a recall of 0.99, signifying even better performance with a 99% detection accuracy. The
recall values for P. trituberculatus and P. sanguinolentus were 0.94 and 0.93, respectively.

Figure 19. Normalized confusion matrix of the YOLOv8(CBAM)

The analysis results highlighted misclassification cases in the last “background” line,
where values 0.06, 0.01, 0.06, and 0.07 indicated the likelihood of the algorithm incorrectly
predicting true background samples as other categories. Similarly, values 0.05, 0.14,
0.50, and 0.31 in the last column suggested the probability of the algorithm incorrectly
classifying samples from other categories as background.

The F1 score is widely recognized as a crucial metric for evaluating the overall per-
formance of a model across different levels of confidence, as it harmoniously combines
precision and recall, thereby offering a more comprehensive reflection of the model’s true
performance.

Figure 20 illustrates that the YOLOv5(CBAM) algorithm achieved a commendable
balance between precision and recall values, registering an overall F1 score of 0.82 at a
confidence threshold of 0.455. Notably, the P. pelagicus category consistently exhibited
the highest F1 scores across all confidence thresholds, whereas the F1 scores for the P.
sanguinolentus and P. trituberculatus categories were observed to be the lowest. Ad-
ditionally, the F1 scores for the P. sayi category demonstrated a rapid decline post a
confidence level of 0.5.

Figure 21 delineates the variation in the F1 score in relation to the confidence level for
the YOLOv8(CBAM) algorithm. A notable F1 score of 0.99 was achieved for P. pelagicus,
while the scores for P. trituberculatus, P. sanguinolentus, and P. sayi were recorded at
0.88, 0.93, and 0.67, respectively.

The YOLOv8(CBAM) algorithm underwent training on a meticulously compiled pike
crab dataset, with the confidence threshold for network training uniformly set to 0.001.
An exploration into the impacts of batch size and calendar elements on the effectiveness
of network training under various hyperparameter values yielded significant results, as
depicted in Table 2. These findings underscored that the model attained its peak mean
Average Precision (mAP) value of 92.2% at a batch size of 128 and an epoch number of
75.
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Figure 20. The F1-confidence curves of the YOLOv5(CBAM)

Figure 21. F1-confidence curves of the YOLOv8(CBAM)

6. Comparison with other algorithms. This study further conducted a horizontal
comparison of the proposed algorithm with several existing algorithms, including the SSD,
Efficientdet, and Faster R-CNN algorithms. Some of the properties of the algorithms are
shown in Table 3. The YOLOv8(CBAM) model, with the addition of the CBAM attention
mechanism, had a 185-layer neural network structure with 11,167 learnable parameters.
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Table 2. Experimental results demonstrating the influence of batch size
and epoch number on the mAP value

Hyperparameter Epoch number
Batch size 25 50 75 100

8 37.6% 56.2% 78.9% 80.3%
16 33.1% 66.2% 87.2% 88.6%
32 43.9% 54.8% 90.0% 83.9%
64 33.4% 66.9% 80.7% 91.4%
128 41.3% 51.6% 93.2% 92.89%

The computational complexity of this model was 28.817 GFLOPs, meaning that 2.8817
billion floating-point operations were performed during one forward propagation (infer-
ence). This algorithm used only 10 MB of memory. The Efficientdet model was the only
algorithm that surpassed the YOLOv8(CBAM) and YOLOv5(CBAM) model in terms of
FLOPs. In addition, YOLOV8(CBAM) takes up less memory than YOLOV5. This in-
dicates that the YOLOv8(CBAM) algorithm’s detection accuracy significantly exceeded
that of the others, as shown in Figure 21.

Figure 22. Test accuracies of different algorithms
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Table 3. Parameters of different algorithms

Algorithm Layer number Parameter number GFLOPs Volume size (106)
SSD 56 26,285,486 62.747 92.78
Efficientdet 312 3,874,217 5.234 10.3
Faster R-CNN 40 137,098,724 370.210 10.32
YOLOv5 484 47,056,765 115.918 10.15
YOLOv5 (Mixup) 484 47,056,765 115.918 10.36
YOLOv5 (CBAM) 226 7,063,828 16.0 10.21
YOLOv8 (CBAM) 185 11,167 28.817 10

Considering all factors comprehensively, the proposed YOLOv8(CBAM) algorithm demon-
strated several advantages for the P. pelagicus category, including high accuracy and low
computational complexity.

A lower loss on the validation dataset indicated that this weight exhibited a more
desirable generalization on the validation dataset. However, this was not directly related
to the accuracy of the model’s predictions. Five sets of weights with lower losses were
selected for each algorithm separately. The accuracy results for the two runs are shown in
Figure 21. The mean and standard deviation could not describe this distribution because
it was non-Gaussian. Possible reasons for this could include the dataset containing photos
of Portunus crabs captured under low-visibility conditions and the fact that the contours
of Portunus crabs were not always prominent.

In Figure 22, the red diamonds represent outliers, and the blue dots represent the
mean values. Figure 22(a) shows the recognition accuracy of each algorithm for the
P. pelagicus category. The results demonstrated that the SSD algorithm achieved an
accuracy of 97.8%, the Efficientdet had an accuracy of 29.8%, and the Faster-Rcnn had
an accuracy of 99.0%. Therefore, the difference in accuracy between the algorithms was
small. The EfficientDet had outliers at 9.9%, the YOLOv5 had outliers at 60.9%, and
the YOLOv5 (Mixup) had outliers at 64.53%, indicating a certain degree of instability of
all three algorithms. Figure 22(b) shows the recognition accuracy of the algorithms for
the recognition of a category as a whole. The overall recognition accuracies of the SSD,
Efficientdet, and Faster-Rcnn algorithms were all less than 85% for the upper bound digit
and median of the recognition accuracies. Although the YOLOv5(CBAM) algorithm had
two outliers after optimization in terms of the overall model prediction, that did not
affect the excellent recognition prediction capability of the YOLOv5(CBAM) algorithm.
YOLOv8(CBAM) demonstrates even better stabilization than YOLOv5(CBAM).

7. Conclusion. In this study, Convolutional Neural Network (CNN) models are used for
the regression and classification of different species. The appearance characteristics of the
four pike crab species, including P. pelagicus, P. sanguinolentus, P. trituberculatus, and
P. sayi are described in detail.

The main contributions of this study are as follows:
(1) The YOLOv5 model and data-enhanced model were used separately for the recog-

nition of P. pelagicus, and good recognition results were obtained. The F1 score values
of 0.79 and 0.89 and mAP values of 88.88% and 94.67% were achieved by the YOLOv5
model and data-enhanced model, respectively. The two algorithms exhibited an average
overall pike crab identification ability, with the mean average precision (mAP) values not
exceeding 50%. Therefore, additional efforts are necessary to enhance the algorithms for
multi-species, multi-category detection capabilities further to improve their recognition
performance.
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(2) The Convolutional Block Attention Module (CBAM) was incorporated into the
framework based on the YOLOv5 and YOLOv8 algorithms to enhance the performance
of deep recognition algorithms. The number of P. pelagicus samples in the dataset was
865, and for P. pelagicus, the proposed model achieved an mAP value of 99.2% and 99.9%
respectively. The proposed YOLOv8 model had the highest overall mAP value of 93.2%
at a batch size of 128 and an epoch number of 75. The overall average accuracy of the
proposed model was 0.9289. This implied that the proposed model could reduce the false
alarm rate during the recognition process and effectively differentiate between the target
and non-target objects.

(3) Boundary conditions for the model parameters were explicitly defined. The modified
YOLOv8 had a 185-layer neural network structure with a computational complexity of
28.817 GFLOPs, and the algorithm used only 10 MB of memory. Compared to the
SSD, Faster-Rcnn, and enhanced YOLOv5 algorithms, the enhanced YOLOv8 showed
significant improvements. The proposed algorithm was comparable to the Efficientdet
algorithm in terms of computational complexity and the number of learnable parameters;
however, its mAP was improved by 63.09%.

In summary, the YOLOv8 algorithm with the CBAM attention mechanism could
achieve outstanding performance in recognizing distant sea pike crabs. This algorithm had
certain prospects for scientific research and practical applications and could be applied to
deep learning tasks in ecological monitoring, conservation efforts, and related fields.
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