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Abstract. Source camera identification has become one of the research hotspots in the
field of digital image forensics. Most existing methods are based on deep neural network
models. While these methods have improved traceability accuracy compared to traditional
methods, their performance in terms of accuracy becomes mediocre when the device cat-
egories are expanded. Moreover, they require retraining on a complete dataset or fine-
tuning on newly added datasets. To address these challenges, this paper introduces a
source camera identification method based on multi-scale feature fusion. Different scales
of convolutional kernels are used to sample the input image, and parallel residual net-
works obtain sensor pattern noises at different granularities. A fusion network layer then
inputs the merged features into a Softmax layer for classification results. Furthermore,
to avoid repeated training due to class expansion, high-dimensional network features are
extracted to construct an index vector database for retrieval classification. Experimental
results demonstrate that the multi-scale feature fusion method achieves higher accuracy in
camera traceability tasks. Additionally, the proposed retrieval mode effectively addresses
the category expansion problem with minimal accuracy loss.

Keywords: Digital image forensics, Source camera identification, Multi-scale feature
fusion, Sensor pattern noise

1. Introduction. In the current digital era, due to the rapid advancement of computer
technology, the Internet, and artificial intelligence, digital capture devices, especially mo-
bile smart devices, have proliferated to every corner. This means that images can be easily
taken, synthesized, edited, tampered with, and quickly shared. Consequently, the reliable
determination of an image’s origin and integrity has become a focal point for both the
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public and experts. The technology of source camera identification is central to the field
of digital image forensics [1], allowing for the tracking of the image-producing device and
determining whether it has been edited. The practical applications of this technology are
quite extensive: from criminal investigations and intellectual property protection to foren-
sic identification and business strategy optimization, its influence is undeniable [2, 3, 4, 5].
On the other hand, deep learning techniques have been extensively applied in various as-
pects of image and video feature extraction and classification [6, 7, 8, 9].

The generation of images is a complex process, encompassing multiple steps, from the
reception of light signals to the final formation of digital images [10, 11]. Each step
could potentially embed device-specific characteristics in the image, making it possible to
differentiate even between devices of the same model. From the perspective of pattern
recognition, the technology of source camera identification is essentially a classification
problem, aimed at classifying and recognizing the origin of a device by identifying the
unique noise patterns in the image. Existing methods can be primarily categorized into
those based on traditional digital image processing algorithms [12, 13, 14, 15, 16, 17]
and those rooted in deep learning algorithms [18, 19, 20, 21, 22, 23]. While traditional
methods offer acceptable levels of accuracy, deep learning-based approaches typically ex-
hibit superior traceability precision on specific datasets. However, the performance of
existing methods on large-scale datasets still requires improvement. Furthermore, when
introducing new categories, there is often a significant need for extensive retraining and
fine-tuning, undoubtedly resulting in a substantial computational burden.

To further optimize traceability accuracy, this paper introduces a source camera identifi-
cation method based on multi-scale feature fusion. This method integrates image feature
extraction at various granularities and amplifies the features through parallel residual
networks, thereby achieving higher traceability precision. In addition, we construct a
device index database using high-dimensional feature vectors to efficiently retrieve device
fingerprints when new categories are introduced, while maintaining a high level of trace-
ability accuracy. Comprehensive validation on the VISION [22] and Daxing [23] datasets
underscores the efficacy of the proposed approach.

2. Related Work. Regarding the source camera identification technology based on dig-
ital image processing algorithms, Choi et al. [12] proposed that by measuring the radial
distortion of the lens and pixel intensity, it can be considered as a ”fingerprint” of the
camera, achieving an identification accuracy rate of 90%. Dirik et al. [13] observed that
dust on the camera lens leaves distinctive patterns on images, which can be used for
identification. Lukás [14] and Goljan [15] were the first to explore the identification of
camera sensors through PRNU (Photo-Response Non-Uniformity). They extracted noise
fingerprints using wavelet transform and matched them using peak correlation energy.
The process includes: preprocessing images, removing noise, calculating sensor pattern
noise, and building a camera fingerprint database. Quan et al. [16] found that ISO (cam-
era sensitivity) affects the correlation of PRNU and suggested compensatory processing.
Popescu et al. [17] determined whether an image had been tampered with by examining
color interpolation traces. Overall, source camera identification techniques based on tra-
ditional digital image processing have shown mediocre performance in terms of accuracy.

Source camera identification techniques based on deep learning can be divided into two
categories: partially based on deep learning and fully based on deep learning. The former
adopts the traditional digital image process framework but replaces traditional low-pass
filters with denoising neural networks like DnCNN and FFDNet. References [18, 19, 20,
21, 22, 23] demonstrate that source camera identification based on convolutional neural
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networks (CNNs) exhibits advantages over previous methods. For instance, Gao [18] em-
ploys a multi-stage progressive neural network as a noise extractor, achieving superior
performance on the dataset. On the other hand, approaches based on fully deep learn-
ing utilize supervised learning and neural network downsampling to transform images
into high-dimensional vector representations. The category probabilities are obtained
through a Softmax layer, and the output result is determined by the highest probability.
This method exhibits higher traceability efficiency and accuracy, but the retraining or
fine-tuning is required when expanding sample categories, resulting in significant time
overhead. Marra et al. [21] propose a deep learning framework for iris photos and per-
sonal cameras, capable of simultaneously authenticating user identity and camera sensors.
Chen et al. [22] apply residual networks to source camera identification tasks, achieving
commendable results on multiple classic datasets. David [23], through a comprehensive
analysis of convolutional networks with different depths, provides an end-to-end trace-
ability implementation using shallow neural networks. While the aforementioned meth-
ods are effective for specific device types, they necessitate retraining or fine-tuning when
expanding categories. In contrast, our proposed method exhibits stronger generalization
capabilities.

3. Method Elaboration. This paper presents an image source camera identification
method based on multi-scale feature fusion. Given an input image for testing, the model
extracts its feature vector, matches it with fingerprints in the device fingerprint database,
and ultimately outputs the retrieval results, as illustrated in Figure 1. The upper half of
the figure delineates the training process of the neural network model based on multi-scale
feature fusion: through supervised learning based on cross-entropy loss on a designated
dataset, the model gains the ability for feature extraction. The lower half of the figure
represents the model deployment and usage process: input a test image, obtain the feature
vector of the image’s pattern noise through the model, and then perform retrieval-based
source camera identification. In comparison to the upper half of the figure, the model
part in the lower half reduces the gray structure, indicating the direct extraction of the
model’s high-dimensional vector as the feature vector for the image’s pattern noise. The
overall process is as follows:

Figure 1. Overview of the Method

3.1. Neural Network Based on Multi-scale Feature Fusion. The Multi-scale Fu-
sion Convolutional Neural Network (MFCNN) proposed in this paper is a convolutional
neural network-based image classification model. It is capable of extracting features from
images at different scales and merging them to enhance classification accuracy. In the
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context of source camera identification tasks, this network excels in extracting sensor
pattern noise from photos, providing a data foundation for the retrieval of source camera
types.

MFCNN primarily consists of two modules: the multi-scale convolution module and the
feature fusion module. Among them, the multi-scale convolution module is the focus of
network design, and addressing the characteristics of sensor pattern noise, such as how to
design an appropriate network structure and achieve effective representation, is the core
issue of the research. Given that the size of the convolutional kernel directly determines
the local receptive field’s size, and considering sensor fingerprints as a very subtle noise,
to capture more comprehensive features, features obtained by applying multi-scale convo-
lutional kernels are fed into parallel residual blocks of different granularities. Benefiting
from residual connections within the blocks, the model’s expressive and generalization
abilities are enhanced, and the stability of the model training process is improved. The
feature fusion module combines the downsampling results from parallel residual blocks
and feeds them into the final classifier, and subsequently identify the source camera.

The complete algorithmic architecture, illustrated in Figure 2, takes a 64Ö64 image
input. It’s then processed by 3Ö3, 5Ö5, and 7Ö7 convolutional kernels of varying sizes.
Following the convolutional layers, the features undergo batch normalization, ReLU ac-
tivation, and pooling, before entering three parallel residual blocks. Each residual block
consists of a 1Ö1 convolutional layer, batch normalization layer, ReLU activation layer,
3Ö3 convolutional layer, batch normalization layer, ReLU activation layer, 1Ö1 convolu-
tional layer, batch normalization layer, ReLU layer, and pooling layer. Each branch of the
residual block ultimately outputs a 256-dimensional deep vector. In the fusion module,
these three 256-dimensional vectors are stacked to form a 768-dimensional vector. This
vector is then processed through a basic fully connected layer and a Softmax layer to
output the final result.

3.2. The Source Camera identification Method Based on Feature Retrieval.
In contrast to traditional digital image-based methods that can perceive explicit camera
fingerprints during the modeling process, deep learning-based methods typically do not
explicitly define such noise. Instead, they directly use the model’s output to predict
classification results. This approach necessitates retraining and refitting to new data
distributions when expanding device categories, incurring significant overhead.

As described in Section 3.1, once the neural network based on multi-scale feature fusion
is fully trained, the model possesses strong capabilities for extracting sensor pattern noise.
These capabilities are stored in the form of high-dimensional vectors in the forward channel
of the model. This paper introduces a source camera identification method based on
feature retrieval, as illustrated in Figure 3.

This method is implemented in two stages. In the first phase, the generation phase,
the entire training set is processed through the trained model for inference. The resultant
768-dimensional vectors (depicted as the gray module in Figure 3) produced during this
inference are extracted and stored as fingerprint indexes corresponding to their respective
categories. In the second phase, the retrieval phase, an input image designated for testing
undergoes model inference, and its high-dimensional feature vector is extracted. This
vector is then compared with each index in the device index database by calculating the
Euclidean distance to determine its category affiliation. The final search outcome is then
produced based on this comparison. The specific calculation is expressed in Formula 1,
where [x1, x2, . . . , xn] represents the high-dimensional vector obtained from the model for
the test image, [yt1, y

t
2, . . . , y

t
n] represents the index vector corresponding to category t
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Figure 2. Architecture of the Multi-scale Feature Fusion Network
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Figure 3. Flowchart of the Retrieval Method

in the fingerprint database, and Dt represents the Euclidean distance between the two
vectors.



Source Camera Identification Method Based on Multi-Scale Feature Fusion 2569

D t =

√√√√ n∑
i=1

(Xi − yti)
2 (1)

When facing an expansion of device categories, it is only necessary to repeat the process
of the first stage for the new class samples. This involves generating fingerprint indexes
corresponding to the newly added category. Subsequently, the source camera retrieval
for the expanded device categories can be implemented as described in the second stage.
As there is no need for repeated model training, the efficiency of deployment in scenarios
involving device category expansion can be improved.

4. Experiment and Analysis.

4.1. Datasets. This study utilizes two datasets for performance validation testing. The
first one is the VISION dataset, which consists of imaging devices from 11 brands with
a total of 35 portable devices. This part of the dataset includes 34,427 JPEG images,
making it a widely used dataset for image source attribution. The second one is the
Daxing dataset, which pertains to digital imaging devices from 22 models comprising 90
smartphones. This dataset encompasses 43,400 JPEG images, distinguishing it as the
largest current dataset for smartphone image source attribution.

To comprehensively validate the effectiveness of the method proposed in this paper,
we set up experiments on three scales, containing image data from 10 device categories,
35 device categories, and 90 device categories respectively. The data for the 10 device
categories is selected from the VISION dataset, which includes two iPhone 6 models
with IDs D06 and D15, in addition to eight other different device models. The data for
the 35 device categories comprises the complete VISION image dataset, which includes
several devices of the same model. Lastly, the data for the 90 device categories is sourced
from the complete Daxing image dataset. To make full use of the data in each scale of
the experiment, images were uniformly segmented into non-overlapping blocks of 64Ö64
pixels. Subsequently, the data was split in a ratio of 8:1:1 for training, validation, and
testing sets, respectively. The number of images in all three experiments is in the order
of millions.

4.2. Experimental Setup. Environment and Hardware: The experimental code was
constructed based on the PyTorch framework. It was run on the Ubuntu 18.04 operating
system, with an Intel Xeon Gold 6230N processor, and the NVIDIA A100-80G graphics
card.

Training Details: For model training, the Adam optimizer was employed in conjunction
with the cross-entropy loss function. The initial learning rate was set to 0.01, with a batch
size of 512. The entire training process consisted of 80 epochs.

Benchmark and Comparative Analysis: To highlight the effectiveness of the proposed
method, Iris-Net [21], ResNet-18 [22] and DavNet [23] were selected as a benchmark
for comparison. Based on existing research results, this method has demonstrated high
accuracy in camera source tracing. Furthermore, to showcase the improvement brought
about by multi-scale feature fusion compared to a single-branch network for this task, the
three parallel network branches proposed in our method were each taken as individual
methods and were evaluated in comparative experiments.

Category Expansion Evaluation: To demonstrate that the source camera identification
method based on feature retrieval can effectively handle category expansion scenarios,
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the multi-scale feature fusion neural network model trained on the smallest scale dataset
(comprising 10 categories) was tested across experiments of all three scales.

4.3. Evaluation Metrics. The primary evaluation metrics chosen for assessing the per-
formance of the camera source identification method based on multi-scale feature fusion
are accuracy and the confusion matrix.

Accuracy: Accuracy is the ratio of correctly classified samples to the total number of
samples. It is generally used to evaluate the overall precision of a model.

Confusion Matrix: The columns of the confusion matrix represent predicted classes,
while the rows represent the actual classes of the data. The diagonal represents the number
of samples for which the model’s prediction matches the actual label. This matrix can be
used to analyze the classification accuracy for each individual category, thus allowing for
an analysis of the model’s precision at a granular level.

4.4. Results Analysis. (1) Analysis of Classification and Source Camera Identification
Accuracy Based on MFCNN Model

This experiment initially conducts a comparative test on the source camera classification
accuracy of the MFCNN model and other existing models. The experimental results are
presented in Table 1. It is evident from the table that the proposed method in this paper
consistently achieves the highest classification accuracy in the experiments. Thanks to the
multi-scale convolution’s ability to capture comprehensive image features and the feature
enhancement capability of parallel residual networks, the model achieves an accuracy
of 98.02% in experiments with 10 device classes. On the complete VISION dataset, it
attains an accuracy of 93.2%, and even on the comprehensive Daxing dataset, it achieves
an accuracy exceeding 85%. These results demonstrate the effective feature extraction
capabilities of the proposed method for image pattern noise.

Table 1. Summary of source camera classification accuracy

Models
10-device
Dataset

35-device
Dataset
(VISION)

90-device
Dataset
(Daxing)

Iris-Net 75.60% 63.36% 39.56%
ResNet-18 94.37% 90.99% 80.68%
DavNet 87.91% 70.47% 57.68%

Ours(3Ö3) 73.51% 91.13% 78.94%
Ours(5Ö5) 83.37% 90.62% 79.43%
Ours(7Ö7) 94.25% 91.00% 58.11%

Ours 98.02% 93.20% 85.44%

Subsequently, the classification module of the aforementioned model is transformed
into a retrieval form, i.e., the original model’s fully connected layer is removed, and high-
dimensional vectors are used to represent camera fingerprints for retrieval matching. All
methods employ pre-trained models obtained on data from 10 device classes. The ex-
perimental results are presented in Table 2. From Table 2, it can be observed that the
proposed source camera identification method based on MFCNN achieves favorable trace-
ability accuracy.
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Table 2. Summary of source camera identification accuracy

Models
10-device
Dataset

35-device
Dataset
(VISION)

90-device
Dataset
(Daxing)

Iris-Net 66.93% 47.92% 50.85%
ResNet-18 96.99% 79.11% 58.53%
DavNet 68.69% 45.00% 35.79%
Ours 97.34% 86.90% 76.38%

(2) Analysis of Category Expansion
From Tables 1 and 2, it is evident that as the number of devices increases, there is a

noticeable decline in both the classification and source camera identification prediction
accuracy for almost all comparative models. In some cases, the prediction accuracy falls
below 50%. The reason for this outcome is the diminishing gap between different cate-
gories as the number of device types increases, especially when considering the growing
diversity within the same device type. The limited expressive capabilities of the compared
models result in a significant decrease in accuracy. In contrast, the use of the multi-scale
feature fusion network in this paper shows a minimal decrease in accuracy as the device
scale increases.

In Table 2, although all methods use pre-trained models obtained on a 10-device-class
dataset, comparing Tables 1 and 2 reveals that the proposed method experiences the
smallest decline in identification accuracy. It even achieves a traceability accuracy of
76% on a dataset with 90 device classes. This represents a decrease of only 9 percentage
points compared to Table 1. Additionally, since it does not involve secondary training,
the retrieval-based method exhibits a more cost-effective response to category expansion
scenarios.

(3) Analysis of Confusion Matrix
10-device Test Performance: The exact accuracy rate for each category can be observed

from the confusion matrix. Figure 4 showcases the prediction results of the multi-scale
feature fusion network for the first experiment, while Figure 5 presents the results using
the retrieval method. Both methods achieved remarkably high tracing accuracy rates
in the 10-device test. However, there were some prediction errors for the D06 and D15
devices, which was anticipated. These two devices are the only ones of the same model in
the first experiment. Devices of the same model have certain similarities in their sensor
pattern noise, leading to reduced accuracy.

Performance on VISION and Daxing Datasets: The top row of Figure 6 displays the
prediction results of the multi-scale feature fusion network for the second and third ex-
periments, while the bottom row shows the results of the retrieval method. It can be
observed that most of the dark pixel blocks are concentrated along the diagonal, proving
the effectiveness of the camera tracing methods proposed in this study. However, it’s no-
ticeable that there’s some feature coupling among certain devices. Devices labeled as 31
and 37 as well as 53 and 57 had certain misidentifications. These devices are all iPhones
but of different models. This suggests that while the proposed method performs well,
there’s room for further optimization, especially for large-scale camera tracing tasks.
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Figure 4. Confusion Matrix
(Performance of feature fu-
sion network on 10 devices)

Figure 5. Confusion Ma-
trix (Performance of retrieval
method on 10 devices)

Figure 6. Confusion Matrix (Top row: Performance of feature fusion net-
work on VISION and Daxing datasets; Bottom row: Performance of re-
trieval method on VISION and Daxing datasets)
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5. Conclusions. This paper presents an effective method for extracting residual camera
fingerprints in images based on multi-scale feature fusion. Compared to previous meth-
ods, this approach is adaptable to a larger scale of devices. By convoluting the image
through various sizes, features of different granularities are extracted. These are then
passed through parallel residual networks to amplify the features. This forms a feature
vector which is introduced into the feature fusion layer, obtaining a 768-dimensional vec-
tor that represents sensor pattern noise. Thanks to feature fusion, the representational
power of this vector is significantly superior to a single branch network, thereby achiev-
ing a higher accuracy rate for camera traceability. At the same time, by leveraging the
superior representational ability of the high-dimensional vector, a device index database
is constructed. When faced with category expansion, this allows for efficient fingerprint
retrieval of devices, ensuring traceability accuracy close to a retrained model.

While the current work has shown promising results, there are still some challenges
to address. For instance, there is a substantial decline in classification accuracy when
the number of categories sharply increases. Additionally, questions remain about the
accuracy of source camera identification when images undergo compression, cropping,
or other processing. In future work, we plan to explore the introduction of alternative
model structures and methods to enhance the accuracy and robustness of source camera
identification.
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