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Abstract. Domain-adaptive networks have demonstrated outstanding performance in
bridging interdomain disparities, emerging as a burgeoning research direction in the field
of object detection in recent years. However, the substantial disparities between the dis-
tribution of solar cell defect detection data in real-world scenarios and that of train-
ing datasets significantly impact the accuracy and robustness of detection networks. To
address this issue, this paper first constructs three sets of datasets, including “source
domain-exposure domain dataset,” “ source domain-night domain dataset,” and “source
domain dataset-noise domain dataset.” Secondly, an uncertainty-aware module is in-
troduced into the feature extraction module of the baseline domain-adaptive multi-level
entropy attention alignment (MEAA) model to enhance the network’s efficiency in utiliz-
ing features during interdomain image-level alignment. Lastly, an instance-level efficient
region proposal network (RPN) alignment module is designed to improve the network’s
instance-level prediction accuracy. Experimental results demonstrate that the proposed
method significantly enhances domain adaptive detection accuracy across different do-
mains and exhibits notable superiority compared to state-of-the-art domain adaptive de-
tection networks.
Keywords: Defect detection, Interdomain differences, Domain-adaptive networks,Image-
level alignment, Instance-level alignment

1. Introduction.
Errors during the production process or manual operation often lead to cracks, broken
cells, unsoldered cells, and other defects on the surface of solar cells, which are the main
factors affecting their efficiency and lifetime. Therefore, it is of great theoretical signif-
icance and practical value to study the surface defect detection of solar cell modules in
depth, particularly automatic classification and detection technology [1,2]. Early research
on solar cell surface defect detection algorithms primarily included manual visual [3–5]
and machine vision methods [6–10]. The class of manual visual methods is susceptible to
various uncertainty factors arising from problems, such as low detection efficiency, high
error rate, and high labor intensity [11]. Machine vision based methods achieve auto-
matic detection of solar cell surface defects using video image processing technology [12],
including traditional image domain analysis methods (e.g., gradient feature [13, 14], ma-
trix decomposition [15] and clustering [16]), and transform domain analysis methods (e.g.,
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the Fourier transform [17] and the wavelet transform [18,19]). These methods extract fea-
tures by manually designed filters and are thus applicable to simple scenarios; however,
their limited ability to capture high-level semantic features leads to poor performance
when the defect features are not obvious or the defect appearance is very similar to
the background. Recently, with the development of deep learning, convolutional neural
networks (CNNs) [20] have been widely used for defect detection. In 2021, Zhang et
al. [21] proposed a fused multichannel CNN for solar cell surface defect detection and
achieved good detection performance and position regression accuracy. In 2022, Sharma
et al. [22] proposed a two-stage approach for the classification and detection of steel plate
surface defects. In 2024, Cao [23] improved YOLOv8-GD deep learning model for de-
fect detection in electroluminescence images of solar photovoltaic modules. These deep
learning-based defect detection methods dominantly use fully supervised learning, which
offers the advantages of good real-time detection, high detection accuracy, and convenient
operation. Because a significant amount of labeled data must be trained to improve the
network performance, the prerequisite for adopting these algorithms is to produce several
labeled defect datasets, which is extremely labor-intensive, material-intensive, and time-
consuming and is thus difficult to achieve. Inspired by domain adaptive class methods,
scholars have begun to investigate feature extraction from labeled source domain data to
transfer them to unlabeled target domain data. The idea of domain adaptive object detec-
tion (DA-OD) first appeared in relation to the DA-OD-Faster R-CNN [24] network, which
uses Faster R-CNN [25] as the backbone network to migrate the inter-domain invariant
information learned from the source domain to the target domain by performing adver-
sarial learning between the supervised source domain and unsupervised target domain
datasets, aligning the inter-domain image-level and instance-level features to accomplish
adaptive detection of the target domain datasets. In 2020, Chen et al. [26] proposed a
hierarchical transferable calibration network HTCN to improve the transferability and dis-
criminability of domain adaptive networks. Subsequently, methods, such as strong-weak
distribution alignment (SWDA) [27], multi-adversarial faster-R-CNN (MAF) [28] and se-
lective cross-domain alignment (SCDA) [29] networks, were developed to explore feature
alignment schemes from different perspectives. A typical representative method is the
DA-OD-multi-level entropy attention alignment-(MEAA) [30] algorithm, which exhibits
good performance in target detection through an image-level feature alignment module
based on local uncertainty attentional alignment (LUAA) and multi-level uncertainty-
aware contextual alignment (MUCA). The research goal of the “Solar Cell Surface Defect
Detection” project is to detect three types of defects on the surface of solar cell images and
to accurately classify and locate the different defects within bounding boxes. The afore-
mentioned adaptive detection algorithm model is bound to encounter some challenges if
directly applied to this study. On the one hand, the actual solar cell image acquisition
scene is subject to overexposure at noon, darkness at night, dust and gravel in the shoot-
ing environment, and so on, whereas the existing dataset is almost entirely composed of
solar cell surface defect images with the same parameters for the same scene, causing the
data distributions in the real scene and training dataset to have certain differences. In
addition, there is a large domain gap between the source-domain data from the training
dataset and the target-domain data of the real scene, necessitating the algorithm to per-
form interdomain image-level feature alignment characterized by low feature-utilization
efficiency, poor detection accuracy, and poor algorithm robustness. On the other hand,
the surface defects of solar cells reflect the characteristics of different morphologies with
similarity to the background, exacerbating recognition and making it difficult to retain the
original features intact when transferring them between different domains. In this con-
text, using the DA-OD-MEAA model as the baseline network, this study proposes a solar
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cell surface defect detection algorithm for domain adaptation. The specific contributions
are summarized as follows:

(1) In feature extraction, information entropy is used to measure the uncertainty of
different local regions of the solar cell surface defect image, whereby the calculated prob-
ability image is used as the uncertainty-aware attention feature map and fused with the
feature map obtained by applying the basic feature extraction module, to obtain the mul-
tiscale weighted feature map, which can improve the feature utilization efficiency of the
network.

(2) An instance-level efficient channel-attention RPN alignment module is designed to
improve the instance-level prediction accuracy of the network. Specifically, local cross-
channel interaction without dimensionality reduction and a one-dimensional convolutional
kernel adaptive selection strategy are used in RPN. Local cross-channel interaction can
realize weight sharing without increasing the number of network parameters and opera-
tions, whereas, one-dimensional convolutional kernel adaptive selection can preserve the
integrity of the original features by avoiding data dimensionality reduction during com-
putation.

2. Methods.

The overall framework of the proposed domain-adaptive solar-cell surface-defect-detection
network, shown in Figure 1, mainly consists of an image-level feature alignment (ILFA)
module and an instance-level efficient channel attention RPN (ILECA-RPN) alignment
module. The working principle can be briefly described as follows. A solar cell image ran-
domly selected from the source domain and another selected from target domain are fed
into the backbone network. The input image pair passes through three feature extractors:
G, F1, and F2, where F1, F2 and their lower paths jointly form the ILFA module. The
feature extractor G contains two 3 ∗ 3 convolutional layers and a maxpooling layer.The
feature map output of F1 is fed into the ILFA module, whereby the feature maps obtained
after F1 and F2 processing are sent to the discriminators D1 and D2. A pixel-by-pixel
information entropy calculation is then performed on the output of the discriminators to
obtain uncertainty-aware attention feature maps, which are then multiplied by the feature
map outputs from F1 and F2; the result is further subjected to cross-layer cascading to
improve the network utilization of local features. Because RPN networks have a strong
dependency on channel mechanisms, an efficient channel attention (ECA) [31] module was
introduced to help the classification and regression branches of the RPN network make
more accurate prejudgments and achieve feature alignment at the instance level.

2.1. Image-level feature alignment (ILFA) module.
In the solar-cell surface defect dataset, the local areas of each image may contain differ-
ent target defects or parts of the same target defect, which usually consist of a certain
number of pixels with different intensities. In different domains, the local areas where
the target defects are distributed in the solar-cell images display uncertainties, exhibit-
ing differences in discriminability and transferability in these areas. The structure and
texture features of the same class of target defects in two solar cell images in different
domains are similar, and the structure and texture features of different classes of target
defects are different. Thus, it can be concluded that the structure and texture features
of local regions of solar cell images can have an important impact on the effectiveness
of domain-invariant feature extraction in unsupervised domain adaptive tasks. As the
morphological defects of solar cell surfaces are subtle and difficult to detect, the ability to
extract high-level semantic information while preserving low-level structural and textural
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Figure 1. An overview of our framework composed of two proposed mod-
ules, an image-level feature alignment module (ILFA), and an instance-level
efficient channel attention RPN alignment module (ILECA-RPN).

information is crucial. Considering information entropy as a measure of uncertainty, this
method adopts information entropy to determine the uncertainty of target defects in solar
cell images in different local regions and uses the generated uncertainty-aware attention
feature maps to weight the original feature maps, thereby extracting the domain-invariant
features from different domains to perform feature alignment between source and target
domains considering pixel semantics. The solar cell surface defect image is fed into the
domain-adaptive detection network, and the primary feature map, processed by feature
extraction module G, is the input into F1. The output f1 of F1 is then fed into the domain
discriminator D1 which outputs d1.

d1 = D1 (f1) (1)

If the uncertainty-aware attention feature map is represented by s1i , then it can be calcu-
lated by introducing d1 into the information entropy function in Equation (2),

s1i = H (d1)

= − [d1 log (d1) + (1− d1) log (1− d1)]
(2)

whereH(·) denotes the entropy function. The larger the s1i , the higher is the uncertainty
of the sample, and a higher weight is assigned to images with higher uncertainty. By
contrast, a relatively lower weight should be assigned to images with lower uncertainty.
The uncertainty obtained is used to update the weight features, and the updated weight
(1+s1i ) is multiplied by the Hadamard product corresponding to the original feature map
f1 to obtain the final uncertainty-aware feature map h1.

h1 = f1 ⊙
(
1 + s1i

)
(3)

At this point, the domain discriminator D1 corresponds to the adversarial loss, as shown
in Equation (4).

L1 = E [log (D1 (F1 (f
s
1 )))]

+ E
[
log
(
1−D1

(
F1

(
f t
1

)))] (4)
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The feature map f2, obtained after applying the feature extraction module F2, is cascaded
with h∗

1 to obtain the fused features e2.

f2 = F2 (h1) (5)

h∗
1 = Shuffle (h1) (6)

e2 = concatenate (h∗
1, f2) (7)

Further, the corresponding uncertainty-aware attention feature map s2i can be expressed
as follows:

s2i = H (d2)

= −D2 (e2) log (D2 (e2))

− [1−D2 (e2)] log [1−D2 (e2)]

(8)

Similar to the previous step, the related feature maps here are fused to obtain the fused
feature map h2 containing multi-scale image-level semantic information. The domain
discriminator D2 corresponds to the adversarial loss, as shown in Equation (10).

h2 = f2 ⊙
(
1 + s2i

)
(9)

L2 = E [log (D2 (F2 (h
s
2)))]

+ E
[
log
(
1−D2

(
F2

(
ht
2

)))] (10)

2.2. Instance level efficient channel attention RPN alignment module (ILECA-
RPN).
In general, RPN networks are used to generate a region proposal for the target to be
detected, and the IoU threshold can be set to further classify positive and negative sam-
ples and determine the initial target location. In RPN networks, “Distinction between
foreground and background” and “generation of prediction coordinates of regression box
position” are performed in the two branches of classification and regression, respectively,
and the proportion of anchor points of the regression box in traditional RPN networks is
often set to 1 : 1, 1 : 2, and 2 : 1, and the sizes are set to 88, 1616, and 3232; therefore, the
classification branches of foreground and background include 332 = 18 channels where “2”
is with reference to positive and negative samples, and “3” refers to the three proportions
and three sizes, respectively), while the regression branches include 334 = 36 channels
(where “4” denotes the left corner coordinates of the prediction box (x, y) and the width
and height of the prediction box (w, h)). Considering that the number of feature channels
is an important factor affecting the classification and regression performance of an RPN,
this method proposes an adaptive enhancement for each channel to further improve the
classification and regression prediction accuracy of the network.

The weighted feature map output from the ILFA module is fed into the ILECA-RPN
alignment module to obtain the classification and regression results of the network. As
shown in Figure 2, in ILECA-RPN, first, the weighted feature map is input into the RPN
network and sent to the global average pooling layer after feature extraction, to obtain
a 1 × 1 × C dimensional vector. Next, the input vector is processed in the adaptive
enhancement layer of the proposed design, and an adaptive convolution kernel of size
k is used to perform a fast one-dimensional convolution of the input vector to capture
the correlation between each channel and the neighboring channels. Subsequently, the
weight of each channel is predicted by the cross-channel information interaction between
different channels, and this direct correspondence between channels and their weights,
makes is possible to achieve adaptive enhancement of different channel features.



Domain-adaptive Solar Cell Surface Defect Detection Algorithm 2593

Figure 2. ILECA-RPN structure diagram.

Letting y ∈ RC denote the aggregated features without downscaling, the weights of the
different channels in ILECA-RPN are obtained using Equation (11).

ω = σ(Wy) (11)

Lpixel = EX,Y [(∥Y −G(X, θ)∥1)] (12)

where Wdenotes the parameter matrix, as shown in Equation (12).
ω1,1 · · · ω1,k 0 0 · · · · · · 0
0 ω2,2 · · · ω2,k+1 0 · · · · · · 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · ωC,C−k+1 · · · ωC,C

 (13)

In this experiment, considering that too many parameters increase the memory reading
and writing costs, to avoid the computational inefficiency caused by the excessive com-
plexity of the model and too many feature channels, the method of local cross-channel
interaction was adopted to learn the attention weights between channels, as shown in
Equation (13), such that for weight ωi, local cross-channel interaction considers only the
information interaction between yi and its most adjacent k channels. In addition, sharing
the learning parameters for all the feature channels, as shown in Equation (14), and ap-
plying a fast one-dimensional convolution with a kernel size of k, help achieve parameter
sharing for all channels.

ωi = σ

(
k∑

j=1

ωj
i y

j
i

)
, yji ∈ Ωk

i (14)

ω = σ (C1Dk(y)) (15)

where Ωk
i denotes the set of k adjacent channels of yi and C1Dk denotes one-dimensional

convolution. It should be noted that when performing local cross-channel information
interaction, the coverage of information interaction (e.g., the size of the convolution kernel
k of the one-dimensional convolution) needs to be further considered. Obtaining the
optimal coverage by manual adjustment, leads to a large amount of resource consumption;
however, the channel dimension C is determined by a mapping relationship, as shown in
Equation (15):

C = Φ(k) (16)
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Here, Φ(·) denotes the mapping relationship. Equation (16) shows a common type of linear
mapping relationship, and this linear function is limited by its characterization ability.
Considering that in our problem, the channel dimension C is usually an exponent of two,
the linear mapping relation of Equation (16) can be extended to a nonlinear function, as
shown in Equation (17) to improve the characterization ability of the function.

Φ(k) = γ × k − b (17)

C = Φ(k) = 2γ×k−b (18)

Further, based on a given channel dimension C, the size of the convolution kernel k can
be determined adaptively using Equation (18).

k = φ(C) =

∣∣∣∣ log2(C)

γ
+

b

γ

∣∣∣∣
odd

(19)

where, |x|odd denotes the selection of the nearest odd-numbered channels, γ = 2, b =
1. The use of mapping gradients allows for different interactions between channels of
different dimensions, with higher-dimensional channels having longer interactions through
nonlinear mapping, and lower-dimensional channels having shorter interactions.

The MUCA module is a multilevel uncertainty-aware context module, the main purpose
of which is to automatically capture target-specific and source-specific features between
domain-invariant structures. It mainly consists of three auxiliary feature extractors, F3,
F4, F5 and three domain discriminators D3, D4, D5, the details of which can be found in
the literature [30].

Therefore, the adversarial loss of the entire network is expressed by Equation (19). The
total network loss consists of classification and regression losses, as shown in Equation
(20). The overall target loss is expressed by Equation (21).

Ladv = L1 + L2 + L3 + L4 + L5 + Lins (20)

Ldet = Lcls + Lreg (21)

Lloss = maxmin
Di

Ldet + λLadv (22)

where Di represents the multi-level domain classifiers D1, D2, D3, D4, D5, Dins; Fi rep-
resents the multi-level feature extractors F1, F2, F3, F4, F5; Li denotes the loss functions
of different domain discriminators, where D3, D4, D5, F3, F4, F5, L3, L4, L5 have the same
form as in [27]. λ is a controllable hyperparameter that adjusts the degree of influence of
the adversarial loss on the detection loss.

3. Experimental results and analysis.

3.1. Datasets and Experimental Settings.
To evaluate the performance of the proposed domain-based adaptive solar cell surface
defect detection network shown in Figure 3, we generated three paired datasets: “source
domain-exposure domain,” “source domain-night domain,” and “source domain-noise do-
main.” The source domain dataset consists of labeled solar cell surface defect images
collected under standard conditions, and the three target domain datasets consist of con-
taminated unlabeled solar cell surface defect images. In the experiment, solar cell surface
defect images were simulated in overexposed daytime, low-light nighttime, and in the
presence of dust and grit in the scene by applying luminance conversion and adding sim-
ulation noise to the images. The source domain dataset contained 2462 training images
and 300 test images. All three target domain datasets contained 2012 training images
and 675 test images.
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Figure 3. Enlarged display of broken cells, cracks, and unsoldered areas
in solar cell surface images in source domain and target domain datasets.
The first, second, third, and fourth columns are the local enlarged view of
the three defects in the source domain, night domain, exposure domain,
and noise domain datasets, respectively.

In this study mean average precision (mAP), precision, and recall were used as metrics
to quantitatively evaluate the performance of defect detection.Precision indicates the ac-
curacy of the correct positive sample, and Recall represents the coverage of the correctly
predicted positive sample, and they can be expressed as:

Prec =
TP

TP + FP
(23)

Recall =
TP

TP + FN
(24)

Recall and precision influence and restrict each other, as they are inversely proportional.
Thus, the higher the recall, the lower is the precision, and the lower the recall, the higher
is the precision. The PR curve describes the relationship between two, with recall as the
horizontal axis and precision as the vertical axis. By comparing the size of the area under
the PR curve, the training performance of the target detection network can be determined.
In general, the larger the recall and the larger the precision, the closer is the PR curve
to the upper right, and the better is the performance of the network. As an indicator of
object detection accuracy, the mean average precision mAP, is the average of AP values
of all categories of sample data, which represents the average precision performance of
the detector for multiple object categories. The higher the mAP value, the better the
performance of the detector.

The experimental environment in this study consisted of a 64-bit Linux system with
CPU of i7-9700KF, with GTX2080 (11 Gb video memory), GPU acceleration, and the
PyTorch deep learning platform. The pretrained VGG16 and Resnet101 models on Im-
ageNet were used as the backbone network for feature extraction; DA-OD-MEAA was
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the baseline model; stochastic gradient descent was used to optimize the network; the
hyperparameterwas set to 1, and the IOU thresholds were all 0.5. After training, the test
images in the dataset were input into the model, whereby three types of defects–broken
cells, cracks, and unsoldered areas– were identified and localized. The classification and
localization boxes of the defects in the test images were then output.

3.2. Visual effect analysis.
Figure 4 shows the detection results for three defects: broken cells, cracks, and unsol-
dered areas in the night domain dataset evaluated by five different algorithms, namely,
the proposed method, DA-Faster R-CNN, HTCN, MEAA, and soft competitive learn-
ing (SCL). The detection results vary depending on the method. Figure 4(a) displays
the results for broken cell defect detection. The accuracy of the regression boxes in the
different experimental results decreased in the following order: the proposed method >
SCL > DA-Faster R-CNN > HTCN > MEAA. Except for our experimental results, the
regression boxes of the other four experimental results do not fully contain defects; the
SCL experimental results have a confidence level of 0.841, and the performance of the
regression box is also poor. In Figure 4(b), the detection performance of different de-
tection frameworks decreases significantly when the defect is a crack with an elongated
shape and is very similar to the background such that DA-Faster R-CNN, HTCN, and
MEAA all generate wrong regression boxes. Although the SCL regression box does not
deviate completely, the deviation is still large, whereas the regression box of the proposed
method encloses the crack with high accuracy. In Figure 4(c), the regression boxes of the
other four comparison methods also deviate to different degrees for the unsoldered area
defects, but the detection performance is significantly improved compared to that of the
crack defects, which is primarily attributed to the fact that the defect type of unsoldered
area is relatively large and easy to detect. In summary, the detection performance of our
method in the night domain for the three defects of broken cells, cracks, and unsoldered
areas are all highly accurate, and the detection regression box is closer to that of the
ground truth than those of the comparison algorithms. The proposed method is more
accurate in enclosing small defects, such as cracks.

As shown in Figure 5, the overall detection of broken cell and unsoldered area defects of
different detection models is more accurate in the exposure domain compared to the night
domain. The detection results of cracks show that MEAA and SCL have missed some of
the small, inconspicuous crack defects; HTCN performance is also poor in detecting small
cracks with the regression box characterized by low accuracy and false detection.

Figure 6 shows the detection results of the five algorithms for three defects: broken
cells, cracks, and unsoldered areas, in the noise domain dataset. In Figure 6, HTCN
falsely detects broken cell defects. Although the other models can detect broken cell
defects, the results show a large deviation between the regression box and ground truth,
indicating inaccurate defect localization. MEAA and SCL can misjudge crack defects.
In the detection results of DA-Faster R-CNN and HTCN for unsoldered area defects,
there are missed defects; however, unsoldered area defects can be detected by MEAA,
SCL, and the proposed method, and the detection results of the proposed method are
closer to ground truth. In summary, in the night, noise, and exposure domains, the
proposed method performed well in detecting three types of defects: broken cells, cracks,
and unsoldered areas, and there were no false or missed detections.

3.3. Quantitative Analysis.
Figure 7, 8, and 9 show the precision-recall curves of the different detection models for
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(a) Schematic diagram of the detection results of different detection algorithms for broken cells in
the night domain.

(b) Schematic diagram of the detection results of different detection algorithms for cracks in the
night domain.

(c) Schematic diagram of the detection results of different detection algorithms for unsoldered areas
in the night domain.

Figure 4. Schematic of the detection results of three kinds of defects of
different detection models for the night domain scenario.
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(a) Schematic diagram of the detection results of different detection algorithms for broken cells in
the exposure domain.

(b) Schematic diagram of the detection results of different detection algorithms for cracks in the
exposure domain.

(c) Schematic diagram of the detection results of different detection algorithms for unsoldered areas
in the exposure domain.

Figure 5. Schematic of the detection results of three kinds of defects of
different detection models for the exposure domain scenario.
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(a) Schematic diagram of the detection results of different detection algorithms for broken cells in
the noise domain.

(b) Schematic diagram of the detection results of different detection algorithms for cracks in the
noise domain.

(c) Schematic diagram of the detection results of different detection algorithms for unsoldered areas
in the noise domain.

Figure 6. Schematic of the detection results of three kinds of defects of
different detection models for the noise domain scenario.
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the three target domain scenarios. The PR curves of the three defects of the proposed
detection model, illustrated by the black solid line, are higher than the PR curves of the
other detection models in the night-domain scenario, exhibiting the best detection effect
on crack defects. The performance of the proposed method is also more stable in the
exposure and noise domains, and the experimental results are generally better than those
of other algorithms.

(a) brokencell (b) cracks (c) unsoldered areas

Figure 7. Schematic diagram of the prescision-recall curves of different
detection models in the night domain scenario.

(a) brokencell (b) cracks (c) unsoldered areas

Figure 8. Schematic diagram of the prescision-recall curves of different
detection models in the exposure domain scenario.

To visually analyze the cross-domain detection capability of the proposed method,
a statistical table (Table 1) was created for the detection accuracy results of different
models for the three defects in different target domains. Even for the same defect, the
detection performances of different models in different target domains vary significantly, as
reflected by the differences in the detection accuracy values obtained, indicating that the
environment of the background domain where the target is located affects the performance
of the detection model. Overall, the night domain scenario increased the difficulty of
detecting unsoldered area defects with great similarity to the background and crack defects
with insignificant gray level changes such that the detection accuracy values obtained by
the five models on the night domain dataset for the three defects are lower than those
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(a) brokencell (b) cracks (c) unsoldered areas

Figure 9. Schematic diagram of the prescision-recall curves of different
detection models in the noise domain scenario.

obtained on the exposure and noise domain datasets. In comparison, the proposed method
outperforms other domain adaptive models in the detection accuracy values obtained for
cracks in unsoldered areas. In the exposure and noise domains, the proposed method
achieved the best average detection results for the three defects and the highest mAP
values.

Table 1. Statistics of the detection accuracy of three types of defects in
different target domains

Different method Defect
The Night Domain The Exposure Domain The Noise Domain

AP mAP(%) AP mAP(%) AP mAP(%)

DA-Faster R-CNN
brokencell 64.65

32.68
76.46

63.58
51.39

55.25crack 24.61 54.49 10.60

unsoldered 8.78 59.78 61.32

MEAA

brokencell 60.62

34.98

75.25

61.39

52.59

41.10crack 24.72 47.93 60.96
unsoldered 19.60 60.98 52.21

HTCN

brokencell 58.62

30.42

74.11

60.59

48.17

50.77crack 29.61 45.04 69.62

unsoldered 3.03 62.61 34.52

SCL

brokencell 63.65

34.69

72.03

62.63

48.89

36.26crack 32.41 54.57 13.10
unsoldered 8.01 61.30 47.78

Our
Method

Source
Domain

broken cell 63.64

63.56

63.65

56.43

63.64

59.14crack 59.14 52.39 52.48

unsoldered 67.89 53.25 61.31

Target

Domain

broken cell 63.06

42.66

80.91

64.89

54.86

60.47crack 39.84 58.60 70.56
unsoldered 34.69 55.17 55.98

3.4. Ablation study.
The proposed method uses two different strategies: the image-level feature alignment mod-
ule ILFA and instance-level efficient channel attention RPN alignment module ILECA-
RPN. Ablation experiments were performed to analyze the feasibility of both strategies.
Table 2 shows that both of the listed strategies lead to a significant improvement in the
mAP value. ILFA alone leads to a 5.6 % improvement in mAP, whereas ILECA-RPN
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alone leads to a 2.54 % improvement in mAP, and combined a 7.68 % improvement in
mAP is obtained.

Table 2. Baseline detection effect obtained by training the network using
different strategies for the exposure domain scenario.

Ablation study
Submodules

mAP(%)

ILFA(M1) ILECA-RPN(M2)

Baseline 61.39

Baseline+M1
√

63.21
Baseline+M2

√
62.78

Baseline+M1 +M2
√ √

64.89

4. Conclusion.
In this study, aiming at the differences in the data distributions of real scenarios and
standard datasets, which result in a significant decrease in the accuracy and robustness
of domain adaptive solar cell surface defect detection, a solar cell surface defect detec-
tion algorithm was proposed based on domain adaptation. For image-level alignment, an
image-level semantic context alignment module was used to reduce the image-level differ-
ences in adaptive detection between different domains through adversarial learning and
adaptive weight enhancement based on pixel information entropy. For instance-level align-
ment, an instance-level efficient channel attention RPN module was proposed considering
the strong dependency of the classification and regression branches of the RPN module
on the channel mechanism, employing the idea of local cross-channel interaction strategy
without dimensionality reduction and group convolution, to adaptively determine the size
of the convolution kernel by the given number of channel dimensions. This ensures that
the high-dimensional channels have strong interactions, whereas low-dimensional chan-
nels have weaker interactions through nonlinear mapping, thus concurrently improving
the pre-determined results of instance-level classification and regression as well as the
accuracy of instance-level prediction. The experimental results show that the domain-
adaptive detection accuracy values of the proposed method are significantly improved
for the different domains, and the method in this study displays considerable superiority
in solar cell surface defect detection compared to the latest domain-adaptive detection
networks.
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