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Abstract. A common main controller for IoT smart home control systems is the Pro-
grammable Logic Controller (PLC). PLCs are used to control various home smart elec-
trical devices such as refrigerators, lighting and thermostats. However, PLCs usually use
discrete control algorithms, which may be insufficient for certain application scenarios
that require high-precision control. For example, PLCs may not be able to provide suffi-
cient accuracy for temperature or humidity control that requires continuous adjustment.
Therefore, in order to improve the performance of the control system, this work proposes
a robust fuzzy regression PID control model that can be used in PLC control modules for
IoT smart home devices. Firstly, based on the fuzzy control principle, the relationship
between the tuning parameters of the fuzzy PID controller and the controlled object is
analysed. Secondly, a self-adjusting fuzzy PID control algorithm is proposed on the basis
of the traditional fuzzy PID control theory, which can adjust the correction factor in real
time according to the change of error. Then, the traditional robust estimation method is
improved by adding the estimation of covariance parameter, and a robust fuzzy regres-
sion PID control model is obtained by combining the improved robust estimation with
self-adjusting modified fuzzy PID, so as to reduce the interference effect of the anomalies
on the smart home control system that will be the Internet of Things, and to obtain good
control accuracy and stability. The experimental results show that compared with other
similar control models, the proposed model can better improve the control accuracy and
overcome the system oscillations, with a steady state error of only 1.21% and a maximum
overshoot of only 0.08.
Keywords:Internet of things; Robust estimation; PID; Fuzzy control; Linear regression;
Covariance

1. Introduction. The background of the Internet of Things (IoT) smart home control
stems from the rapid development of technology and people’s demand for improved quality
of life. With the maturity of IoT technology and the popularity of smart devices, home
control systems are able to achieve smarter and more convenient management [1, 2].
Smart home control systems enable various devices, such as smart lamps, thermostats,
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and security systems, to communicate and work together by connecting them [3, 4]. This
provides users with the ability to remotely monitor and control home devices, which not
only improves the comfort and convenience of living, but also enables the optimisation of
energy management, helping to reduce energy consumption and improve efficiency. The
driving force behind this also includes the rise of Artificial Intelligence, enabling systems to
learn user habits and provide personalised services. Smart home control is set against the
backdrop of evolving technology and society’s quest for smart, convenient and sustainable
lifestyles that integrate the home into the digital and intelligent age [5, 6].

In the IoT smart home system, PID (Proportional-Integral-Differential) control [7, 8] is
widely used for the precise regulation of environmental parameters such as temperature,
humidity, and light. Through the PID control algorithm, the system is able to sense
various sensor data in real time, such as temperature sensors and humidity sensors, and
then accurately control the home equipment according to the set values. In terms of
temperature control, PID control ensures that the indoor temperature is stable within
the set range, improving comfort and achieving energy efficiency at the same time. For
lighting systems, PID control can adjust the light brightness according to the feedback
from light sensors to achieve intelligent energy saving [9, 10]. In addition, PID control can
be used to monitor and control water quality and air quality in smart homes. However,
with the continuous development of IoT technology, PID control is also evolving in smart
home systems, combining machine learning, deep learning and other technologies [11] to
better adapt to user habits and improve the system’s intelligence.

The combination of fuzzy theory [12] with PID control algorithms has made significant
progress in control systems. The purpose of introducing fuzzy logic into PID control is to
improve the adaptability and robustness of the system to nonlinear and complex systems.
By fusing the flexibility of fuzzy control and the stability of PID control, it can better cope
with the uncertainties and variations that exist in real systems. In real-world applications,
fuzzy PID control is commonly used for precise control of environmental parameters such
as temperature and humidity [13, 14]. Fuzzy control is capable of handling ambiguous
and uncertain environmental conditions, while PID control provides the advantages of
fast response and precise control. For example, in smart home systems, fuzzy PID control
enables better regulation of equipment such as air conditioning and heating systems [15]
to meet the user’s individual needs for indoor environments. In addition, fuzzy PID
control is also widely used in industrial automation, robot control and other fields. In
these applications, fuzzy PID control algorithms can effectively cope with system dynamic
changes and external disturbances, and improve system robustness and performance.

Overall, the combination of fuzzy theory and PID control provides a more flexible and
intelligent regulation for the control system, which makes the system better adapted to a
variety of working conditions and environmental conditions. This combination shows great
potential in practical engineering applications and provides new ideas for the design and
optimisation of adaptive control systems. Therefore, in order to improve the performance
of the control system, this work proposes a robust fuzzy regression PID control model
that can be used in PLC control modules for IoT smart home devices.

1.1. Related Work. The current research focus of PID control algorithms includes im-
proving its performance through optimisation algorithms, enhancing its intelligence by
combining machine learning and deep learning methods, as well as its application in non-
linear and time-varying systems, which is dedicated to further improving the applicability
and robustness of PID control in practical engineering. Researchers are also exploring the
integration of PID control with various control strategies, such as fuzzy logic and neural
networks, to cope with more complex and variable practical control problems [16, 17].
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For the automatic voltage regulator system, Panda et al. [18] proposed an improved
PID controller design method using a hybrid optimisation algorithm to optimise the PID
parameters. By comparing the experimental and simulation results, the authors verified
the validity and superiority of the method, and made suggestions for further improvement
and application. Rajinikanth and Latha [19] provides a comprehensive overview of various
PID controller tuning methods, including analytical, heuristic and optimization-based ap-
proaches. It analyzes the advantages and limitations of different tuning techniques. The
categorization and comparison of methods gives good guidance for selecting tuning algo-
rithms. However, recent intelligent tuning methods are not fully covered. Krishnan and
Karpagam [20] proposes an online auto-tuning PID control scheme. It first uses the least
squares method to identify a FOPDT model of the process. Then PID parameters are
tuned based on the identified model. This method simplifies tuning by using an analyt-
ical formula. But robustness issues under model-plant mismatch need to be considered.
Sarhadi et al. [21] designed an anti-windup PID scheme to improve performance for a
nonlinear process. Stability analysis is provided for the proposed controller. The simu-
lation results demonstrate effectiveness in handling actuator saturation. However, only
a specific process is considered and experimental verification is lacking. Vasant et al.
[22] uses genetic algorithm and particle swarm optimization to determine optimal PID
parameters for a thermoelectric cooler system. The data-driven optimization approach
achieves better temperature control accuracy. But the computational cost is high and
real-time implementation is difficult. Yang et al. [23] proposes using reinforcement learn-
ing to optimize PID control gains for quadrotor stabilization. It combines the simplicity
of PID with the optimization capability of RL. The adaptive PID gains lead to better
performance. However, the training process is time-consuming and the results may not
generalize well.

By fusing the flexibility of fuzzy control with the stability of PID control, it can better
cope with the uncertainties and variations that exist in real systems. Pi et al. [24] proposes
a self-tuning PID controller using fuzzy logic to adjust PID gains online based on error and
error rate. It achieves better setpoint tracking performance. The limitations are increased
computation load and stability relies on appropriate fuzzy rule design. Rodŕıguez-Abreo
et al. [25] uses an adaptive neuro fuzzy inference system to tune optimal PID gains.
Singhal et al. [26] proposes an Adaptive Fractional Order Parallel Fuzzy Proportional-
Integral-Derivative Controller (AFOPFPC) and investigated it on WMR to meet the
above challenges. It provides a more automated tuning approach with good adaptability.
However, it requires careful design of the inference system structure and membership
functions.

1.2. Motivation and contribution. Existing fuzzy PID controllers described above
often struggle to effectively adapt to rapidly changing or diverse operating conditions.
This limitation is due to the static nature of their rule sets and membership functions,
which may not adequately capture the dynamics of different systems or environments. In
addition, existing fuzzy PID control algorithms may be insufficiently robust in the face of
system parameter variations, external perturbations, or model uncertainties, resulting in
degraded control performance. Therefore, in order to solve the above problems, a robust
fuzzy regression PID control model is proposed. The main innovations and contributions
of this work include:

(1) A self-adjusting fuzzy PID control algorithm is proposed on the basis of the tradi-
tional fuzzy PID control theory, which is capable of adjusting the correction factor in real
time according to the error changes. The correction factor is self-adjusted by dividing the
slope of the correction curve into two parts, coarse and fine.
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(2) In order to improve the robustness while increasing the control accuracy, a self-
tuning fuzzy PID control algorithm is proposed on the basis of the self-tuning fuzzy PID
control algorithm, which is capable of adjusting the correction factor in real time according
to the change of the error. Then, the traditional robust estimation method is improved
by adding the estimation of covariance parameter, and the robust fuzzy regression PID
control model is obtained by combining the improved robust estimation with the self-
tuning modified fuzzy PID.

2. Introduction to the rationale.

2.1. Fuzzy control principles. With the increasing complexity of systems studied in
the current control field, accurate mathematical models are often difficult to establish,
and traditional control methods are unable to solve the new problems currently faced.
However, in practical applications, engineers can take appropriate countermeasures to
skilfully control a complex process with their rich practical experience. Researchers quan-
tified the experience of engineers through fuzzy mathematics, which led to the formation
of fuzzy control theory [27], and thus fuzzy control algorithms came into being. Fuzzy
sets express human thinking and judgement processes in a relatively simple mathematical
form.

In order to achieve control of nonlinear processes, fuzzy control systems need to calcu-
late the output error and its rate of change. Figure 1 shows the schematic diagram of a
conventional fuzzy controller. The front-end data input mainly uses A/D acquisition in-
terface to complete the conversion of analogue data to digital quantization. The analogue
output mainly uses the D/A module interface. The whole system forms a closed-loop
structure.

In Figure 1, E denotes the system error, EC denotes the rate of change of the system
error, both of which are quantified fuzzy variables, and U denotes the output fuzzy variable
of the fuzzy controller. The main function of the fuzzification module is to compute the
degree of affiliation based on a quantified input variable within the corresponding fuzzy
set using the affiliation function on the corresponding domain range in order to convert
the input variable into a fuzzy variable.

Input A/D

System set value 

(exact quantity)

Input A/D

Fuzzification

Fuzzification

Fuzzy 

reasoning

De-

fuzzification

Fuzzy rules

Output D/A

/dt

Nonlinear 

process

Fuzzy controller

E

EC

U

Figure 1. The schematic diagram of traditional fuzzy controller

A crucial part of the fuzzy controller is the fuzzy rules, which are mainly obtained
through historical experience and expert analysis. The affiliation function used in the
fuzzy inference module is shown in Figure 2. Since the outputs of the fuzzy inference
module are still fuzzy variables, defuzzification operations are required.
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Figure 2. Fuzzy set of single output

For the fuzzification interface problem, the input computation of the fuzzy controller
must be used for fuzzy inference by fuzzifying the error exact quantity e. Thus, the
fuzzification interface is the input interface to the fuzzy controller, and its main role is
to transform the real exact quantity into a fuzzy vector. A fuzzy subset of a fuzzy input
variable can usually be classified as:

E = {NB, NS, ZO, PS, PB} (1)

E = {NB, NM, NS, ZO, PS, PM, PB} (2)

E = {NB, NM, NS, NZ, PZ, PS, PM, PB} (3)

where NB denotes negative big; NM denotes negative medium; NS denotes negative
small; NZ denotes negative zero; ZO denotes zero; PZ denotes zero positive; PS denotes
positive small; PM denotes positive medium; PB denotes positive big.

The knowledge base is divided into two parts, including database and rule base. The
database mainly stores quantification methods, rank selection, and affiliation functions of
fuzzy subsets, which are set on the basis of engineers’ experience and judgement with the
subjectivity of engineering experience, and provide data to the reasoning machine during
the fuzzy relational equation solving process of rule-based reasoning.

The rule base is set up based on expert knowledge or long-term accumulated experience
of engineering operators, which is a linguistic expression of reasoning according to human
intuition, usually connected by a series of relational words.

2.2. Fuzzy PID controller. In the traditional industrial field, it is still the classical
PID algorithm that is heavily used, but the control effect depends on the accuracy of
the identification model, and for the complex system where the controlled object is sub-
ject to load changes or disturbances, accurate modelling is often very difficult. With
the continuous development of computer technology, fuzzy control algorithms have been
widely popularised and used in recent years, and they have become one of the most active
and mature technologies in the field of intelligent control technology, presenting superior
performance to conventional control systems in many fields.

Fuzzy PID controllers have several structural forms, but their operating principles are
basically the same [28]. The controller takes the error e and the error change ec as the
input statement variables. Considering the stability, response speed, steady-state error,
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and overshooting amount of the system, the fuzzy rules are set in advance, and fuzzy
reasoning is applied to adjust the PID parameters in real-time to meet the requirements
of self-tuning of the PID parameters at different moments of e and ec, so as to improve
the stability of the system. The structure of the fuzzy PID controller is shown in Figure
3.

r

PID 

regulator
object

Fuzzy controller

/dt

u y

e
Kp Ki Kd

Figure 3. Structure diagram of fuzzy PID controller

The discrete fuzzy PID control algorithm is shown below:

u(k) = Kpe(k) +KiT
k∑

j=1

e(j) +Kd
e(k)− e(k − 1)

T
(4)

Where k is the sequence of samples; T is the sampling time; Kp, Ki, and Kd are the
PID tuning parameters.

In order to achieve Fuzzy PID parameters self-tuning, the first step is to find out the
fuzzy relationship between the three tuned parameters of PID (Kp, Ki, Kd) and (e, ec).
During the operation of the system, it is necessary to continuously sample and modify the
three parameters online according to the fuzzy control principle to meet the requirements
of the control parameters at different (e, ec). The control is carried out by considering
the stability performance, response time, overshooting amount and steady-state accuracy
of the system, so that the controlled object has good dynamic and static performance.

In this work, a fuzzy PID algorithm is introduced to regulate the PLC control of the IoT
smart home model, which can better deal with the time-varying, non-linear and hysteresis
problems in the system without the need of an accurate mathematical model, and has
good robustness and the system response can be accelerated.

3. The proposed self-regulating modified fuzzy PID control. Fuzzy controllers
have great application prospects and development potential in many fields. However, the
fuzzy control algorithms of the control modules that come with most PLC control software
at this stage are too simple, so the control performance sometimes cannot meet the
demand for high precision. In addition, it is unable to deal with multivariable, nonlinear
and time-varying control requirements.

Therefore, in order to solve this problem, a self-adjusting fuzzy PID control algorithm is
proposed on the basis of the traditional fuzzy PID control theory, which is able to adjust
the correction factor in real time according to the change of error. The correction factor
is self-adjusted by dividing the slope of the correction curve into two parts, coarse and
fine.

In this paper, a simplified fuzzy control rule is used to implement the control algorithm,
which is expressed as shown below:

U = ⟨aE + (1− a)EC⟩ a ∈ [0, 1] (5)
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where a denotes the moderating correction factor; E, EC and U are all quantified fuzzy
variables as described in the previous section.

Firstly the quantified fuzzy variables are made to have the same classification level as
follows.

E = EC = U = [−N, ...,−3,−2,−1, 0, 1, 2, 3, ..., N ] (6)

The effect of the system error E and the rate of change of the system error EC on the
output fuzzy variable U of the fuzzy controller can be realised by modifying the value of
the adjustment correction factor a, i.e., adjusting a means adjusting the control rule. In
general, the self-adjustment of the adjustment correction factor a is as follows:

a =
(aH − aL)|E|

N
+ aL aL ≤ a ≤ aH ≤ 1 (7)

where the moderating correction factor a ∈ [aL, aH ].
Equation (7) embodies fuzzy quantitative control rules with self-regulating factors in the

full range, i.e., it describes the self-regulation of weights (control outputs) according to the
error values. This approach is easy to implement and has better real-time performance,
reflecting the key role of human thinking in the control decision-making process. However,
we can see that there is no EC fuzzy variable in Equation (7). Therefore, in the process
of regulating the correction factor a of this method, the error change fuzzy variable EC
cannot have any influence on it, which leads to the performance of this method cannot
be further improved.

In order to improve the performance of the traditional fuzzy PID control algorithm,
this paper divides the self-adjustment of the regulation correction factor a into two com-
ponents, coarse and fine, and realises the self-adjustment by combining the two. Among
them, the main idea of fine regulation is to adjust the curve of regulation correction fac-
tor a in real time according to the change of system error E. The formula for real-time
adjustment of a is as follows:

a = |E| · |k + Emkm + am| (8)

where k denotes the slope of the correction curve in the region of the unit step response
at this point in time; am and Em denote the horizontal and vertical coordinates of the
centre point where the change in slope is the rotation of the correction curve.

Coarse adjustment is the process of adjusting the slope to quantitatively analyse the
amplitude of the oscillation by calculating the maximum error rate of change, i.e., to
achieve the systematic error rate of change EC is taken into account in the process of
adjusting a. The slope k is adjusted in coarse adjustment in the following way:

k =
k′max

N
k0 (9)

where k0 denotes the initial slope; k′max denotes the maximum error rate of change (be-
longing to the previous response phase).

By combining Equation (8) and Equation (9), we can derive the adjustment correction
factor a for the coarse-fine combination, which can be expressed as follow:

a =
|E| · k′max

N
k0 +

Emk
′
max

N
k0 + am (10)

In this paper, we propose the self-regulating correction factor fuzzy PID controller
as shown in Figure 4. Z−1 denotes the delayed operation of the control quantity at the
previous moment in order to complete the calculation of the maximum error rate of change
of the previous response stage in coarse regulation.

4. The proposed robust fuzzy regression PID control model.
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Figure 4. Proposed Self-Tuning Modifier Fuzzy PID Controller

4.1. Linear regression principle analysis. Existing PID controls are all very sensitive
to abnormal data points, and too many abnormal data points will significantly reduce the
control accuracy and reliability. Although the proposed self-tuning modified fuzzy PID
control can effectively improve the control accuracy, the robust estimation capability is still
unsatisfactory. This is due to the fact that most of the regulation processes only calculate
the mean parameter without considering the influence of the covariance parameter, thus
ignoring the negative effect of outliers [29]. It is well known that fuzzy linear regression
has strong stability.

Therefore, this paper improves the traditional robust estimation method, increases the
estimation of covariance parameter, and combines the improved robust estimation with
self-adjusting modified fuzzy PID to obtain a robust fuzzy regression PID control model,
so as to reduce the influence of anomalies on the interference of will IOT smart home
control system, and to obtain good control accuracy and stability.

At present, regression analysis methods are mainly divided into linear regression and
non-linear regression, and the main content of this paper is the linear regression analysis
method. The control principle based on linear regression analysis is shown below:

y(t) = b0 + b1xi1 + b2xi2 + · · ·+ bpxip +Θ(t) (11)

where y(t) denotes the control value at time t; xip denotes the various factors associ-
ated with the control, i.e., the random independent variables; bp denotes the regression
coefficients of the regression equation; Θ(t) denotes the random disturbances, which are
generally those obeying a normal distribution.

4.2. Basic model of fuzzy linear regression. Fuzzy linear regression is a regression
analysis method based on fuzzy logic [30]. It is a combination of fuzzy inference theory
and linear regression model.

In traditional linear regression models, a linear relationship is assumed to exist between
input variables and output variables. In fuzzy linear regression, on the other hand, the
relationship between input and output variables can be fuzzy, considering the vagueness
and uncertainty of many problems in the real world. Unlike traditional linear regression
models, the regression coefficients in fuzzy linear regression are no longer definite values,
but fuzzy numbers. A fuzzy number is composed of an affiliation function and a fuzzy set
to describe the fuzzy relationship between the input and output variables.

By using fuzzy logic operations and fuzzy reasoning, the fuzzy values of the output
variables can be obtained based on the fuzzy values of the input variables and the fuzzy
numbers of the regression coefficients. Then, based on the characteristics of the fuzzy
values and fuzzy set operations, the deterministic values of the output variables can be
further obtained. Therefore, fuzzy linear regression has certain advantages in dealing with
fuzzy and uncertainty problems. On the basis of linear regression analysis, the control
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model of short-term fuzzy linear regression is proposed by introducing the concept of
fuzzy sets.

Yi = A0 + A1xi1 + · · ·+ Apxip (i = 1, 2, . . . , n) (12)

where Aj denotes the regression coefficient; Aj, xij, and Yi are fuzzy numbers.
Traditional control methods based on linear regression analysis are simpler to implement

and have fewer parameters. The control method based on fuzzy linear regression analysis
improves the stability, but it is still more sensitive to the anomalies in the data, resulting
in low robustness, which affects the applicability in practical application scenarios.

On the basis of the above control method based on fuzzy linear regression analysis,
robust estimation theory is introduced in this paper in order to improve the robustness
of control.

4.3. Robust estimation. The theory of robust estimation is a statistical method for
estimating parameters in the presence of outliers or when the data deviate from a normal
distribution. Traditional methods of parameter estimation, such as least squares estima-
tion, are very sensitive to outliers and are prone to produce unstable estimates. Robust
estimation theory aims to improve the stability and reliability of estimates by using robust
estimation methods that reduce the impact of outliers on the estimation results.

The basic idea of robust estimation methods is to reduce the effect of outliers by weight-
ing the data or using estimation functions with strong robustness. Assuming that the
number of data sets is m, and the i-th parameter has ni observed values, and a total of
n observations are recorded, the observed results for the i-th parameter at moment t are
shown below:

yij = xTijβ0 + f0(tij) + eij (13)

where xTij denotes a covariate; β0 denotes a p-dimensional regression coefficient; f0(·)
denotes a smooth function; eij denotes an independently distributed disturbance obeying
an ellipsoidal distribution.

The B-spline basis function is used to approximate f0(·), then the linearisation formula
is shown as follow:

yij =
(
xTij, π

T (tij)
)
δ0 + eij (14)

πT (t) = (B1(t), B2(t), . . . , Bn(t))
T (15)

where δ0 denotes the joint regression parameters to be estimated.

4.4. Improved Robust Estimation Based on Covariance Parameters. In this pa-
per, improved robust estimation equations are used to estimate the parameter δ0 and the
covariance parameter γ0, respectively, as follows:

Uδ(δ, γ) =
m∑
i=1

DiV
−1/2
i (γ)hi(δ, γ) = 0 (16)

Uγ(γ, δ) =
m∑
i=1

{
K

2

[
WiZ

−1/2
i (γ)

∂Vi (γ)

∂γ
− 1

2
hTi V

−1/2
i (γ)

∂Vi (γ)

∂γ
V

−1/2
i (γ)hi

}]
(17)

where K denotes the factor that ensures robust estimation of the covariance parameter
(in this paper, we set the disturbances to follow a normal distribution, hence, K = 0.3).

hi = hi (δ, γ) = Wiψf (Zi) (18)

where Wi denotes the weights matrix; ψf (·) denotes the Huber regression function.
Selecting the diagonal matrix as the weight matrixWi, thenWi = diag{ωi1, ωi2, . . . , ωin}.
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ωij = ω (xij) = min{1,

(
b0

(xij −mx)
T (xij −mx)

)v/2

} (19)

where v ≥ 1 is a constant.
In this paper, the use of covariance parameters to improve robust estimation has the

following 2 benefits: (1) Considering the correlation between variables. The covariance
parameter can reflect the correlation between variables. In robust estimation, the use of
covariance parameters can more accurately describe the correlation structure of the data,
thus improving the accuracy and reliability of the estimation. (2) Reduce the effect of
outliers. The covariance parameter has a certain anti-interference ability to outliers. By
considering the covariance relationship between variables, the impact of outliers on the
estimation results can be reduced and the stability of estimation can be improved. The use
of covariance parameters to improve robust estimation can improve the accuracy, stability
and reliability of estimation. It can make more comprehensive use of the information in
the data, reduce the impact of outliers, and improve the fit of the model. This is very
helpful in dealing with outliers and correlation structures present in the actual data and
improves the quality of the estimation results.

4.5. Asymptotic properties analysis. The asymptotic properties of f0 and γ0 are
analysed next using multivariate normal variables.

Asymptotic property analysis is a method used in mathematics to describe the be-
haviour of a function at infinity. When we discuss the properties of a function as its
independent variables tend to infinity, we are usually concerned with its asymptotic be-
haviour. Suppose the covariates X and t have the following relationship:

xijk = gk (tij) + δijk, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ p (20)

where gk (t) denotes a bounded derivative of order r; δijk is a normal distribution with
mean 0 and independent of eij.

Theorem 1 If the assumptions made by Sinha are satisfied, including:
(1) The size of the data should tend to infinity, i.e. n→ ∞;
(2) The data should obey a specific probability distribution;
(3) The estimates should have a certain asymptotic distribution, i.e., they should obey

a particular asymptotic distribution when the sample size is large enough.
Then the number of nodes kn ≈ n1/(2γ+1) for all estimates f̂ .

1

n

n∑
i=1

(
f̂(ti)− f0(ti)

)2
= Op

(
n−2γ/(2γ+1)

)
(21)

√
n
(
δ̂ − δ0

)
Γ−→ N (0, Vδ) (22)

where Vδ = KδSδK
−1
δ ; Kδ denotes a positive definite matrix;

r−→ denotes convergence to
a distribution.

It follows fromTheorem 1 that the improved robust estimation based on the covariance
parameter has no significant suppression of the asymptotic nature of the construction.

4.6. Steps of the control algorithm. The proposed model is used to implement the
control of IoT smart home electrical devices in the following steps:

Step 1: Estimate the initialised values of different parameters δ0 and covariance param-
eter γ0 according to the different requirements of smart home devices;
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Step 2: Set γ = γ(j−1) and δ = δ(j) in the j-th iteration and follow Equation (16) and
Equation (17) to solve for δ(j) and γ(j) respectively;

Step 3: j = j+1 and repeat step 2 until iteration to convergence, thus obtaining δ̂ and
γ̂;

Step 4: Detect the presence of outliers and classify them;
Step 5: Construct a robust fuzzy regression model, as shown below;

min

∫
|µY (x)− µŶ (x)| s.t. Ŷi ⊇ Yi (23)

where µY (x) denotes the affiliation function of the fuzzy number Y .
Step 6: Equation (23) is solved by least squares method;
Step 7: Output robust fuzzy control intervals to meet the demand for high-precision

and high-stability system control.
The robust fuzzy regression PID control model is shown in Algorithm 1.

Algorithm 1 Robust fuzzy regression PID control model (Part 1)

1: function RobustFuzzyRegressionPIDControl(error, previous error, cumula-
tive error)

2: fuzzy error = FuzzyLogic(error) ▷ Fuzzy Logic Block
3: Fuzzy Regression Block
4: regression coefficients = FuzzyRegression(fuzzy error, previous error, cumula-

tive error)
5: PID Control Block
6: proportional term = regression coefficients[0] * error
7: integral term = regression coefficients[1] * cumulative error
8: derivative term = regression coefficients[2] * (error - previous error)
9: // Calculate control signal
10: control signal = proportional term + integral term + derivative term
11: return control signal
12: end function
13: function FuzzyLogic(error)
14: // Fuzzy logic rules and membership functions
15: // Define fuzzy sets, linguistic variables, and rule base
16: // Fuzzify the error and possibly other relevant variables
17: // Apply fuzzy rules to get fuzzy error
18: fuzzy error = FuzzyInference(error)
19: return fuzzy error
20: end function
21: function FuzzyRegression(fuzzy error, previous error, cumulative error)
22: // Fuzzy regression rules and membership functions
23: // Define fuzzy sets, linguistic variables, and rule base
24: // Fuzzify fuzzy error, previous error, and cumulative error
25: // Apply fuzzy regression rules to get regression coefficients
26: regression coefficients = FuzzyRegressionIn(fuzzy error, previous error, cumu-

lative error)
27: return regression coefficients
28: end function
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29: function FuzzyInference(error)
30: // Define inference rules to determine the degree of membership
31: // in fuzzy sets based on error values
32: // Use linguistic variables and rule base to infer fuzzy error
33: return fuzzy error
34: end function
35: function FuzzyRegressionIn(fuzzy error, previous error, cumulative error)
36: // Define inference rules to determine the regression coefficients
37: // Use linguistic variables and rule base to infer regression coefficients
38: return regression coefficients
39: end function

5. Experimental Results and Analyses.

5.1. Experimental Equipment. The JT3U series single board PLC from YKHMI is
used for the experiment. The hardware structure is mainly composed of CPU module,
memory unit, power module and input/output interfaces. This is a small modular PLC
which is widely used in the market. The devices such as PLC modules and smart homes
in the IoT environment are connected through LoRa nodes for data acquisition. Multiple
LoRa nodes are wirelessly networked via 433MHz licence-free band.

There are many models and specifications of JT3U series single board PLC mainframe,
you can choose the appropriate model according to the actual needs. The selected PLC
model is JT3U-48MRT-16MT, powered by 24V DC, containing 24-channel relay output,
8-channel transistor output, 10-channel AD analogue sampling channel, 2-channel DA
digital output, supporting RS232 and RS485 interfaces, and its physical diagram is shown
in Figure 5.

E= E• S~ S+ 

~- - 1 

Figure 5. JT3U-48MRT-16MT module

5.2. Control performance analysis. In order to verify the advancement of the pro-
posed Robust Fuzzy Regression PID Control (RFRPC), it was compared with Rule Self-
Adjusting Fuzzy Control (RSAFC) and AFOPFPC [26]. The parameters of the 2 fuzzy
controllers, Ku, Ke, and Kec were set to 0.1, 5, and 45, respectively. The centre point of
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the rotation of the correction curve was set to 0.5 and the initial slope of the curve K0

was set to 0.1333.

K0 =
2(aH − aL)

N
(24)

Example 1: The first control object selected is shown as follows:

G(s) =
2.2s+ 4.6

s2 + 4s+ 3
e−3s (25)

Taking temperature control as an example, the three affiliation functions (cold, mild
and hot) of the triangular affiliation function with centres and ranges of (0, 10, 20),
(15, 25, 35) and (30, 40, 50) respectively. The number of rules in the fuzzy rule base is
10. Maximum affiliation method is used to calculate the final output values. The curve
obtained from the test is shown in Figure 6. It can be seen that compared to RSAFC
and AFOPFPC, the RFRPC model is able to improve the control accuracy better with
a steady state error of only 1.21%. In addition, has a high response speed and better
real-time performance.

Example 2: The control object selected again is:

G(s) =
1

1.6s2 + 4.4s+ 1
(26)

The scanning period of the PLC module is set to 10 ms, the input/output refresh time
is set to 5 ms, the communication rate is set to 9600 bps, the preset value of the timer
is set to 500 ms, and the program memory is allocated to 20 KB. The curve obtained
from the test is shown in Figure 7. It can be seen that the RFRPC model proposed
in this paper can better overcome the perturbations occurring in the system, with small
fluctuations, and the maximum overshoot is only 0.08.
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Figure 6. Comparison of Test Results for Calculation 1



2618 Z.-X. Yang, C. Jiang and X.-W. Liu

0 1 2 3 4 5 6 7 8 9 1 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

 R F R P C
 R S A F C
 A F O P F P C

 t / s

No
rm

aliz
ed 

ste
p r

esp
ons

e 

Figure 7. Comparison of Test Results for Calculation 2

6. Conclusion. In this work, a self-adjusting fuzzy PID control algorithm is proposed on
the basis of the traditional fuzzy PID control theory, which is able to adjust the correction
factor in real time according to the error change. The correction factor is self-adjusted
by dividing the slope of the correction curve into two parts, coarse and fine. In addition,
in order to improve the robustness while improving the control accuracy, a self-regulating
fuzzy PID control algorithm is proposed on the basis of the self-regulating fuzzy PID
control algorithm, which is able to adjust the correction factor in real time according to
the error changes. Then, the traditional robust estimation method is improved by adding
the estimation of covariance parameter, and the RFRPC model is obtained by combining
the improved robust estimation with self-tuning modified fuzzy PID. The experimental
results show that, compared with other similar control models, the proposed model can
better improve the control accuracy and overcome the system oscillation, with a steady-
state error of only 1.21% and a maximum overshoot of only 0.08, which better meets the
demand for high-precision, steady-state control of IoT smart homes.
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