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Abstract. This study proposes a novel strategy called Enhanced Crossover and Mu-
tation Differential Evolution (ECMDE) to address the limitations of the Differential
Evolution (DE) algorithm. DE often suffers from slow convergence speed, low accuracy,
and vulnerability to local optima. The ECMDE algorithm aims to overcome these issues
by employing adaptive crossover and mutation techniques. A chaotic mapping approach
is used to initialize the population in the initialization stage, ensuring that the initial
population is well-distributed across the search space. In the improved mutation oper-
ation, a new mutation strategy is proposed using a dynamic adaptive factor instead of
F to address the late convergence issue. Additionally, an adaptive crossover operator is
employed. To evaluate the effectiveness of the ECMDE algorithm, it is compared with
other algorithms using the CEC2013 benchmark function. The results of the compara-
tive study demonstrate that the ECMDE algorithm exhibits superior global convergence
ability and faster convergence speed compared to the other algorithms tested. Finally, the
ECMDE algorithm is applied to optimal microgrid planning issues, providing effective
optimization performance and reducing the operating cost of the microgrid scheme.
Keywords: Microgrid planning; Swarm intelligence algorithm; Energy storage opti-
mization; Differential Evolution; Crossover and mutation strategy.

1. Introduction. Microgrids typically consist of multiple energy sources such as solar
photovoltaic, wind power, and energy storage systems, allowing them to independently
produce, store independently, and supply electricity [1]. In addition, microgrids can also
be connected to the traditional power grid as a part of its distributed energy system [2].
Microgrids can be divided into three types: stand-alone, interconnected, and islanded,
each suitable for different application scenarios [3]. Microgrids have a wide range of
applications, including residential communities, commercial buildings, industrial parks,
and rural areas. Microgrids play a crucial role in addressing energy supply shortages,
promoting energy transition, and reducing carbon emissions [4]. With the continuous
development of clean and distributed energy technologies, microgrids have a broadening
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application scope and market prospects. In the future of energy development, microgrids
are expected to become an essential component, contributing to the promotion of en-
ergy transition and carbon emissions reduction [5]. Microgrids have several advantages
compared to traditional power grids [6], including:

• High reliability: Microgrids can operate independently, which reduces the risk of
large-scale power outages.

• Good sustainability: Microgrids can use renewable energy, such as solar and wind
energy, to achieve the utilization of clean energy.

• Excellent economy: Microgrids can adopt distributed power supply, which reduces
transmission loss and energy costs.

The operation of a microgrid system is a complex task that requires a sophisticated
control system as distributed power sources are subject to uncertainty. Weather, light,
and wind speed can affect the output power of these sources, making the output power
unpredictable [7]. To optimize a microgrid, various constraints such as power supply
reliability, voltage stability, frequency stability, and power balance must be considered
comprehensively [8, 9]. This increases the complexity of microgrid optimization, making
it essential for maximizing economic benefits and reducing operating costs [10, 11].

However, microgrid optimization involves multi-objective, multi-energy, and dynamic
uncertain load demand, making it a challenging optimization problem [12]. One solution
is to apply metaheuristic algorithms. In recent years, the development and widespread
use of computer technology has led to a rapid growth of meta-heuristic algorithms [13].
These algorithms aim at optimization and achieve excellent optimization performance
through combining and improving existing algorithms [14, 15]. The main advantage of
meta-heuristic algorithms is their high flexibility and adaptability, allowing them to solve
various optimization problems quickly [16, 17]. The flexibility of these algorithms is
demonstrated by their ability to design and adjust customized algorithms for different
problem structures and constraints [18]. Meanwhile, their adaptability is highlighted by
their ability to continuously optimize the performance and efficiency of algorithms through
mechanisms such as learning and evolution [19][20].

Classic meta-heuristic algorithms such as particle swarm optimization (PSO) [21], dif-
ferential evolution (DE) [22], Artificial bees colony (ABC)[23], Seagull optimization algo-
rithm (SOA) [24] and grey wolf algorithm (GWO)[25] have been widely used and verified
for their optimization effects. Additionally, meta-heuristic algorithms based on deep learn-
ing and reinforcement learning have rapidly developed and applied in recent years. The
significance of metaheuristic algorithms is not only in the academic community but also
in practical applications [26]. In manufacturing, transportation, energy management, and
other fields, meta-heuristic algorithms have been widely used to solve optimization prob-
lems and have achieved significant economic and social benefits [27]. For optimizing the
microgrid, this article will use the DE algorithm as the optimization method [28]. The
search process of the algorithm can be controlled by setting appropriate parameters such
as population size, crossover rate, mutation rate, etc [29]. To enhance the search ability
of the algorithm and reduce the risk of falling into local optima, improvements will be
made to improve its performance.

This article is structured as follows: section 2 introduces the microgrid model and the
differential evolution algorithm. Section 3 presents the improved differential evolution
algorithm (ECMDE) and compare it with other algorithms on the CEC2013 test function.
In Section 4 applies the ECMDE algorithm to optimize the microgrid and evaluate the
optimization results. Finally, section 5 provides a summary of the article.

2. Related work.
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2.1. Microgrid Model.
The distributed power generation in a microgrid mainly includes photovoltaic (PV),

wind turbines (WT), energy storage (ES), microturbine (MT), and other sources [3][30].
The mathematical models for these components will be introduced below.

Wind turbine (WT) electricity production is affected by wind speed v. When the wind
speed falls below the cut-in wind speed, the WT produces no electricity. The power
production rises as the wind speed grows within the range between the cut-in wind speed
and the specified wind speed. When the wind speed is between the specified and cut-out
wind speeds, the generator produces electricity at its rated capacity [4][8]. When the wind
speed exceeds the cut-out wind speed, the generator will engage a self-protection state
and shut down. As a result, the wind machine can only function properly when the wind
speed is within a certain range. The common fan output power function is:

Pw =


0 v < vin, v > vout

v3(Pwr/(v
3
r − vin

3))− Pwr((vin
3)/(v3r − vin

3)) vin <= v < vr

Pwr vr <= v < vout

(1)

We define Pw as a wind turbine’s electricity production, Pwr as its rated output power,
v as the real-time wind speed during each time interval, vr, vin and vout as the wind speeds
at the rated capacity, cut-in threshold, and cut-out limit.

The microturbine (MT) has a power range of 25-300 kW and is known for its high
efficiency, low emissions, and compact size [31]. The amount of fuel consumed is di-
rectly related to the electricity generated by the microturbine. The relationship between
generation efficiency and output power can be expressed as follows:

ηMT = 0.4174(
PMT

65
)− 0.3095(

PMT

65
)2 + 0.0753(

PMT

65
)3 + 0.1068 (2)

The formula of microturbine fuel cost is as follows:

CMT (t) =
Cp

LHV
× PMT

ηMT

(3)

The fuel price is denoted by Cp , while the lower calorific value of gas is denoted by
LHV.

Diesel Generators have high reliability and mature operation and maintenance technol-
ogy [32]. When the other units’ power generation is insufficient, Diesel can be supple-
mented in the microgrid, and the fuel cost of DE using the quadratic function expression
is:

CDE = α + β PDE + γ P 2
DE (4)

We use CDE is Diesel Generators to denote the fuel cost, PDE to denote the output
power, α, β and γ to denote the fuel cost coefficient.
Photovoltaic (PV) power generation is a process that utilizes photovoltaic cells, which

are semiconductor devices that exhibit the photovoltaic effect, to convert incident light
energy into electrical energy through the generation of an electric current, and its output
power is proportional to the intensity of the light and the ambient temperature. To
determine the total power of a solar power production device, use the following formula:

Ppv = Ppvr × [1 +Kl(0.0256G+ T − Ttef )]×
G

Gref

(5)

Where Ppv is the photovoltaic power generation system’s output power;Ppvr is the rated
power under reference conditions; G indicates the actual light intensity,Light intensity
under reference conditions: Gref=1000 W/m2; Kt=-3.7×-3 (1/ �) is the temperature
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coefficient of photovoltaic panel; T is the ambient temperature; Tref=25� is the reference
temperature.

Energy storage (ES) systems can effectively track changes in wind and solar energy
output to facilitate charging and discharging, serving as a buffer for the power grid and
enhancing the reliability and continuity of power supply. Specifically, when the total
output power of distributed generation exceeds the total load, the ES system will be
charged, while it will be discharged when the total output power is less than the total
load. The battery’s charge and discharge status can be expressed as:

ESB(t) =


ESB(t− 1) + ((Pload(t)− Pload(t)/ηinv)ηsb∆t, Charge

ESB(t− 1)− (
Pload(t)

ηinv
− Ptotal(t))ηsb∆t, Discharge

(6)

At any given time t, Ptotal(t) indicates the micro power supply’s overall capacity, while
Pload(t) indicates the system’s overall load. Additionally, ηinv and ηsb respectively denote
the working efficiency of the inverter and the energy storage (ES) system’s filling and
discharging effectiveness [33].

In this paper, the system still needs to meet some inequality constraints during oper-
ation, among which the output power of distributed generation needs to meet its upper
and lower limits, which can be stated as follows:

Pmin
i (t) ≤ P t

i (t) ≤ Pmax
i (t) (7)

In this formula,P t
i , P

min
i , Pmax

i represent the actual power, minimum power and maxi-
mum power output by the micro-power i when the system is running.

The battery in the system satisfies its own upper and lower limit constraints which can
be expressed as:

Pmin
bt ≤ Pbt(t) ≤ Pmax

bt (8)

In the formula, Pmin
bt are the minimum active power output by the battery when work-

ing; Pmax
bt is the maximum active power output by the battery when working.

The limitations of power exchange with the external power grid should also be taken
into account while the system is in operation. can be said to be:

Pmin
EX ≤ Pgrid ≤ Pmax

EX (9)

The highest power the system can interchange with the outside power grid is Pmax
EX , and

the least power it can exchange with the outside power grid is Pmin
EX . In this paper, the

equality constraints mainly include power balance constraints and primary charge and
discharge constraints of batteries, and their corresponding formulas are as follows:

M∑
i=1

Pi(t) + Pgrid(t)− Pload(t) = 0, t = 1, 2, .. M, (10)

Where m represents the type of distributed power supply; Pi(t) is the active power
output by micro-power supply i in t period; when the load consumption exceeds the sys-
tem’s electricity production, the value of Pgrid(t), which represents the power transferred
between the system and the external power grid during the specified time period, is ”+”,
and ”-” when it is not; Pload(t) is the amount of power used by the load side over the
course of t.

2.2. Differential evolution (DE) algorithm.
The DE algorithm is a type of stochastic optimization method commonly used for

solving global optimization problems [22]. It mimics the principles of evolution, where
candidate solutions undergo random mutations and selection processes. At each iteration,
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DE generates a new population of candidate solutions by recombining and mutating the
existing solutions and then selects the best ones to form the next population. This
mutation and recombination process are performed using the difference between randomly
candidate chosen solutions. The mutated candidate solutions are then evaluated using a
fitness function, and the best-performing solutions are selected for the next iteration. It
is an efficient and effective optimization technique.

2.2.1. Algorithm initialization.
In an optimization problem, each individual in a population represents a potential so-

lution, and their position information is used to determine the candidate solutions [22].
Before optimization begins, the position of population members must be initialized to
ensure an even distribution throughout the D-dimensional optimization space, which typ-
ically corresponds to a D-dimensional space. A random method is often employed to
generate the initial population position information distribution. Specifically, the popu-
lation size is denoted as NP and the initial population position distribution is calculated
using the following formula:

xi,j (0) = xL
i,j + rand(0, 1)(xL

i,j − xM
i,j) (11)

The i-th individual in a population indicates a potential answer to an optimization
issue, and the j-th decision variable of that individual is denoted by xi,j(0). The i-th and
j-th range from 1 to NP and 1 to D, respectively. Meanwhile, the function rand(0,1)
creates a random integer with a uniform distribution within the range [0,1]. This formula
is utilized to initialize the position information of the population.

2.2.2. Population mutation strategy.
Mutation is a critical process in the DE algorithm that allows the algorithm to explore

new regions in the search space [22][34]. This process creates new candidate solutions by
calculating the differences between two randomly selected individuals from the current
population [22]. Common mutation operations include the following:

DE/rand/1/bin:
V t+1
i = xt

r1 + F ∗ (xt
r2 − xt

r3) (12)

DE/rand/2/bin:

V t+1
i = xt

r1 + F ∗ (xt
r2 − xt

r3) + F ∗ (xt
r4 − xt

r5) (13)

DE/current-to-best/1/bin

V t+1
i = xt

i + F1 ∗
(
xt
best − xt

i

)
+ F2 ∗ (xt

r1 − xt
r2) (14)

In the formula, V t+1
i is the experimental individual i-th in the generation t+1 population

after mutation, i ∈ [1, N ], and the population size is denoted by n; xt
r1, x

t
r2, x

t
r3, x

t
r4, x

t
r5

are three individuals randomly selected in the T generation population, and r1, r2, r3, r4
and r5 represent the identification numbers of different individuals in the same generation
population; xt

best denotes the best person in the population’s g − th generation. F is the
variation probability and the value is between 0 and 1.

2.2.3. Population crossover.
The crossover operation in Differential Evolution (DE) algorithm combines information

from multiple candidate solutions [35] to create new solutions with higher optimization
potential using a binomial crossover operator.

U t+1
ij =

{
vt+1
ij , rand (j) ≤ CR or j = rand(i)

xt+1
ij , rand (j) ≤ CR or j ̸= rand(i)

(15)
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In the formula, U t+1
ij represents an updated individual obtained by crossing the j gene of

the test individual; rand (j) is a random integer with a homogeneous distribution, with a
number ranging from 0 to 1, and j-th represents the j-th gene; CR is the cross probability,
and its value is between 0 and 1; rand(i) is the generated random integer, i takes the value
in [1, D], and d represents the D-dimensional parameter (number of decision variables);
xt
ij represents the individual of t generation population without mutation operation; vt+1

ij

represents the individuals of t generation population after mutation operation. The value
of CR in this paper is 0.9.

2.2.4. Select new species.
The individuals after crossover operation and other individuals in the population are

selected using a greedy algorithm, and the t + 1 generation individuals are selected by
comparing the fitness to obtain a new population.

xt+1
ij =

{
ut+1
i , f(ut+1

i ) ≤ f(xt
i)

xt
i, f(ut+1

i ) > f(xt
i)

(16)

Where f(ut+1
i ) represent that fitness of the test individual through crossover; f(xt

i)
indicates the fitness of the target individual.

3. Enhanced crossover and mutation differential evolution algorithm (ECMDE).

3.1. Algorithm improvement.
Improving certain variables is necessary to enhance the optimization capability of the

DE algorithm and overcome the problem of being susceptible to local optima. The key pa-
rameters for enhancing the DE algorithm’s performance are the initialization population,
mutation factor, and crossover probability.

3.1.1. Chaotic sequence initialization.
The efficiency of most current intelligent optimization algorithms is greatly influenced

by population initialization. The uniformly distributed population can appropriately
broaden the algorithm’s search scope, improving the algorithm’s convergence speed and
solution accuracy. By using chaos mapping to initialize the population, individuals can
be distributed as evenly as possible in the search space. This feature can be used to
improve the algorithm’s performance. The primary concept is to map variables into the
value range of the chaotic variable space using the properties of chaos, and then to convert
the result into the ideal variable space linearly [27]. There are currently many different
chaotic maps in the optimization field, most notably the Tent, Circle, and Logistic maps.
In this work, the Circle chaotic map is used to create the starting population [36, 44].
The definition of a circle map is as follows:

xi+1 = mod(xi + 0.2− (
0.5

2π
) sin (2πxi), 1) (17)

When generating the original population, the circular mapping technique produces a
more uniform spread of population locations than randomly dispersed populations. This
expands the ECMDE algorithm’s search area and broadens the population locations,
thereby addressing the issue of local optima and improving the algorithm’s optimization
efficiency.
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3.1.2. Improved DE/rand/2/bin mutation strategy.
In large part, mutation determines how well DE works. Using a fixed mutation operator

F can lead to insufficient convergence performance in the later stages of the algorithm.
This paper proposes a new mutation strategy that uses a dynamic adaptive factor to
replace F to solve the problem of insufficient convergence performance in the later stages
of the algorithm [37]. The following is the formula:

V t+1
i = xt

r5 + γ ∗ (xt
r1 − xt

r2) + F ∗ (xt
r3 − xt

r4) (18)

γ = γmin + (γmax − γmin) ∗ e(−(( t
T
)2)(1/3) (19)

Where T represents the maximum iteration count, and t represents the current iteration
count. The variation factors have upper and lower bounds, denoted by max and min
respectively, In this article, γmax=0.9, γmin=0.2; r1 ̸= r2 ̸= r3 ̸= r4 ̸= r5.

During the initial phase of evolution, the population explores a wider range of pos-
sibilities to discover the optimal solution, and a high value of F is preferable at this
stage. As the evolution process advances, F should be gradually reduced to improve the
population’s ability to conduct accurate and focused local searches.

3.1.3. Chaotic sequence initialization.
The a value in the crossover operator determines the proportion of genetic information

from the mutant or parents in the new individual. A large a value favors mutants and
improves convergence speed, while a small a value favors parents and enhances global
optimization. However, the standard DE algorithm uses a fixed a value, which neglects
the trade-off between global and local search. Therefore, an adaptive monotone-decreasing
crossover operator is introduced to address this issue. The formula is as follows:

CR = Cr ∗ (1− (
t

T
)2 ∗ sin(π

2
∗ t

T
)) (20)

Where t represents the present stage of the iteration process, T is the maximum itera-
tion and Cr = 0.9.

When the algorithm begins execution, the operator is initialized with a larger value.
This adjustment has the potential to enhance the algorithm’s early convergence speed
while simultaneously decreasing the operator’s value. Furthermore, in the refined for-
mula, the ratio of t/T is squared, resulting in an accelerated rate of decrement for the
function operator during subsequent iterations. Consequently, this modification facilitates
more rapid exploration of the solution space, thereby promoting global optimization and
mitigating the risk of the algorithm becoming trapped in a local optimum.

Table 1 shows an enhanced crossover and mutation differential evolution algorithm
(ECMDE) pseudo-code.

3.2. Experimental results on mathematic test functions.
Twenty eight benchmark functions in CEC2013 [38] are used to simulate the ECMDE

in order to demonstrate the effectiveness of the revised algorithm ECMDE. Test functions
6 to 20 are Fundamental Multimodal Functions, and 1 to 5 are Unimodal Functions. The
composition functions from 21 to 28. In addition, to reduce the influence of chance in
the experiment, all algorithms were tested 20 times, aiming to enhance the objectivity of
the experimental results. The compared algorithms and their parameters can be found in
Table 1.

The results of the algorithm on the CEC2013 test functions are presented in the fol-
lowing tables and graphs. Each test function was run 20 times. The ”MEAN” column
in the tables represents the average value across the 20 runs, while the ”BEST” column
represents the best result obtained in the 20 runs. The highlighted data in the tables
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Table 1. Pseudo code of ECMDE

Table 2. Parameters settings for the algorithms, e.g., DE, GWO, PSO,
ABC, and SOA

Algorithms Parameters initial settings
DE NP=60 Cr=0.6 F=0.6, iteration=1000
GWO NP=60 A ∈ [−1, 1], C ∈ [0, 2], r1 ∈ rand[0, 1], r2 ∈ rand[0, 1], iteration = 1000
PSO NP=60 c1=2 c2=2 w=0.8 Vmax=1 Vmin=1, iteration=1000
ECMDE NP=60 γmin = 0.4, γmax = 0.9, Cr ∈ [0.9, 0], iteration = 1000
SOA NP=60, fc=2, u=1, v=1

indicates the winners in the comparisons. Each table concludes with a summary that in-
cludes variables for victory, failure, and draw. In terms of the graphs, we have chosen two
unimodal functions, two multimodal functions, and two hybrid functions for comparison.

Table 3 present the results of ECMDE, comparing the performance of traditional op-
timization algorithms PSO and DE in 30-dimensional and 50-dimensional test functions.
Similarly, Table 4 display the results of ECMDE, comparing the performance of new
optimization algorithms GWO and SOA in the same test functions but with different di-
mensions. The final outcomes demonstrate that the ECMDE algorithm performs excep-
tionally well when compared to both traditional and new optimization algorithms across
different dimensions. This indicates that our modifications to the original differential
evolution algorithm have been highly effective.

Next, we chose six sample test functions, CEC1 through CEC5, CEC10 through CEC19,
CEC21 and CEC22, to evaluate the convergence behavior of the ECMDE algorithm [39].
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Table 3. PSO, DE, ECMDE performance on 30-dimension CEC2013 test
function

30D
PSO DE ECMDE

BEST MEAN BEST MEAN BEST MEAN
CEC1 -1.37E+03 2.12E+02 -1.40E+03 -1.40E+03 -1.40E+03 -1.39E+03
CEC2 1.04E+07 3.74E+07 1.46E+08 1.93E+08 1.86E+06 7.02E+06
CEC3 1.65E+10 3.01E+13 1.22E+09 2.09E+09 5.68E+07 2.35E+08
CEC4 1.12E+04 3.98E+04 7.70E+04 1.01E+05 5.87E+04 1.11E+05
CEC5 -8.51E+02 7.72E+02 -1.00E+03 -9.98E+02 -1.00E+03 -1.00E+03
CEC6 -8.48E+02 -6.56E+02 -8.62E+02 -8.56E+02 -8.84E+02 -8.58E+02
CEC7 -6.55E+02 -3.76E+02 -7.34E+02 -7.21E+02 -7.58E+02 -7.14E+02
CEC8 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02
CEC9 -5.71E+02 -5.65E+02 -5.63E+02 -5.60E+02 -5.82E+02 -5.73E+02
CEC10 -4.85E+02 -1.03E+02 -2.92E+02 -1.94E+02 -5.00E+02 -4.68E+02
CEC11 -2.10E+02 -1.02E+02 -2.59E+02 -2.33E+02 -3.61E+02 -3.39E+02
CEC12 -9.88E+01 2.87E+00 -8.43E+01 -6.34E+01 -2.66E+02 -2.00E+02
CEC13 4.31E+01 1.70E+02 -3.05E+00 3.58E+01 -8.79E+01 -1.82E+01
CEC14 2.89E+03 4.73E+03 4.46E+03 4.93E+03 2.07E+03 3.77E+03
CEC15 3.36E+03 5.12E+03 7.56E+03 7.84E+03 4.33E+03 7.15E+03
CEC16 2.01E+02 2.03E+02 2.02E+02 2.03E+02 2.02E+02 2.04E+02
CEC17 5.21E+02 6.73E+02 4.87E+02 5.06E+02 3.68E+02 4.35E+02
CEC18 6.58E+02 7.57E+02 6.37E+02 6.61E+02 5.03E+02 6.09E+02
CEC19 5.19E+02 1.01E+03 5.18E+02 5.19E+02 5.04E+02 5.24E+02
CEC20 6.12E+02 6.14E+02 6.13E+02 6.13E+02 6.12E+02 6.13E+02
CEC21 9.43E+02 1.13E+03 1.00E+03 1.03E+03 9.00E+02 9.82E+02
CEC22 5.00E+03 6.18E+03 6.14E+03 6.89E+03 2.90E+03 3.84E+03
CEC23 5.53E+03 7.02E+03 8.56E+03 8.99E+03 5.33E+03 8.08E+03
CEC24 1.30E+03 1.34E+03 1.30E+03 1.30E+03 1.25E+03 1.26E+03
CEC25 1.40E+03 1.44E+03 1.40E+03 1.41E+03 1.36E+03 1.38E+03
CEC26 1.58E+03 1.60E+03 1.41E+03 1.46E+03 1.40E+03 1.55E+03
CEC27 2.43E+03 2.67E+03 2.59E+03 2.64E+03 2.04E+03 2.23E+03
CEC28 2.44E+03 4.21E+03 1.71E+03 1.74E+03 1.70E+03 1.96E+03
win 3 3 1 6 20 16
lose 23 25 24 21 4 10
draw 2 1 3 2 4 2

The operation results are shown in Figure 1 to 3.These six pictures that the ECMDE
algorithm has a faster rate of convergence than the other four algorithms. The CEC1
and CEC5 unimodal functions are straightforward, and the ECMDE can easily discover
the ideal value. The ECMDE iterates much more quickly than previous algorithms for
the somewhat complicated Basic Multimodal Functions CEC10. In CEC19, inflection
points emerge in all six algorithms, showing that the algorithm is caught in the local
optimal, but the ECMDE has the fastest convergence speed and maximum convergence
accuracy after jumping out the local optimal. The convergence curve of the method is
clearly better than that of the comparison algorithm in the most complex Composition
Functions, indicating that the ECMDE algorithm has greater global optimization capacity
than other comparison algorithms. Some algorithms slowdown in late evolution and
fall into local optimization. Only the ECMDE algorithm has the highest convergence
accuracy, demonstrating its capacity to solve complicated optimization problems.
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(a) CEC1 (b) CEC5

Figure 1. Unimodal Functions

(a) CEC10 (b) CEC19

Figure 2. Multimodal Functions

(a) CEC21 (b) CEC22

Figure 3. Composition Functions
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Table 4. GWO, SOA, ECMDE performance on 30-dimension cec2013 test
function.

30D
PSO DE ECMDE

BEST MEAN BEST MEAN BEST MEAN
CEC1 -1.25E+03 1.87E+02 7.07E+03 1.39E+04 -1.40E+03 -1.39E+03
CEC2 4.32E+06 2.46E+07 8.28E+07 1.14E+08 1.86E+06 7.02E+06
CEC3 1.57E+09 4.74E+09 3.70E+10 5.47E+10 5.68E+07 2.35E+08
CEC4 2.13E+04 3.86E+04 6.42E+04 9.62E+04 5.87E+04 1.11E+05
CEC5 -8.61E+02 -1.93E+02 5.20E+02 2.89E+03 -1.00E+03 -1.00E+03
CEC6 -8.10E+02 -7.73E+02 -5.39E+02 -1.05E+02 -8.84E+02 -8.58E+02
CEC7 -7.56E+02 -7.31E+02 -6.52E+02 -6.17E+02 -7.58E+02 -7.14E+02
CEC8 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02
CEC9 -5.87E+02 -5.80E+02 -5.71E+02 -5.67E+02 -5.82E+02 -5.73E+02
CEC10 -4.16E+02 -2.19E+02 6.66E+02 1.35E+03 -5.00E+02 -4.68E+02
CEC11 -3.49E+02 -3.05E+02 -4.48E-01 5.98E+01 -3.61E+02 -3.39E+02
CEC12 -2.25E+02 -1.59E+02 1.09E+02 1.67E+02 -2.66E+02 -2.00E+02
CEC13 -8.90E+01 1.95E+01 2.12E+02 2.72E+02 -8.79E+01 -1.82E+01
CEC14 1.80E+03 3.58E+03 6.35E+03 7.15E+03 2.07E+03 3.77E+03
CEC15 2.69E+03 5.20E+03 5.61E+03 6.77E+03 4.33E+03 7.15E+03
CEC16 2.02E+02 2.04E+02 2.02E+02 2.03E+02 2.02E+02 2.04E+02
CEC17 4.03E+02 4.77E+02 8.76E+02 9.33E+02 3.68E+02 4.35E+02
CEC18 6.34E+02 6.67E+02 9.77E+02 1.04E+03 5.03E+02 6.09E+02
CEC19 5.05E+02 6.00E+02 2.35E+03 7.14E+03 5.04E+02 5.24E+02
CEC20 6.12E+02 6.13E+02 6.14E+02 6.14E+02 6.12E+02 6.13E+02
CEC21 1.14E+03 1.67E+03 2.65E+03 2.79E+03 9.00E+02 9.82E+02
CEC22 2.29E+03 3.95E+03 7.48E+03 8.38E+03 2.90E+03 3.84E+03
CEC23 3.35E+03 5.68E+03 6.79E+03 8.05E+03 5.33E+03 8.08E+03
CEC24 1.24E+03 1.27E+03 1.28E+03 1.30E+03 1.25E+03 1.26E+03
CEC25 1.36E+03 1.39E+03 1.41E+03 1.43E+03 1.36E+03 1.38E+03
CEC26 1.40E+03 1.54E+03 1.40E+03 1.43E+03 1.40E+03 1.55E+03
CEC27 2.06E+03 2.14E+03 2.43E+03 2.52E+03 2.04E+03 2.13E+03
CEC28 2.10E+03 2.63E+03 4.12E+03 4.51E+03 1.70E+03 1.96E+03
win 8 6 0 0 15 17
lose 15 20 25 25 8 9
draw 5 2 3 3 5 2

4. Application of ECMDE in Microgrid Optimization.

4.1. Microgrid operating cost function.
The total economic expense associated with generating power from micro-grids consists

of the expenses incurred for burning fuel and maintaining and operating micro-power
sources, such as micro-fuel engines, batteries, and photovoltaic systems. Additionally,
there are costs involved in coordinating with the larger power grid. The specific formula
is as follows:

F (t) =
T∑
t=1

[CPV (t) + CWT (t) + CMT (t) + CES(t) + CGrid(t)] (21)
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In the given formula, Ci(t) represents the expenses associated with a micro-power sup-
ply,including operating costs,maintenance costs, penalty costs,etc., The letter ”F” in the
formula represents the total expenses in running a microgrid.

The state of charge of a battery can have an impact on its service life during actual
usage. Overcharging or undercharging a battery can reduce its overall lifespan due to
its impact on its charging and discharging cycles.Therefore,set the battery charge status
warning area as shown in the figure below. When the battery is in a non-safe state,a fine
will be charged,the formula is as follows:

CES(t) = CES′(t) + Closs (22)

Closs is the penalty cost when the battery is in an unsafe state, CES′(t) is the cost of
battery operation, and CES(t) is the total cost.

4.2. ECMDE Process for Microgrid Optimization.

Figure 4. The ECMDE Flowchart for Microgrid Optimization

Figure 4 is the flowchart of ECMDE in microgrid optimization.The main optimiza-
tion process steps for applying ECMDE to micro grid optimal scheduling problems are
described as follows:

Step 1: Enter the microgrid model specifications and the daily load requirement Load
(t), upper and lower limits of various power supplies, costs, and other parameters (shown
in Table 7), time-of-use electricity price (shown in Table 6), and pollution control costs
(shown in Table 8).

Step 2: Set the parameters of the ECMDE and compare the parameters of the algorithm
to determine the algorithm’s dimension population and particle number, and generate
initial particles within the upper and lower limits of the microgrid power supply.

Step 3: Rank the generated particles by fitness to select the best particles
Step 4: Perform mutation crossover operations on particles, sort the generated individ-

uals, compare the particles with the best sorted particles before, and save better particles
to the next generation.

Step 5: Verify the end condition, then continue steps 2 through 4 until the maximum
number of iterations is achieved, and finally, output the optimal position and optimal
global value.
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Table 5. Electricity meter

Periods of times Interval hours Price/($/KW·h)

Normal period
07:00–10:00

0.4915:00–18:00
21:00–23:00

Peak period
10:00–15:00

0.83
18:00–21:00

Valley period 23:00–07:00 0.17

Table 6. Parameters and operating costs of various power supplies

Power sources
KW-power capacity Maintenance

Cost
Power generation price($/KW)

Upper Lower
PV 300 0 0.01 0
WT 200 0 0.0296 0
MT 25 1 0.05 0.5
ES 150 -100 0.005 0.08
Grid 200 10 0.023 0.17-0.83

Table 7. Pollution Remediation Costs

The emissions CO2 SO2 NO2

Discharge coefficient/(g/kW)
MT 706.5Ö10ˆ(-3) 2.8Ö10ˆ(-6) 0.77Ö10ˆ(-3)
GRID 889Ö10ˆ(-3) 1.9Ö10ˆ(-5) 1.5Ö10ˆ(-6)

Related operations costs/($/kg) 0.03 2.1 8.9

Table 8. Cost of two schemes

Scheme Scheme 1 Scheme 2
Cost 1804.23 1838.24

4.3. Microgrid Data Analysis and Discussion.
The research employs a time-of-use pricing scheme for electricity, which divides a 24-

hour day into three separate periods: peak, flat, and valley. The cost of purchasing and
selling electricity during each period is itemized in a table. Given the precondition of
ensuring stable operation of the microgrid, we can procure electricity from the microgrid
during periods of low pricing while meeting the load demand and storing any excess
electricity in batteries. When the electricity price is high or the load is heavy, the batteries
can output electricity to reduce operating costs.

The data of a typical day in a certain place is used as the input quantity of the calcu-
lation example. The output curves and load demand curves of renewable energy photo-
voltaics and wind turbines are shown in Figure 5:

During 3:00-11:00 and 17:00-18:00, the load’s demand for electric energy gradually
increases, while in other periods the demand continues to decrease. Two load peaks in a
day occur at 11:00-12:00 and 17:00-18:00, the peak power demand occurs at 11:00, which
is 592kW, and the valley value of power demand occurs at 3:00 at night. It is 210kW,
and this figure can reflect some details of electricity consumption of residents’ production
and life as load [46]. The above illustration shows that distributed energy generation
has volatility, randomness and intermittent nature, The volatility of distributed energy
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Figure 5. Microgrid wind power, photovoltaic, load output

generation can have an impact on the stable operation of the power grid when it is
integrated. To ensure the safe and reliable operation of the microgrid and improve its
economic performance, scheduling optimization of the microgrid is necessary.

4.4. Results Analysis and Discussion. The parameters of the ECMDE and other
algorithms are presented in detail in Table 1, where the algorithm’s maximum number of
iterations is 1000 and the population size is 240. Additionally, Table 6 provides informa-
tion on the upper and lower limits of output, maintenance costs, and power generation
costs for different micro-power sources. Table 7 lists the pollution costs related to emis-
sions. Figure 5 shows the 24-hour load demand and photovoltaic wind power output curve
of a typical micro-grid. The battery can store a maximum charge of 500kWh.

To demonstrate the efficacy of the ECMDE algorithm, two microgrid scheduling schemes
are employed. The first scheme takes into account the depth of energy storage discharge,
while the second scheme does not. The microgrid model used in this article is solved
together with the original DE algorithm, SOA algorithm [38], and PSO algorithm [41],
and the results are compared.

Scheduling scheme 1: Scheduling without considering the depth of discharge of the
energy storage device.

Figure 6(A) illustrates the output of each micro power supply when scheduling without
considering the depth of battery discharge. The optimization situation is shown in Figure
6(B).

Sheduling scheme 2: scheduling considering the depth of discharge of energy storage
devices.When scheduling considering the depth of battery discharge, the output of each
micro power supply is shown in Figure 7(A). The optimization situation is shown in Figure
7(B).

As shown in Figure 6, during the period from 1:00 to 7:00, due to low load and con-
tinuous wind turbine output, and the current electricity prices are low, the micro grid
purchases a large amount of electricity. At 8:00 to 10:00, photovoltaic and wind turbines
simultaneously output, and the battery absorbs excess electricity during this process, mak-
ing the charge in the battery reach a peak; At 11:00 to 13:00, the peak power consumption
is at this time, and the battery fan, photovoltaic micro fuel engine, simultaneously out-
puts to meet the power load demand. During the period from 14:00 to 17:00, due to a
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(a) Micro power supply output chart (b) Algorithm optimization comparison

Figure 6. Results of scheduling scheme 1

(a) Micro power supply output chart (b) Algorithm optimization comparison

Figure 7. Results of scheduling scheme 2

Figure 8. Battery state of charge(SOC)



16 J.-Y. Lin, X.-Y. Shi, X. Zhu, J.-D. Lin and T.-T. Nguyen

decrease in load, the battery is charged; During the period from 18:00 to 21:00, the second
peak period of electricity consumption comes. Due to the inability of photovoltaic power
to provide sufficient electricity at this time, and the high price of time-of-use electricity
prices, it is necessary to reduce the purchase of electricity from the large power grid and
discharge a large amount of batteries to meet the load demand, which can reduce the cost
of operation. Micro fuel engines and wind power also continue to work at this time; The
battery discharge from 22:00 to 24:00 allows the charge to be controlled between 5% and
10% of the total electricity at the last moment of the day, preventing excessive discharge,
extending the battery usage time, and completing the day’s electricity scheduling. During
this scheduling process, the battery plays an important role in storing electricity when
the load is low or the electricity price is cheap.

Figure 8 shows the battery SOC diagram for two scheduling schemes. Generally speak-
ing, if the battery operates for an extended period, the battery’s lifespan decreases with
an increase in discharge depth. In contrast, shallow discharge depth leads to extended
battery life. Shallow cycling the battery offers two major benefits: firstly, the battery has
a longer cycle life, and secondly, it can retain more spare ampere-hour capacity, thereby
improving the power supply assurance rate of distributed generation systems. Therefore,
Scheme 2 considers the impact of battery discharge depth on battery life, and the energy
storage system and the large power grid have the same priority. Although the optimiza-
tion results of the two scheduling schemes have approximately the same total cost(Table
8), Scheme 2 considers the impact of discharge depth on battery life and maintenance.
Compared to Scheme 1, Scheme 2 can maintain the battery below a lower cycle discharge,
reduce battery maintenance costs, and improve battery life. It can effectively cooperate
with the operation and scheduling optimization of the microgrid trading market.

By comparing the optimization results depicted in Figure 5 and Figure 7, it is evident
that the ECMDE algorithm outperforms DE, SOA, PSO, and other algorithms in terms
of convergence speed and accuracy under both scheduling conditions. This confirms the
effectiveness of the improved algorithm.

5. Conclusion. This article proposes an enhanced version of the Differential Evolution
Algorithm (ECMDE) for optimal scheduling in micro power grids. The original DE al-
gorithm suffers from issues such as slow convergence and local optimization. To address
these issues, the proposed algorithm incorporates chaos initialization, dynamic adaptive
factors for improving mutation and linear crossover factors to increase the diversity of
the population and ability to jump out of local optimization, thereby improving the opti-
mization performance of DE. Comparative studies were conducted with DE, GWO, PSO,
and SOA algorithms using the CEC 2013 test set, and the results indicate that ECMDE
performs well. The proposed algorithm offers excellent performance and stability for mi-
crogrid systems in terms of optimal scheduling. The ECMDE will be applied further
for applications of hydro reservoirs and wind-solar power planning optimization in future
work.
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