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Abstract. Traditional Radio Frequency (RF) electronic communication systems con-
sume a lot of computing resources, and can gradually not meet people’s requirements for
efficient, fast and high-precision systems. For the purpose of accurately mapping the non-
linear relationship between input and output and solve the problem of RF electronic com-
munication system, this paper designs an efficient RF electronic communication system
by artificial intelligence control method. The system first preprocess the communication
data, optimize the initial value of the data, and then train the neural network on the op-
timized data to achieve intelligent modeling, and then based on the model, the secondary
superheterodyne receiving structure and the secondary frequency conversion transmission
structure are used to separate the received optical signal into AC components for infor-
mation decoding and DC components for energy harvesting, reduce crosstalk between RF
signals, and ensure signal quality to improve the performance of the system. Simulation
results show that compared with existing systems, the system designed in this paper has
lower system gain flatness, modulation accuracy and power gain flatness.
Keywords: radio frequency; electronic communication; artificial intelligence; neural
network; information decoding

1. Introduction. As modern communication and Radio Frequency (RF) technology de-
veloping, RF circuits are gradually integrated, miniaturized in size and diversified in
functions, resulting in higher and higher working frequencies of RF circuits and sys-
tems, making the research and design of communication systems more and more difficult.
The traditional RF electronic communication system has a slow computing speed and
consumes too many computing resources, which has gradually failed to meet people’s
requirements for efficient, fast and high-precision system [1,2,3]. Artificial intelligence
methods developed by borrowing biological neurological properties have begun to attract
attention and are gradually applied to the field of modeling of radio frequency electronic
communication systems. Neurons are the basic building blocks of the ANN model, which
can quickly and independently process information and store data information in each
neuron. The entire neural network model is able to map nonlinear features and adapt
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to changes with the environment, continuously learning to adjust the weights inside the
network [4,5]. The modeling process of neural networks does not require knowledge of
RF circuit expertise, and once the learning process is completed, the model can quickly
and accurately map the nonlinear relationship between input and output, thereby solving
the problems related to RF circuit modeling. It can be seen that intelligent neural net-
work technology provides an effective solution to solve the problem of fast and accurate
modeling of RF circuits.

1.1. Related Work. At present, artificial intelligence methods have distinctive charac-
teristics and outstanding capabilities, and have been successfully applied to the field of
radio frequency electronic communication, which has become a hot topic in the field of
radio frequency electronic communication. For the purpose of continuously improving the
accuracy of neural network models and shorting the training time of models, scholars have
begun to research artificial intelligence technologies in related fields such as RF devices,
antennas and model optimization. Rayas-Sanchez et al. [6] suggest a linear inverse spatial
mapping RF microwave circuit optimization algorithm to realize the transient calculation
of microwave circuit frequency domain and time domain. Compared with the traditional
mapping method, the linear inverse spatial mapping method proposed in the literature
can simplify the mapping difficulty and is suitable for the linear analysis model of RF
circuit. Sen et al. [7], Chandrasekaran and Jordan [8] use neural network technology to
extract parasitic parameters of integrated circuits. At the same time, a neural network
model generated by automatic layout is also proposed to verify the extracted parasitic
parameters. Kabir et al. [9] propose a microwave filter neural network model with multi-
ple input variables. This method first decomposes the overall neural network into many
neural network submodels, and then, the submodels are attached to empirical/equivalent
models to obtain the final overall model. Compared with traditional neural network mod-
els, this method has higher accuracy, more input variables, and fewer sample sizes. In
order to improve the accuracy of the model, Ko et al. [10] of Ohio State University pro-
posed a field-effect transistor neural network model based on quasi-static measurement,
which was validated using load line, output power, power efficiency, and load pull model.
Tian et al. [11] and Srivastava et al. [12] used neural networks to establish a right-angle
micro-coaxial bend of an RF microwave integrated circuit for design, so as to obtain a
high-performance coaxial elbow, which is conducive to the design of folding micro-coaxial
passive devices and miniaturizes the structure. while maintaining low losses and high
matching. Inanlou et al. [13] used deep neural network technology to model the deep
neural network of Doherty power amplifiers, using Relu Piecewise linear activation func-
tion, since the activation function derivative is constant, the gradient vanishing problem
is controlled. Compared with the shallow neural network model of the traditional Do-
herty power amplifier, it can not only increase the output power of the margin call, but
also overcome the complex memory effect of the power amplifier. Aiming at the dynamic
nonlinear behavior of wideband RF power amplifiers, Kia [14] propose a deep neural net-
work prediction model. This method first uses neural network, K nearest neighbor and
other algorithms to process the copied signal, and then uses neural network technology
to model, which can obtain better mean squared error and adjacent channel error power
ratio. Lu et al. [15] propose a neural network model for reconfigurable microstrip antenna
design optimization. In this method, the resonant frequency adjustment and return loss
control are realized through the control circuit, so as to realize the design and optimization
of the reconfigurable antenna. However, there are still many challenges to this method.
Since the performance of AI models depends on sample data. The training speed depends
on the sample data quality [16, 17, 18, 19]. If the quality of the sample data is low,
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then the neural network training will require more sample data, resulting in longer time
consumption and significantly less efficient modeling. Secondly, the research frequency is
low and the scope is narrow. At present, the research of RF electronic communication
systems based on artificial intelligence is generally concentrated in the circuits in the RF
segment [20,21,22], and the more critical modeling methods of circuits and systems in
the millimeter band still have many difficulties, resulting in the application of modeling
methods in the millimeter wave band is rare, and the research results in this area are
rarely reported.

1.2. Motivation and contribution. On behalf of promoting the application of artifi-
cial intelligence technology in the field of RF electronic communication system, this paper
designs an optimized RF electronic communication system based on artificial intelligence
neural network modeling technology. The system first combines data preprocessing, sam-
ple initial value optimization and neural network training and testing process to realize
intelligent modeling functions, and then on the ground of the modeling model, adopts the
secondary superheterodyne receiving structure and the secondary frequency conversion
transmission structure, divides different modules according to the current, ensures the
isolation between the modules, and reduces the crosstalk between RF signals. Simula-
tion results imply that by selecting the appropriate parameter configuration to balance
the performance between communication data transmission, the system designed in this
paper can effectively improve the key performance of system gain flatness, modulation
accuracy and power gain flatness.

2. Related theoretical knowledge.

2.1. Data Preprocessing. Data preprocessing, which is a method founded on data
analysis technology [23], can process the original data, making the sample data easier to
process and more representative, which is a very important step in the process of building
artificial neural network models, but it is often regarded as a small problem and ignored.
Assuming that the original sample data has m variables, the m variables can form 1 input
m of the original sample data dimensional vectors γ(1). Each raw sample data can be
represented as Equation (1).

γ(1) = (y
(1)
1 , y

(1)
2 , ..., y(1)m )T (1)

After sample preprocessing, the input vector A is mapped into a low-dimensional vector,
so that the vector length is reduced, that is, the n-dimensional output vector A, which
can be expressed as Equation (2).

γ(2) = (y
(2)
1 , y

(2)
2 , ..., y(2)n )T (2)

Input data γ(1) is usually original data, which has great difference in dimension and
value range, large amount of data and deep hidden data features. Direct application to
artificial neural network modeling will lead to long training time, low precision and non-
convergence of the model. After data preprocessing, output data γ(2) can be obtained,
which has a unified value range and complete feature information. It is easy to handle,
conducive to the later model training, can speed up the modeling speed, and reduce the
model error.
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2.2. Key device of radio frequency circuit. A complete RF communication system
consists of three parts: signal transmitter, receiver, and antenna [24]. After the baseband
signal generated by the signal source is input to the transmitter, the electromagnetic signal
is radiated outward from the transmitting antenna through modulation, up conversion,
power amplification, filtering, etc.; After the electromagnetic wave signal reaches the
receiver through the receiving antenna, the signal is processed by demodulation, filtering,
low noise amplification, etc., and finally the baseband signal is restored.

The transceiver and reception structures used in RF circuits are different, and their
application scenarios are different. Different scenarios and different transceiver struc-
tures determine the complexity, performance indicators and power consumption of the
transceiver system [25]. As shown in Figure 1, the receiver structure block diagram in
the radio frequency electronic communication system: the signal enters the LNA after
being received by the receiving antenna, and the signal is amplified and turned on. After
filtering through the image filter, and then entering the mixer for mixing, the intermediate
frequency signal is obtained and then filtered and amplified to demodulate the original
IQ two-way baseband signal.

Figure 1. Structure diagram of radio frequency electronic communication system
receiver

In this structure, due to the low frequency of the IF signal, the filter Q value required
for channel selection in this band is much lower than the filter Q value required when
selecting a channel in the RF band, which makes IF filtering easier. In addition, the signal
received by the receiving antenna is extremely weak, and the signal needs to be amplified
by tens of dB or even hundreds of dB, and if the amplification in the same frequency
band is too high, it may cause the amplifier to oscillate. Therefore, the gain index is
assigned to the RF, IF and baseband in the superheterodyne structure, which can ensure
the stability of the system to a certain extent. In addition to the above characteristics,
superheterodyne receivers also have the advantages of large link gain, stable performance,
and large dynamic range. On the ground of this feature, and the actual requirements
that the RF front-end should have large dynamic range, good reception sensitivity and
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implementation complexity, this paper finally chooses this structure as the RF front-end
structure of the transceiver.

3. Intelligent neural network modeling. This paper proposes an intelligent neural
network modeling system, which combines data preprocessing, sample initial value opti-
mization and neural network training and testing process to realize intelligent modeling
functions, and the method flow, as shown in Figure ??, the specific calculation steps are
as follows:

Step 1: Sample data preprocessing process. First, in terms of the initial sample
data of the RF circuit, the dimensions of the sample input space and output are deter-
mined. Then, the initial sample set is normalized and the Pearson correlation coefficient
between the different variables and the output response is calculated. If the correlation
coefficient is less than the reference value, you can change the variable to a constant.
Finally, feature extraction is performed on the data. Using the Gaussian kernel function,
the Gaussian kernel matrix of the sample is calculated, and the feature decomposition is
carried out to form a mapping matrix, and the sample can be obtained with a high-quality
sample by using the mapping matrix to complete the reconstruction of the sample data.

Suppose a neural network mapping from the vector Y of M -dimensional input space
to the N -dimensional output space vector X. Given in N -dimensional space, there are
many sample data, each sample dataset can be represented as (Y,X), the input vector
is Y , and the corresponding target output value in the output space is X. The purpose
of building a neural network model is to find a nonlinear mapping function F that can
accurately fit all sample data and meet the following mapping conditions:

F (Y ) = X (3)

To build a radial basis neural network model, you need to select Q data center points
before training sample data, and construct Q radial basis function functions, which are
in the form:

F (Y ) =
P∑

p=1

vpδ(∥y − yp∥) + c =
P∑

p=0

vpδ(∥y − yp∥) (4)

Step 2: The optimization process of the initial value of the neural network using the
sample. The neural network sample optimization model calculation flow is displayed in
Figure 3. First, network initialization. Initialize the structure, activate the function, set
the weights and thresholds of the network model to the input variables to be optimized;
After that, start initializing parameters d, v, s, etc. The optimal initial value of the neural
network is found by continuously optimizing the position of the particle swarm.

Then, the network error is taken as the fitness function, and the error is recorded as
the particle adaptation value, and then arranged according to the adaptation value. The
best position of individual particles and group particles at this time is found respectively.
Finally, determine whether the convergence of the calculation result ends the calculation.
If convergence or the maximum number of iterations is reached, the iterative calculation
is stopped, so as to complete the learning process of the network weights; Otherwise,
proceed to the next velocity and position according to Equation (5) until the solution
requirement is completed.

W j+1
i = vwj

i + d1 ∗ s1 ∗ (Qj
i − Y j

i ) + d2 ∗ (Qs
f − Y j

i )

Y j+1
i = Y s

i +W s
i

(5)
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Figure 2. Intelligent neural network modeling flowchart

Figure 3. Intelligent neural network modeling optimization flowchart

Step 3: Tune the neural network. To solve the objective function minimum, on the
ground of the Lagrangian method, establish the loss function, as shown in Equation (6).

F =
1

2
vTv +D

m∑
j=1

ϑj

n∑
j=1

βj(xj(v
T (δ(yj) + c)− 1 + ϑj)) (6)
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When the objective function F takes minimum value, the values obtained by function
F for parameters d, v and s are all 0, and the Equation (7) can be obtained.

stc :

{
m∑
i=1

βjxj = 0, 0 ≤ βj ≤ D (7)

Use the test data to test the neural network, if the test error is less than the expected
value, then the neural network model modeling is completed. Otherwise, it indicates that
the generalization ability of the neural network is poor, and the system steps need to be
automatically entered into Step 2.

4. Design of radio frequency electronic communication system based on arti-
ficial intelligence control.

4.1. Module division and function. The RF electronic communication system model
based on artificial intelligence control proposed in this paper is composed of intelligent
neural network information source S, off-network relay R that moves randomly in the
coverage area of S, and distant (possibly deployed outdoors) destination user U (such as
base station, access point, etc.). Considering that the beam is radiated from the light
source S, the coverage area of S can be considered to be conical. Suppose that the trunk
R moves on the bottom surface of a cone with O as the center and r1 as the radius.

Since the transceiver channel of the RF electronic communication system adopts the
secondary superheterodyne receiving structure and the secondary frequency conversion
transmission structure, the design scheme is more complex [26, 27], and based on the
equipment module debugging and system scalability considerations, it is necessary to
divide the design scheme by module in the design process, on the one hand, there is
a good degree of isolation between different modules. It can reduce crosstalk between
RF signals and ensure signal quality; On the other hand, it is convenient to locate and
deal with faults during the debugging process of the whole machine, and increase the
debugging efficiency. The module division and functions of the transceiver channel of
the RF subsystem are shown in Table 1, which divides the transceiver channel into four
functional submodules: receiving channel, transmission channel, local oscillator and power
supply.

Table 1. Division and Function of RF Transceiver Channel Modules

Module Name Module Functions Parameter

Receive link
Selecting useful signals from
weak electromagnetic signals

RF 5000MHz ∼ 5300 MHz
→Baseband 48 MHz∼ 68 MHz

Transmitting link
Effectively transmitted
radio frequency signal

Baseband 48 MHz∼68 MHz
→ RF 5000 MHz∼ 5300 MHz

Low local oscillator
Baseband and intermediate

frequency conversion provide local vibration
LO L:828 MHz

High local oscillator
IF and RF frequency conversion

provide local oscillator
LO H: 5770 MHz∼ 6050 MHz

Power module
Provides power support for
the transceiver channel

18V, 8V, 20V, 5.3 V
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4.2. Radio frequency electronic communication signal transmission. In a typical
indoor scenario, the weakest RF component is at least 7dB higher than the strongest dif-
fuse component [28]. To facilitate the analysis, this paper ignores the multipath reflection
in the VLC channel, and only considers the LOS transmission link between the source S
and the trunk R. The channel gain of the first hop S → R can be expressed as:

G1 =
m+ 1

2πc21
JsFr(ϕ)l(ϕ) cos(ϕ) cos

m(ϑ) (8)

wherem is the Lambertian radiation coefficient, ϕ is the half power angle of the light source
S, c1 =

√
f 2
1 + s2 is the length of the direct link from S to R, f1 is the distance from S

to O, S is the distance from O to R, Js is the effective area of communication, ϕ is the
radiation angle of the light source S, and ϑ is the incidence angle, ϕ = ϑ = arctan(s/f1).
Fr(ϕ) is the gain of the optical filter; l(ϕ) = ζ2/ sin2(ρfie) is the optical concentrator

gain, where ζ is the refractive index and ρfie is the field of view Angle.
Let y(s) be a modulated source signal with peak amplitude C, and before being used

to modulate the RF frequency, DC bias A is added to y(s) to ensure that the resulting
signal is non-negative, i.e., [y(s) + A] ≥ 0. Therefore, the optical signal transmitted by
communication can be represented as yts = Q[y(s) + A]. Where Q is the transmitting
power per unit current on the electric signal y(s) + A; y(s) ∈ [−C,C]; E[y(s)] = 0, E[.]
is the expectation operator.

Combined with the actual situation, in order to ensure the transmission security of the
RF electronic communication system, the average power and peak power constraints must
be met at the same time [29], as shown in:

E[y(s)] ≤ Qc ⇒ A ≤ QC

Q

0 ≤ y(s) ≤ Qmax ⇒ C ≤ min

{
A,

Qmax

Q
− A

} (9)

In the equation, Qc and Qmax are the maximum allowable average power and peak
power of the source respectively.

4.3. Radio frequency electronic communication signal transmission. On the
ground of the above signal transmission, the communication signal received by Relay
R can be expressed as:

xt(s) = αf1yr(s) +m1(s) = αf1Qy(s) + αf1QA+m1(s) = xac(s) + xdc +m1(s) (10)

In the equation, xac(s) = αf1Qy(s) is the responsiveness, xdc = αf1QA is the AC compo-
nent, and xdc = αf1QA is the DC component.

In addition to receiving the LOS signal from the light source S, the relay R will also re-
ceive the ambient light from other light sources. After sufficient reflection, refraction and
scattering, the ambient light will reach R through different paths, so that it has different
arrival angles, different delays or phases, and different amplitudes. In other words, ambi-
ent light noise is the superposition of a large number of statistically independent random
variables. Then, in terms of the central limit theorem, m1(s) is the total noise generated
by the superposition of ambient visible light, background lens noise, and thermal noise,
and m1(s) ∼ ACN(0, θ

2
1).

Relay R splits the received photocurrent into two parts by employing signal component
segmentation: an AC component for information decoding and a DC component for energy
harvesting. The energy collected can be expressed as:

E = gxdcToc = gαf1QATv ln(1 +
αf1QA

J0
) ≈ gTv(αQA)2µ1

J0
(11)
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where the filling factor g is between 0.5 and 1, Toc is the open circuit voltage of communi-
cation, and J0 is the saturated dark current. Equation (11) is an approximate expression
obtained by using αf1QA → 0 when ln(1 + αf1QA/J0) ≈ (αf1QA/J0).
If µ1 = |f1|2, the Equation (12) is obtained, where l = [FsTr(ϕ)h(ϕ)]/2π is a constant.

µ1 =
[(m+ 1)fm+1

1 ]2

(l2 + f 2
1 )

m+3
(12)

On the other hand, the relay R will attempt to recover the source signal y(s) from the
AC component xac(s). If R can successfully decode the source signal C, it uses the energy
collected from the DC component xac to forward the decoded signal to the destination
user D; otherwise, the communication is interrupted.

5. System performance test and analysis.

5.1. Transmit channel output power test. To verify the performance of the system,
this paper uses Python V3.9 to analyze and simulate the performance evaluation of the
RF electronic communication system on the ground of artificial intelligence control, and
compares the performance of the existing RF electronic communication system [30] based
on hybrid collaboration. The radio frequency electronic communication system designed
in this article is denoted OUR. This paper comprehensively considers the random move-
ment characteristics of relay R, the information decoding state of R, the energy harvesting
state of R, and the energy harvesting state of R. The complex fluctuation characteristics
of the channel during a two-hop transmission due to random mobility. Data transmission
flow of the intelligent communication transceiver used in the simulation experiment in
this section is shown in Figure 4.

The output power is the most important indicator of the transmitter, which determines
the transmission distance of the low-frequency baseband signal modulated by the wireless
communication system to the radio frequency band. After power-on, signal source 1
outputs 20 MHz as an external reference clock, and signal source 2 inputs 38MHz single-
tone signals with a power of about 0dBm. The PC controls the FPGA output control word
through the JTAG interface to configure the internal register sets of SI4133 and ADF4355.
The low local SI4133 outputs a fixed 828MHz signal, and the high local ADF4355 outputs
a total of 10 frequency points of 5770MHz∼6050MHz signal, respectively. The spacing of
each frequency point is 20MHz, respectively representing the input third-order intercept
IIP3 of the output power mixer MIX2 of the 15 transmission channels is +7dBm, while
the input power of the IF port of MIX2 is 760MHz∼780MHz under the control of the
attenuator PE402 is -17.5dBm∼14dBm. In order to avoid the input power exceeding
+7dBm working in the nonlinear region, the PE4302 attenuation is 10dB controlled by
the PC. The spectrometer is connected to the antenna input port SMA of the transmitting
channel through the coaxial line to record the test results, as shown in Figure 5. The
spectrum test diagram of 5140MHz single tone output by RF channel 8 is shown in Figure
6.

As can be seen from Figure 6, when the channel is located at 5, the transmitting
channel power of the system designed in this paper is 10.6dBm, and the ABDN power
is 15.5 dBm. The output power of the 10 channels of the upper transmission channel
is greater than 14dBm, which meets the output power requirements of the transmission
link. However, the output power budget of the entire transmission channel is about
19dBm when the attenuation attenuates 10dB, and the difference between the measured
value and the budget design value is about 3dB. The overall trend is that the closer the
middle channel is, the smaller the gain flatness is, because the middle channel is close to
the center frequency of the band preselected filter 5150MHz, and the edge channel is just
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close to the edge of the pre-gated band. This will lead to a certain deterioration in gain
flatness. Overall, the gain flatness of the transmitting channel is less than 1.5dB, which
meets the requirements of the design index.

Figure 4. Data transmission flow of intelligent communication transceiver



48 Y.-F. Zhao, and J. He

Figure 5. Transmission channel output power comparison

Figure 6. Power gain flatness of the transmit channel

5.2. Transmit channel output power test. For the optimized RF electronic com-
munication system, modulation accuracy EVM is a key indicator to reflect the system
performance, on the one hand, it can characterize the system modulation and demodula-
tion performance, measure the distortion degree of the in-band signal, and on the other
hand, it also indirectly reflects the influence of various RF defects of the system on the
modulation accuracy. This article looks at the EVM test results for two different mod-
ulation types of a dual-channel receiver, and the final test results are shown in Table
2.

As can be seen from Table 2, when the channel is 1 and the bitrate is set to 100, the
modulation accuracy and error tolerance rate (Err) of the OUR system, frequency, offset
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are better than ABDN system. The EVM shown in the following table characterizes the
modulation accuracy of the channel transmitter, considering the 1dB loss of the receiver’s
transceiver switch and the 1dB loss of the receiver-test instrument’s cable. Comparing
the system design requirements with the actual test results, it can be seen that the test
results all meet the transmitter requirements.

Table 2. EVM test results of two-channel transmitter

Modulation
type

Bit rate
(Mbps)

EVM
(%ms)

Err
(%ms)

Freq
(kHz)

IQ offset
(dB)

Ch1-ABDN 100 1.8976 1.6429 1.9732 -78.439
Ch1-OUR 100 1.6743 1.4982 1.6592 -43.975
Ch2-ABDN 100 1.7821 1.7399 1.7834 -85.573
Ch2-OUR 100 1.4972 1.3768 1.4875 -58.328

5.3. System gain flatness test. After power-on, the PC side controls the FPGA output
control word, so that the low local oscillator is fixed to generate 828MHz and the high
local oscillator generates 5910MHz (channel 8) respectively. Meanwhile, signal source 2
outputs 48MHz to 68MHz signals with a sweep frequency spacing of 0.01MHz. Similarly,
the Max hold function of the spectrometer is used to measure the gain flatness curves
of the mixer MIX1 input 760MHz 780MHz and the low-frequency 48MHz 68MHz after
loopback, as shown in Figure 7. As can be seen from the test curve, when the channel is
8, the gain flatness of the system designed in this paper is 1.8dB, and the ABDN is 4.5dB.
After the frequency band response of down-conversion and post-amplification filtering, the
flatness of 48MHz 68MHz signal output to the baseband subsystem is 1.49dB. Therefore,
the RF electronic communication system optimized in this paper has lower system gain
flatness, better than ABDN, and meets the performance requirements.

Figure 7. System gain flatness comparison
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As shown in Figure 8, we can see that the power gain flatness of the 10 channels in the
5000MHz–5300MHz operating band is less than 2.5dB, and the power gain flatness near
the passband edge of the band preselected filter is worse than that of the middle channel,
which meets the index requirement of the system power gain flatness less than 3dB.

Figure 8. System power gain flatness

6. Conclusion. In this paper, on the basis of artificial intelligence neural network control
method, the establishment of a high-performance RF electronic communication system
is studied. Firstly, in the process of data preprocessing, a data conversion method is
designed, which combines Pearson correlation coefficient to quantify the correlation degree
between input variables and output responses, and can exclude input variables unrelated
to output responses. Then the secondary superheterodyne receiving structure and the
secondary frequency conversion transmitting structure are used to divide different modules
according to the current to ensure the isolation between the modules and reduce the
crosstalk between the RF signals, thus improving the communication efficiency. Finally,
the experimental results show that the optimized system can effectively reduce the system
gain flatness, modulation accuracy, and power gain flatness.
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