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Abstract. Vehicle sound-based classification is essential for preserving the natural en-
vironment and intelligent transportation, helping monitor device operation, maintain
environmental safety, and regulate vehicle traffic. Nevertheless, the intricate nature
of outdoor situations, combined with elements like wind noise, brings substantial ex-
traneous or disruptive information into the data, which has a detrimental impact on
classification performance. To tackle this issue, this study introduces a vehicle classi-
fication network called the Time-Frequency Hybrid Attention Mechanism Classification
Network(TFANet). Firstly this network is built on the mature ResNet18 architecture
and utilizes Mel Frequency Cepstral Coefficients (MFCC) features to analyze sound sig-
nals, significantly improving the accuracy and robustness of the classification model. In
addition, it designs a time-frequency hybrid attention mechanism to assign more impor-
tance to the semantic relevant time frames and key frequency bands within the MFCCs
spectrogram, helping to minimize the impact of irrelevant information and ensure the
accuracy of vehicle classification. Finally, we collected and organized the Field Vehicle
Sound Dataset (FVSD), and conducted relevant experiments on this dataset, demonstrat-
ing that the approach achieved an F1 score of 0.950. Meanwhile, additional experiments
were performed using the IDMT-Traffic open-access dataset. The TFANet showed an
improved F1 score in each category compared to the baseline model of this dataset. No-
tably, the Truck category, which had the poorest classification performance, significantly
improved by 0.16 in the F1 score.
Keywords: MFCC, Attention mechanism, Signal processing, Vehicle classification

1. Introduction. Due to social and economic development, motor vehicles are rapidly
spreading. At the same time, the rapid increase in the number of vehicles on the road has
also made the traffic situation more complicated, and there will be many traffic problems,
such as traffic accidents and road congestion [1]. Vehicle classification and recognition
technologies play a crucial role in the effectiveness of intelligent transportation systems.
They are essential for monitoring equipment operations, maintaining environmental safety,
and regulating vehicular traffic [2]. Categorization of vehicles in natural field areas is es-
sential for detecting possible dangers and plays a critical role in strengthening data-driven
support for environmental conservation actions [3]. This paper explores the complexities
of these technologies, emphasizing their significance in modern urban and environmental
planning. Through an analysis of the implementation and effects of these systems, we offer
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a thorough summary of their role in promoting sustainable transportation infrastructure
and environmental conservation.

In terrestrial transportation systems, the detection of vehicles has traditionally been
anchored in video sensors and image processing methodologies [4] [5]. Nevertheless, these
systems that rely on images require the accurate positioning of cameras along the roads,
along with the requirement of a clear and unobstructed vision. Moreover, the identi-
fication of vehicle types beyond the line of sight presents considerable challenges when
employing this approach [6]. Instead, the use of acoustic communication presents itself
as an appealing solution, eliminating the need for extra equipment at both the sending
and receiving ends [7]. This work explores the field of vehicle model recognition using
acoustic signals. The method involves placing sound collection devices strategically along
roadways to catch the sounds emitted by passing automobiles at specific sampling fre-
quencies. The analytical procedure involves the utilization of acoustic analysis, pattern
recognition techniques, and a systematic approach that includes reducing data volume,
handling processing requirements, and ensuring economic feasibility. These characteristics
lead to its increasing adoption and acknowledgment in both national and international
contexts [8] [9].

The conventional approach to in-vehicle sound classification and identification generally
involves three main steps: capturing vehicle noises, extracting significant characteristics
from these sounds, and then classifying these characteristics. Traditionally, research in
this field has been focused on using a single characteristic signal, such as a particular
vibration or sound, to identify a target vehicle. This computationally efficient method is
most suitable for circumstances where vehicle sound data is largely free of noise and can be
described by different dataset features [10]. Sharma et al. [11] utilized wavelet transform
and spectral statistics to examine and categorize vehicle vibration signals in their study.
Aljaafreh et al. [12] utilized the short-time Fourier transform in conjunction with power
spectral energy analysis on time-frequency domain data to extract characteristics from
vehicle acoustic sounds. They then employed a support vector machine for the classifica-
tion process. Yang et al. [13] utilized discrete spectrum analysis to extract features from
vehicle sounds and devised an algorithm based on wireless sensor network protocols for
vehicle classification and recognition. Nevertheless, these strategies for extracting features
manually are usually limited by their shallow level of information processing, which lacks
the profound abstraction capabilities required to successfully distinguish unique vehicle
characteristics [14].

The progress made in deep learning has led to a significant change in sound classifica-
tion methods. This is evident from the increase in academic research that utilizes neural
network models for various acoustic classification problems. These encompass a variety
of tasks, such as classifying environmental sounds [15] [16], linguistic emotion discern-
ment [17], and classifying bioacoustic signals [18] [19], among others. Simultaneously,
there have been notable advancements in the field of vehicle categorization. Mohine et
al. [20] were the first to develop a hybrid model that combines a Convolutional Neu-
ral Network with a Bidirectional Long Short-Term Memory Model (CNN-BiLSTM). This
proficient model excels in extracting distinctive characteristics from audio signals and clas-
sifying them into five unique categories (two-wheelers, low, medium, heavy vehicles, and
noise), hence improving the accuracy of vehicle classification. Ashhad et al. [21] proposed
a convolutional neural network (CNN) framework to preprocess acoustic data charac-
teristics. They utilized MFCC to obtain a fourfold classification on the IDMT-Traffic
dataset. Chen et al. [22] presented a new hybrid neural network classifier that combines
Long Short-Term Memory (LSTM) with CNN layers. The integration of MFCC, Pitch
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Class Profile (PCP), and Short-Term Energy (STE) properties serves as inputs for ad-
vanced modeling. Sun et al. [23] devised an intra-frame network and fusion technique that
utilizes AlexNet in conjunction with LSTM to extract feature vectors from signals for ex-
tensive vehicle classification tasks. Mohine et al. [24] developed an architecture for vehicle
classification using the Fast Fourier Transform (FFT). The architecture identifies strong
features that are appropriate for mobile vehicle recognition systems based on acoustic
modality. In their study, Luo et al. [25] introduced a novel approach called Sound Con-
volutional Recurrent Neural Network (S-CRNN), which combines Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) techniques. In addition, Wang et
al. [26] applied spectral augmentation techniques to Mel spectrograms before extracting
MFCC, thereby enhancing the resilience of the system. The utilization of deeply divisible
convolution in the CNN network enhanced the efficiency of the vehicle detection system
by enabling model compression. Ashhad et al. [27] developed an advanced approach for
recognizing vehicle sounds. This approach combines global and local audio characteristics
in a multi-input neural network structure, facilitating sound-based vehicle classification
tasks.

While the previously mentioned methodologies have exhibited certain advancements
in vehicle sound classification, they often overlook the substantial impact of silent seg-
ments and noise elements within sound signals on classification accuracy. These silent
segments and noise elements are notably prevalent in sound data acquired from natu-
ral environments, particularly in scenarios characterized by complex conditions such as
heightened wind and noise interferences, where their prominence is exacerbated. These
factors present formidable challenges in the processing and feature extraction of sound
signals, potentially obfuscating genuine vehicle characteristics and thereby compromising
classifier efficacy. Consequently, the effective handling and filtration of these silent seg-
ments and noise elements emerge as pivotal issues confronting contemporary research in
vehicle sound classification.

Eliminating extraneous signals poses a multifaceted challenge often disregarded in con-
ventional methodologies [28]. To surmount this obstacle, rigorous field data collection was
conducted. This meticulous endeavor encompassed the comprehensive gathering of data
spanning prominent vehicle categories to ensure dataset completeness and representative-
ness. Subsequently, a meticulous organization and in-depth analysis of the acquired data
culminated in the establishment of the Field Vehicle Sound Dataset (FVSD). The incep-
tion of FVSD facilitated advanced vehicle classification experiments in more demanding
natural settings, thereby validating the feasibility and efficacy of our approach. To coun-
teract the deleterious impact of irrelevant signals on classification accuracy, we devised
a novel vehicle classification framework named TFANet. Leveraging a time-frequency
attention mechanism, TFANet adeptly discerns auditory data, selectively amplifying fea-
tures bearing pivotal information while concurrently attenuating the significance of less
pertinent features. Through this strategy, TFANet achieves enhanced precision in identi-
fying and classifying vehicle sounds, thereby augmenting the performance and resilience
of the classification system.

Contribution. The notable contributions of this study are summarized as follows:
(1) This paper introduces the TFANet, a new network designed specifically for clas-

sifying vehicle sounds. TFANet utilizes MFCC as its primary feature, due to its strong
immunity to interference. By doing a thorough investigation and careful comparison of
several classifiers, the method incorporates ResNet18 as its classification model. This
combination notably enhances the accuracy and robustness of the sound-based vehicle
type classification.
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(2) TFANet uses a novel time-frequency hybrid attention mechanism to reduce the neg-
ative impact of non-essential or interfering data in audio on categorization performance.
This module uses the attention mechanism in the time domain drinking frequency domain
direction of MFCCs spectrogram respectively, adaptively assigns more weights to the ef-
fective features with significant information, and reduces the interference of irrelevant
information. As a result, it greatly enhances the network’s ability to accurately identify
and distinguish the unique sound patterns associated with different types of vehicles.

(3) We established the FVSD dataset after thorough organization and analysis of the
collected data in a real-world setting. To verify the efficacy of TFANet, we conducted
a rigorous experimental evaluation of the FVSD dataset. The results were compelling,
with TFANet achieving a performance level exceeding 0.95 for the metrics of the F1
score. Furthermore, experimental evaluations were conducted using the publicly available
IDMT-Traffic dataset, The TFANet model showed improved F1 score in each category
compared to the baseline model. This confirms without any doubt that our method is
highly effective in practice.

1.1. Organization. The rest of this paper is structured as follows. We present the
datasets, reparations, and the methodology proposed in this paper in Section 2. In Section
3 a variety of experiments are designed to evaluate the effectiveness of the methods in
this paper. In Section 4, we summarize this paper.

2. Materials and Method.

2.1. Datasets.

2.1.1. Field Vehicle Sound Dataset. A comprehensive experimental data collection cam-
paign was carried out in a natural field setting, as shown in Figure 1. This entailed
vehicles traversing a specifically designated 500-meter straight section in the field. The
data collection process was carried out using an advanced vibroacoustic signal collection
device. This device had an array aperture of one meter and a height of 30 centimeters. It
was designed to simultaneously capture both auditory and vibrational signals. As shown
in Table 1. The resulting dataset includes a wide range of vehicle types, such as jeep,
coupe, truck, and off-road vehicles. The FVSD is a comprehensive dataset consisting of
203 individual data entries. Each entry has an average duration of 67.9 seconds. The data
structure is partitioned into 6 channels per entry, where channels 1 to 4 are specifically
designated for sound signal data, and channels 5 and 6 are assigned for vibration signal
data. All signals are captured at a high-fidelity sampling rate of 10240Hz.

For real-time vehicle recognition in natural field conditions, the dataset was divided
into intervals of five seconds, considering the parameters of data volume and sampling
rate. The intervals were later used as the training dataset.

Table 1. The summary of the FVSD self-produced dataset.

Vehicle types Jeep Coupe Truck Off-Road Vehicles
Quantities 24 70 30 76

Sampling rate 10240Hz
Road situation Dirt/Asphalt roads
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Figure 1. Schematic diagram of the vehicle information collection site

2.1.2. IDMT-Traffic Dataset. The IDMT-Traffic dataset [29] was introduced in 2021 as an
innovative open benchmark repository designed specifically for acoustic traffic monitoring.
This dataset combines a range of recordings from four different locations that are far
apart geographically. It includes recordings of urban traffic situations from Ilmenau,
Germany, and the surrounding urban areas, as well as recordings of a different rural
road environment. The collection includes four sessions of precisely synchronized stereo
recordings of vehicle movement. The recordings were made with great accuracy, using
high-grade sE8 microphones in combination with cost-effective Micro-Electro-Mechanical
Systems (MEMS) microphones. The dataset is extensive, encompassing a wide range
of vehicular dynamics. As shown in Table 2. It includes 3903 car-related events, 511
instances of trucks, 251 occurrences of motorcycles, and additional background acoustic
data recorded during periods without any vehicles present.

To enhance processing efficiency and greatly enhance analytical accuracy, the data
obtained during the experimental phase was methodically divided into intervals of two
seconds. This segmentation strategy was carefully implemented to guarantee a more
detailed and accurate analysis.

Table 2. The summary of the IDMT-Traffic dataset.

Vehicle types Car Truck Motorcycle No vehicle
Quantities 3903 511 251 251

Sampling rate 22050Hz
Road situation Dry/Wet roads

2.2. Feature Processing. In recent decades, numerous feature extraction methods have
been extensively studied to determine their effectiveness in analyzing acoustic properties.
These methods encompass a wide range of domains, such as time, frequency, short spec-
tral, wavelet, and time-frequency domains [30]. The MFCC is a commonly used technique
in sound recognition because it accurately simulates the human auditory system [31]. The
core of MFCC lies in its initial conversion of the linear spectrum into the Mel nonlinear
spectrum, which corresponds to auditory perception, and subsequently transforming it
into the cepstral spectrum. MFCC is a versatile and signal-independent method that
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is not limited by any preconceived constraints or assumptions about the input sound
signal, exhibiting high recognition success rates and stable performance in the field of
sound recognition [32]. The MFCC model exhibits exceptional resilience and immunity
to noise, which greatly enhances its performance in recognition tasks when compared to
other models. This has been confirmed through numerous studies and experiments that
specifically examine auditory models.

The sequential procedures required for converting input data using MFCC are illus-
trated in Figure 2. The process begins by applying pre-emphasis to the sound signal,
which involves compensating and amplifying the high-frequency components. The pro-
cess is quantitatively represented by Equation (1), demonstrating the systematic method
of improving the signal for further analysis.

f ′(n) = f(n)− α · f(n− 1) (1)

where α = 0.97, f(n) is the original acoustic signal and f ′(n) is the output signal.
After pre-emphasis, the signal is divided into discrete short-time segments through

frame splitting. In this research, every individual frame is assigned a window duration of
23 milliseconds. To maintain a significant amount of overlap for the purpose of consistency
and precision in analysis, the step size of the window is established as half of its length,
resulting in a 50% overlap with the neighboring frame. The utilization of this overlapping
technique improves the dependability of the time-window analysis.

After the segmentation process, each short-time frame is subjected to spectral analysis
using the Fast Fourier transform (FFT). This essential step is pivotal in converting the
time domain signal into its corresponding frequency domain spectrum. Afterwards, the
Mel filter bank is used. This step is crucial as it transforms the acquired spectrograms
into the Mel frequency domain, which closely emulates the way the human ear perceives
different sound frequencies. The process of mapping based on auditory perception is sys-
tematically calculated according to Equation (2), thereby guaranteeing that the frequency
representation corresponds to the characteristics of human auditory characteristics.

Mel(f) = 2595 · log10(1 + f/700) (2)

After applying the Mel filter bank, the energy contained within it undergoes logarithmic
computation. This step is crucial as it primarily emphasizes the information found in
the lower frequency ranges, which are typically more important in auditory analysis.
Employing a logarithmic method helps to highlight nuanced yet essential elements of
the sound that could otherwise be overpowered by higher-frequency components. The
subsequent crucial stage entails the utilization of the Discrete Cosine Transform (DCT).
This transformation is strategically utilized to decrease the correlation among the features,
thus guaranteeing the preservation and highlighting of crucial feature information. Its
purpose is to enhance the feature set by concentrating on the most pertinent aspects for
analysis, thus optimizing the data for subsequent processing stages. The final MFCC
features are obtained as the result of this complex process. These features constitute a
thorough and refined dataset, prepared to be used as input for the classification network.
Next, the network performs high-dimensional feature extraction, which is an essential step
that sets the foundation for the subsequent classification tasks. The meticulous MFCC
process greatly improves the network’s capacity to precisely and effectively classify the
auditory data, leading to a high level of accuracy in achieving the desired classification
goals.

2.3. Time-Frequency Hybrid Attention Mechanism. Obtaining vehicle sound sig-
nals in real-world outdoor settings is often hindered by the existence of wind noise and
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Figure 2. MFCC feature processing flow

other interference from the environment. These disruptions frequently result in the ob-
struction or alteration of sounds emanating from crucial vehicle elements such as engines
and tires. Consequently, the sound signals’ integrity is compromised, which presents
substantial difficulties in categorizing vehicle sounds. To overcome these challenges, our
study presents a new method called the time-frequency hybrid attention mechanism [33].
This innovative approach combines attention mechanisms in both the time and frequency
domains.

In the context of time, the temporal attention mechanism is important for effectively
reducing the impact of background noise on sound signal analysis by suppressing noisy
or silent frames. Simultaneously, in the dimension of frequency, the frequency attention
mechanism is skilled at allocating greater importance to frequency bands that contain sig-
nificant discriminative information. Conversely, it diminishes the focus on less significant
frequency ranges that contain restricted informational worth. The novel time-frequency
hybrid attention mechanism module dynamically prioritizes significant time-frequency
structures crucial for vehicle sound classification. This strategic focus enables the network
to prioritize specific time periods and frequency bands that are semantically important,
thereby enhancing the emphasis on valuable information while reducing the network’s
sensitivity to irrelevant data or noise.

Due to this two-dimensional focus, the network acquires an enhanced capability to
differentiate and categorize unique sound characteristics specific to different types of ve-
hicles. Figure 3 illustrates the essential operational steps of the time-frequency hybrid
attention mechanism, offering a visual depiction of this complex process.

Figure 3. The generation process of Time-Frequency hybrid attention mechanisms.
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1. Normalization of MFCCs spectrogram x(f, t), as shown in Equation (3).

X(f, t) = Normalize(x(f, t)), 1 ≤ f ≤ F, 1 ≤ t ≤ T (3)

2. The process of generating the time attention MFCC spectrogram MT (t) is depicted
in the lower section of Figure 3.

(1) Conducting a convolution operation on the regularized MFCC features is accom-
plished through the utilization of a 3×1 convolution kernel, as illustrated in Equation (4),
which iterative procedure persists until the MFCC is diminished to 1 within the frequency
dimension. This process extracts the nonlinear features in the time dimension, resulting
in a one-dimensional matrix of size (1, T ).

AT = Conv3× 1(X(f, t)), 1 ≤ t ≤ T (4)

(2) The weight of time attention is calculated utilizing Equation (5).

Tw(t) =
exp(AT (1, t))∑T
i=1 exp(AT (1, i))

, 1 ≤ t ≤ T (5)

(3)The regularized MFCCs spectrogram is multiplied element-wise with the obtained
attentional weight matrix along the temporal direction to yield a temporal attention
spectrogram MT (t). The calculation method is depicted in Equation (6).

MT (t) = X(f, T ) ∗ Tw, 1 ≤ f ≤ F (6)

3. The upper portion of Figure 3 delineates the procedure for generating the frequency
attention MFCC spectrogram MF (f).

(1) Conducting a convolution operation on the regularized MFCC features is accom-
plished through the utilization of a 1 × 3 convolution kernel, as illustrated in Equation
(7), which iterative procedure persists until the MFCC is diminished to 1 within the
time dimension. This process extracts the nonlinear features in the frequency dimension,
resulting in a one-dimensional matrix of size (F, 1);

AF = Conv1× 3(X(f, t)), 1 ≤ f ≤ F, (7)

(2) As shown in Equation (8), the Softmax function is employed to calculate the tem-
poral attention weights;

Fw(t) =
exp(AF (f, 1))∑F
j=1 exp(AF (j, 1))

, 1 ≤ f ≤ F (8)

(3) The MFCCs spectrogram was multiplied element-wise in the frequency direction
with the obtained attention weight matrix to yield a frequency attention MFCCs spec-
trogram M F (f), as depicted in Equation (9);

MF (f) = X(F, t) ∗ Fw, 1 ≤ t ≤ T (9)

4. Generation of time-frequency hybrid attention MFCCs spectrogram MT−F . The
attentional spectrograms are skillfully combined with the original MFCCs spectrograms,
as described in Equation (10), resulting in the formation of sophisticated time-frequency
hybrid attentional spectrograms. This novel method greatly enhances the ability to distin-
guish different characteristics of the acoustic signal in the MFCCs spectrogram analysis.

MT−F = MT +MF +X(f, t) (10)
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2.4. Classification Network. In this paper, we utilize the Residual Network (ResNet)
[34] as our classification network. The specific parameters for each layer in the ResNet
framework are outlined in Table 3 with detailed specifications. The model’s architecture
consists of four two-layer residual modules, with each module utilizing a kernel size of (3 Ö
3). The modules are configured with channel numbers 64, 128, 256, and 512, respectively.
Our implementation incorporates the residual structure, which accelerates the learning
process and improves the network’s trainability. This design has demonstrated its ef-
fectiveness in tackling prevalent obstacles in deep learning, such as the issues of gradient
explosion and vanishing. Each residual block in the architecture is meticulously crafted to
address potential challenges, such as diminishing the size of the feature map or modifying
the number of channels in the main path. If these changes are not dealt with, they could
result in the loss of information or a decrease in the performance of the model. In order
to reduce these risks, each residual block includes a skip connection that directly connects
its input and output. As shown in Figure 4, these skip connections facilitate the seam-
less integration of input data onto the output of specific layers within the network. This
approach guarantees a smoother transmission of feature information across the network.
Importantly, it maintains the complex details and semantic depth present in the original
input data, making it easier to pass on to subsequent layers without losing important in-
formation. In this study, we employ an 18-layer ResNet network, which provides an ideal
trade-off between computational complexity and classification accuracy. The network is
configured to process the dataset using MFCC features.

Figure 4. Skip connection in the residual network

2.5. Our Method. The TFANet is introduced in this paper. The overall architecture of
TFANet is depicted in Figure 5. It comprises three main components: a section dedicated
to feature processing, a section implementing a time-frequency hybrid attention mecha-
nism, and a section functioning as a classifier. As vehicle sound signals in natural field
environments are significantly impacted by noise, MFCC was chosen as the base feature
during the feature processing phase on account of its comparatively low sensitivity to
noise interference. However, noise interference cannot be eliminated by relying solely on
MFCC feature extraction, given the variety of noise sources present in field vehicle sounds.
A time-frequency hybrid attention mechanism has been implemented to address this is-
sue. By utilizing this mechanism, critical information in the time and frequency domains
is effectively identified and highlighted during the vehicle sound classification procedure.
Decreasing the feature weights of extraneous or disruptive data effectively mitigates the
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Table 3. Description of the different layers of residual network used in the
proposed method.

Layer Name Description
Input Layer H=Height, W=Width,C=Channels

Convolutional Layer 1 Kernel Size=7Ö7, Stride=2,Channel=64
Max Pooling Layer Kernel Size=3Ö3,Stride=2

Convolutional Layer 2 Ö2 Kernel Size=3Ö3, Channel=64
Convolutional Layer 3 Ö2 Kernel Size=3Ö3, Stride=2, Channel=128
Convolutional Layer 4 Ö2 Kernel Size=3Ö3, Stride=2, Channel=256
Convolutional Layer 5 Ö2 Kernel Size=3Ö3, Stride=2, Channel=512

Average pooling Kernel Size=7Ö7
Fully Connected Layer

Softmax Layer

influence of noise on the accuracy of classification and improves the network’s overall
performance. ResNet18 is chosen as the foundational architecture for classification pur-
poses, owing to the capability of its residual block to capture comprehensive contextual
information present in the feature map. This functionality guarantees the retrieval of
exhaustive and representative characteristics to classify vehicle sounds. The TFANet ar-
chitecture significantly improves the accuracy of vehicle type classification under intricate
environmental circumstances.

Figure 5. The overall architecture of the proposed TFANet classification model.

2.6. Performance Evaluation. The validation performance is assessed in terms of F1-
score, Accuracy, Precision, and Recall. The quantitative definitions of each of these
metrics are given in Equations (11) through (14), where TP , TN , FP , and FN represent
true positive, true negative, false positive, and false negative, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (11)
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Precision =
TP

TP + FP
× 100% (12)

Recall =
TP

TP + FN
× 100% (13)

F1 score = 2× (
Precision×Recall

Precision+Recall
)× 100% (14)

The accuracy metric is of utmost importance as it represents the overall effectiveness
of the model in accurately categorizing samples as either positive or negative. Accuracy
alone may not provide a comprehensive evaluation of the model’s performance in situations
involving class imbalance; therefore, for a more nuanced assessment, Precision, Recall,
and F1 score should be employed in addition to Accuracy. Precision indicates the model’s
ability to discriminate between negative samples; recall indicates the model’s ability to
identify positive samples (and hence the higher the Precision, the stronger the model’s
capacity to discriminate between negative samples); and F1 score is a combination of the
two; the higher the F1 score, the more robust the model.

3. Result. In order to verify the efficacy of TFANet, experiments are carried out in this
section using both the FVSD collected in the laboratory field and the publicly available
IDMT-Traffic datasets.

3.1. Comparison of Different Classifiers. Due to the high occurrence of significant
background noise that accompanies vehicle sounds in real-world environments, we chose
to use the MFCC as the input for our classification network. Subsequently, a sequence
of carefully planned experiments was carried out to assess and contrast the effective-
ness of different classifiers in these circumstances. The chosen classifiers for evaluation
comprise Deep Neural Networks (DNN), 1-Dimensional Convolutional Neural Networks
(CNN-1D), Long Short Term Memory Networks (LSTM) [35], AlexNet [36], and ResNet.
Each of these classifiers has previously shown substantial effectiveness in their respective
domains. The variations in performance when processing sound data can be attributed
to the differences in architecture and processing mechanisms of the individual classifiers.
The CNN-1D is believed to be highly skilled at extracting local time-frequency features,
whereas the LSTM is anticipated to excel in capturing the inherent temporal dynamics
in sound data. Similarly, AlexNet and ResNet, being sophisticated models for image
classification, may exhibit benefits in feature acquisition and generalization. The results
of the experiment, which involved classifying vehicle types based on sound using various
classifiers, are presented in Table 4.

Table 4. The results of different classifiers.

Classifier
FVSD IDMT-Traffic

Precision Recall F1 score Precision Recall F1 score
DNN 0.814 0.809 0.810 0.875 0.932 0.901

CNN-1D 0.856 0.872 0.863 0.944 0.945 0.933
LSTM 0.854 0.841 0.844 0.801 0.882 0.837
AlexNet 0.839 0.825 0.830 0.874 0.931 0.800
ResNet18 0.930 0.930 0.929 0.947 0.950 0.941

We thoroughly evaluated various classifiers for vehicle sound detection using Precision,
Recall, and F1 score as evaluation metrics. DNN showed the least impressive performance
in FVSD due to its simple structure, limiting its capability to handle complex features.
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CNN-1D and LSTM performed comparably well in handling temporal data but struggled
with utilizing frequency domain information from MFCC features effectively. In contrast,
ResNet18 outperformed other models with Precision, Recall, and F1 scores exceeding
0.90, attributed to its deeper architecture and distinctive skip connections, enhancing ac-
curacy and generalization, particularly in noisy environments. In IDMT-Traffic, ResNet18
achieved the highest F1 score of 0.941, affirming its effectiveness in accurately detecting
vehicle types based on sound. We attempted to enhance the classification performance

Table 5. The results of different layers of ResNet.

Classifier
FVSD IDMT-Traffic

Precision Recall F1 score Precision Recall F1 score
ResNet18 0.930 0.930 0.929 0.947 0.950 0.941
ResNet34 0.933 0.931 0.927 0.941 0.945 0.932
ResNet50 0.919 0.916 0.917 0.947 0.944 0.930

by augmenting the number of layers in the ResNet. The outcomes of the experiment are
presented in Table 5.

The results in Table 5 reveal an unexpected trend, the F1 score did not exhibit the
anticipated improvement when the model’s number of layers increased from 18 to 50,
for both datasets. The potential cause for this lack of satisfactory performance could
be attributed to overfitting or difficulties in optimizing the network due to the increased
complexity of the model. In addition, the 18-layer network is computationally more
efficient due to its lower complexity, which is a result of having fewer parameters. This
aspect is especially vital during the training process. Therefore, considering these results,
ResNet18 has been chosen as the main classification network for this research.

3.2. Comparison of Attention Mechanism. This section performed a series of com-
parative experiments to determine the impact of the recently introduced time-frequency
hybrid attention mechanism on vehicle-type classification tasks. The analyses were for-
mulated by the methodology and results outlined in the previous section. The ResNet18
classifier was used, with MFCC as input features. The results of these experiments are
methodically displayed in Table 6 T-Attention, where the attention mechanism is exclu-
sively applied in the time dimension; F-Attention, indicating the inclusion of the attention
mechanism in the frequency domain; and T-F Attention, representing the implementation
of the attention mechanism across both time and frequency dimensions.

Table 6. The results of the attention mechanism.

Strategy
FVSD IDMT-Traffic

Precision Recall F1 score Precision Recall F1 score
No attention 0.930 0.930 0.929 0.947 0.950 0.941
T-Attention 0.937 0.942 0.933 0.947 0.951 0.946
F-Attention 0.940 0.949 0.936 0.946 0.951 0.946

T-F Attention 0.951 0.951 0.950 0.954 0.957 0.955

The FVSD achieved a notable baseline performance using ResNet18 and MFCC fea-
tures, attaining an F1 score of 0.929 without employing any attention mechanism. Incor-
porating the temporal attention mechanism yielded a slight performance enhancement,
resulting in a 0.004 increase in F1 score. This suggests that by prioritizing temporal
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aspects in sound signals, the model becomes more adept at identifying critical moments
in the sound. Moreover, the introduction of the frequency attention mechanism led to
further performance improvement, indicating the model’s enhanced ability to distinguish
vehicle sounds from background noise with greater precision. Specifically, it effectively
attenuates noise frequency bands while focusing attention on relevant sound frequency
bands. Integration of the time-frequency attention mechanism significantly boosted the
model’s performance, with Precision, Recall, and F1 scores surpassing 0.950. This en-
hancement underscores the mechanism’s effectiveness in enhancing the precision of ve-
hicle sound classification by emphasizing relevant time frames and key frequency bands
in the spectrogram. In complex auditory environments, this mechanism substantially
enhances the model’s ability to accurately identify and differentiate vehicle sounds. Sim-
ilarly, the IDMT-Traffic model exhibited strong performance with the time-frequency
attention mechanism, with a 0.014 increase in F1 score compared to its absence, high-
lighting the mechanism’s efficacy in accurately classifying field vehicles. Figure 6 illus-
trates the impact of the T-F attention mechanism on classifying each class in the two
datasets. Notably, the incorporation of the T-F attention mechanism significantly en-
hanced classification efficacy across different vehicle classes in the FVSD, enabling the
model to accurately identify distinct sound patterns associated with them. The appli-
cation of the time-frequency hybrid attention mechanism notably improved classification
results for the Truck category in the IDMT-Traffic datasets, which initially exhibited poor
performance. By thoroughly examining the time and frequency dimensions aided by the
attention mechanism, subtle distinctions can be identified, thereby enhancing classifica-
tion accuracy. Figure 6 illustrates the impact of the T-F attention mechanism on the

Figure 6. Impact of the attention mechanism on F1 scores across various
vehicles Categories. (a) Result of FVSD dataset. (b) Result of IDMT-
Traffic dataset.

classification of each class in the two datasets. Within the FVSD, a varying degree of f1
score enhancement is observed across different vehicle classes. The incorporation of the
T-F Attention mechanism has significantly enhanced the efficacy of classification. This
enables the model to accurately identify the distinct sound patterns associated with them.
The application of the time-frequency hybrid attention mechanism significantly improved
the classification results for the Truck category in the IDMT-Traffic datasets, which ini-
tially had the poorest performance. While Trucks may share some sound characteristics
with other vehicle types, a thorough examination of the time and frequency dimensions,
aided by the attention mechanism, allows for the identification of subtle distinctions,
thereby enhancing the accuracy of classification.
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3.3. Comparison of Different Methods. In order to further substantiate the efficacy
of the techniques described in this paper, we conducted a comparative analysis of multiple
established cutting-edge methodologies using two distinct datasets. A detailed description
of these methods is given below: Wang et al. [26]: This is a compact deep neural network
architecture that leverages MFCC as a primary feature and employs deep separable convo-
lution to design a new classifier. Its objective is to enhance the effectiveness and precision
of vehicle detection in intelligent sensor systems. The product’s lightweight design allows
it to be used in environments with limited computational resources, while still delivering
strong performance. Abeßer et al. [29]: This approach serves as a fundamental model for
the IDMT-Traffic dataset. It employs Mel spectrograms as the input and utilizes deep
neural networks for classification. The primary benefit of this approach lies in its capacity
to fully exploit the Mel spectrogram’s capability to depict the attributes of audio signals,
in conjunction with deep learning methodologies, for efficient sound classification. Ash-
had et al. [27] proposed a technique that utilizes Gamma Frequency Cepstrum Coefficients
(GFCC) and a set of static features to build a multi-input neural network. This model
aims to achieve precise vehicle classification based on sound by combining both global and
local audio features. This method is distinguished by its capacity to analyze and exploit
multi-level information in the audio signal, resulting in more comprehensive classification
outcomes. The experimental outcomes of the various techniques on the FVSD dataset
are presented in Table 7, while the results on the IDMT-Traffic dataset are provided in
Table 8.

Table 7. The results of different methods on the FVSD dataset.

Method Feature Name Precision Recall F1 score
Wang et al. MFCC 0.818 0.812 0.814
Abeßer et al. Log-Mel 0.848 0.835 0.840
Ashhad et al. GFCC +Statistical 0.856 0.872 0.863

TFANet MFCC 0.951 0.951 0.950

Table 8. Class-wise F1 score of different methods on the IDMT-Traffic dataset.

Method Feature Name Car Truck Motorcycle No vehicle
Abeßer et al. Log-Mel 0.94 0.50 0.96 1.00
Ashhad et al. GFCC +Statistical 0.96 0.57 0.98 1.00

TFANet MFCC 0.95 0.66 1.00 1.00

The FVSD dataset was evaluated using Wang et al’s model, which is known for its
lightweight nature. The model achieved a Precision of 0.818, a Recall of 0.812, and
an F1 score of 0.814. Despite its fast training and inference capabilities, the model
showed limitations in accurately classifying certain sounds. This could be attributed to
the constraints of its deep separable convolution in handling intricate sound features.
Ashhad et al’s model enhances the classification outcomes by achieving a Precision of
0.856, a Recall of 0.872, and an F1 score of 0.863, owing to its utilization of various audio
features in combination. Nevertheless, the most notable enhancement in performance is
evident in our model, with all metrics surpassing 0.950. This notable enhancement can be
credited to the utilization of the time-frequency attention mechanism. This mechanism
allows the model to concentrate more precisely on the crucial temporal and spectral
characteristics of the sound signals. Consequently, it enables the model to explore the
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inherent feature representation of the vehicle sound signals more effectively and filter out
any unwanted noise interference.

TFANet was evaluated using the IDMT-Traffic dataset, and the F1 scores across various
categories were compared with the experimental results presented in [27]. Significantly,
our approach demonstrated strong and consistent performance even when classifying diffi-
cult categories, such as Trucks, which are typically less accurately classified by alternative
methods. This result emphasizes the superiority of our method in precisely differentiating
sound categories that are difficult to distinguish. Our model showcases both a consistently
high level of accuracy and notable resilience, particularly when faced with categories that
present more difficult classification tasks.

3.4. Visualization. Figure 7 visually represents the outcomes of these experiments. Fig-
ure 7(a) displays the results of the FVSD dataset. The graph on the left displays the
fluctuation in the loss value throughout the training process. The blue curves represent
the training loss per iteration, while the red curves represent the validation loss. Both
the training and validation sets demonstrate a comparable decline in the loss values, sug-
gesting successful learning. The Intermediate graph depicts the variations in accuracy,
with the blue curve representing the accuracy of the training set and the red curve indi-
cating the accuracy of the validation set. The network’s learning process reaches a stable
state after around 80 epochs, indicating that the network has impressive learning abilities.
The figure’s right side exhibits a confusion matrix, showcasing the network’s classification
performance across all four categories. Furthermore, the utilization of TFANet on the
IDMT-Traffic dataset resulted in outstanding performance. The results not only confirm
the effectiveness of the suggested approach but also showcase its suitability and resilience
across various datasets.

Figure 7. Visualization results (a) Loss curves, accuracy curves, and con-
fusion matrices for the FVSD dataset(b)Loss curves, accuracy curves, and
confusion matrices for the IDMT-Traffic dataset
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4. Conclusion. TFANet, a novel approach for sound-based vehicle type detection, has
been developed in this study. This approach utilizes MFCC as the main feature and em-
ploys ResNet18 as the classifier. Moreover, it presents a time-frequency hybrid attention
mechanism, specifically developed to enhance the effectiveness of classification. This study
selects the MFCC as the primary feature to accurately capture the fundamental charac-
teristics of sound, considering the intricate nature of the natural field environment and
the notable impact of environmental factors like wind noise on vehicle audio signals. Dur-
ing the analysis, various type classifiers were compared, and it was found that ResNet18
performed better than other networks in the task of classifying vehicle categories. The
time-frequency hybrid attention mechanism, known as the core innovation of TFANet,
plays a pivotal role. The system effectively recognizes and allocates suitable importance
to the characteristics that are most crucial for making classification decisions. This en-
sures that the network focuses on pertinent information while disregarding irrelevant or
distracting data during the learning phase. Comprehensive experiments were carried out
using the FVSD and IDMT-Traffic to empirically confirm the effectiveness of TFANet.
This strategy notably enhances the accuracy and robustness of the classification on both
datasets, particularly in its capacity to differentiate between analogous categories and
mitigate the impact of extraneous signals. These findings offer both theoretical insights
into vehicle sound classification and robust technical support for practical applications in
areas such as intelligent traffic monitoring and environmental protection.

Despite significant advancements in sound-based vehicle type detection achieved by
TFANet, its accuracy diminishes notably when identifying vehicle categories with limited
sample sizes. For instance, the F1 score for the Truck category is merely 0.66, significantly
lower than that observed for other vehicle categories. Future research endeavors will prior-
itize refining the TFANet model’s precision in discerning vehicle categories characterized
by limited sample sizes. We will explore data augmentation techniques and unsupervised
learning methods to leverage unlabeled data for increasing sample sizes. Additionally,
enhancements to the time-frequency hybrid attention mechanism are envisaged to adapt
to the nuances of imbalanced datasets. Through the implementation of these strate-
gies, we anticipate an improvement in TFANet’s performance, thereby providing a robust
technical foundation for applications in intelligent traffic surveillance and environmental
protection.
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