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Abstract. With the increasing prevalence of bio-inspired optimization algorithms and
advancements in computing power, researchers are increasingly adopting these algorithms
to tackle structural optimization problems. The core concept involves transforming struc-
tural optimization problems into mathematical expressions and utilizing bio-inspired op-
timization algorithms to efficiently search the solution space, thereby enhancing the over-
all effectiveness and quality of optimization results. Structural optimization is a pivotal
technology aimed at adjusting the design parameters of a structure to maximize its per-
formance within specific constraints. Nevertheless, traditional optimization algorithms
encounter limitations when dealing with structural optimization, such as susceptibility to
local optima and high computational complexity. Consequently, this paper explores a novel
approach by leveraging bio-inspired optimization algorithms to overcome these limitations
and improve the effectiveness of solving structural optimization problems. The research
presented herein primarily focuses on establishing a mathematical model that captures the
essence of the structural optimization problem and employs bio-inspired optimization al-
gorithms to search for optimal solutions within the solution space. These algorithms sim-
ulate biological behaviors and evolutionary processes, endowing them with global search
capabilities and robustness. To validate the applicability of bio-inspired optimization al-
gorithms in structural optimization, a series of numerical experiments and comparative
analyses are performed using real-world structural problems as benchmarks. By compar-
ing bio-inspired optimization algorithms with traditional approaches like gradient-based
methods and constraint optimization methods, this paper demonstrates the advantages
and effectiveness of bio-inspired optimization algorithms in solving structural optimiza-
tion problems. The experimental results underscore the ability of bio-inspired optimiza-
tion algorithms to obtain superior structural design solutions under comparable compu-
tational complexities.
Keywords: Bio-inspired optimization algorithm; structural optimization problem; math-
ematical model; search space; optimal solution
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1. Introduction. Optimization problems are fundamental challenges in scientific re-
search and engineering computation. They involve finding parameter values that optimize
performance metrics while satisfying constraints. These problems have broad applications
in management, economics, society, and engineering, significantly impacting our daily lives
[1]. However, traditional mathematical optimization methods face limitations in tackling
complex problems, including dimensionality, local optima, and slow convergence rates.

Luckily, bio-inspired optimization algorithms have emerged as promising solutions.
These algorithms simulate behaviors and thinking structures observed in biological evo-
lution, offering new approaches to solving complex optimization problems [2]. They draw
inspiration from the evolutionary processes of biological populations, aiding the explo-
ration of solution spaces. This research aims to investigate the application of bio-inspired
optimization algorithms in mathematical models for structural optimization. Structural
optimization problems are crucial across engineering fields such as architecture, aerospace,
automotive, and materials. By optimizing design parameters, structures’ performance can
be enhanced while meeting design constraints. However, traditional optimization meth-
ods often struggle to effectively address structural optimization problems. This paper
investigates the use of bio-inspired optimization algorithms, specifically emphasizing the
PSO algorithm. PSO is an optimization technique inspired by the collective behavior of
particles, initially observed in the foraging behavior of birds [3]. It mimics information
exchange and collaboration among individuals to iteratively adapt parameter values in
pursuit of the best possible solution. PSO offers advantages like global search capabil-
ity, ease of implementation, and fast convergence, making it widely utilized in structural
optimization [4].

This paper delves into the principles and key parameters of the PSO algorithm, validat-
ing its effectiveness in structural optimization mathematical models through illustrative
examples. By studying PSO, we aim to enhance the efficiency and quality of solving
structural optimization problems, providing valuable guidance for decision-makers and
researchers in the engineering field.

1.1. Related Work. Bio-inspired algorithms are computational techniques and methods
that mimic the structural characteristics, evolutionary patterns, behavior, and thinking
processes observed in humans, nature, and other biological populations. A variety of opti-
mization problems can be addressed through the utilization of diverse algorithms. Genetic
Algorithms, Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and
Artificial Fish Swarm Algorithm (AFSA) are renowned bio-inspired optimization tech-
niques, exhibiting distinct advantages and finding applications in numerous domains [5].
This study specifically focuses on harnessing the power of the PSO algorithm to optimize
mathematical models that involve structural components.

Particle Swarm Optimization, is a swarm intelligence algorithm devised by Kennedy
and Eberhart in the early 1990s. Inspired by the foraging behavior of bird flocks and
building upon Heppner’s bird model research, the PSO algorithm was developed. Since
its initial introduction, researchers have made significant efforts to enhance the algorithm’s
structure and performance [6]. Mirjalili, and Lewis [7] introduced a discrete binary PSO
algorithm specifically designed for effectively solving discrete problems. Yang et al. [8]
introduced the concept of inertia weight as a parameter to regulate the momentum of
particles from previous iterations. The introduction of this parameter added a new level
of flexibility and adaptability to the PSO algorithm. Jin and Rahmat-Samii [9] expanded
the application of PSO to address Multi-objective Optimization Problems (MOPs). This
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extension showcased how the algorithm effectively tackles intricate optimization problems
with multiple conflicting objectives. Overall, the continuous efforts and advancements in
PSO algorithm research have contributed to its versatility and applicability in various
optimization scenarios. Liu et al. [10] further extended PSO by introducing the Pareto
dominance concept to guide particles’ search direction and preserving non-dominated
particles in a global external archive to guide other particles in subsequent iterations.
Kiranyaz et al. [11] proposed an adaptive dynamic environment PSO algorithm, which
allows particles to reset their best positions during the iteration process to prevent stag-
nation caused by historical experience. Moradi, and Abedinie [12] conducted additional
research on PSO, resulting in an algorithm that guarantees global convergence. Cesare
et al. [13] conducted in-depth research on the topology and information transmission
mechanisms of PSO and proposed a holographic particle swarm optimization algorithm.

Intelligent optimization algorithms have demonstrated remarkable performance in solv-
ing complex mathematical models for structural optimization, leading to their increasing
application across various industries. To illustrate their efficacy, let’s consider the op-
timization of truss structure models. Cao et al. [14] proposed an enhanced Teaching-
Learning-Based Optimization (TLBO) algorithm for dimension optimization of truss
structures. Their approach included effectively handling constraints within the algorithm
and mapping all feasible solutions on the boundary of the feasible domain. This improve-
ment resulted in reduced structural analysis complexity and improved convergence speed.
Kaveh and Talatahari [15] employed the Ant Colony Optimization (ACO) algorithm to
optimize spatial truss structures. They transformed the discrete variable truss design
problem into a variant of the Traveling Salesman Problem (TSP). By utilizing the path
length obtained from the TSP as a metric for truss optimization, they achieved favorable
optimization outcomes. Degertekinet al. [16] utilized the Subset Simulation algorithm to
optimize discrete variable truss structures. They compared its performance with other
classical optimization algorithms, effectively demonstrating its efficacy. Kaveh and Ghaz-
aan [17] proposed an enhanced Collision-Based Optimization (CBO) algorithm tailored
for weight optimization of truss structures under frequency constraints. The algorithm’s
effectiveness was validated through a series of simulation experiments. Another study,
conducted by Dimou and Koumousis [18], utilized the Particle Swarm Optimization algo-
rithm to optimize reliability-based truss structures. In their approach, random particles
within the PSO algorithm were considered as external forces leading to structural yielding,
highlighting the robustness of the algorithm. The simulation results provided convincing
evidence of the Particle Swarm Optimization algorithm’s effectiveness in reliability-based
optimization of truss structures.

Overall, these pioneering studies solidify the role of intelligent optimization algorithms
in enhancing the performance of truss structures across a range of optimization scenarios.

1.2. Motivation and contribution. Structural optimization poses a significant chal-
lenge in achieving optimal designs for structures. Traditional optimization methods have
limitations when confronted with complex structural optimization problems. Conse-
quently, researchers are actively seeking more effective optimization algorithms to enhance
structural design performance. This study aims to investigate and utilize PSO, an opti-
mization algorithm inspired by nature, to tackle the optimization problem linked to truss
structure models.

The paper’s contributions are as follows:
(1) To address the problem of traditional multi-objective optimization algorithms strug-

gling to preserve multiple Pareto optimal solution sets, this study proposes an innova-
tive multi-modal multi-objective particle swarm optimization (MPSO) algorithm using
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a circular topology structure and neighborhood perturbation strategy. By employing an
index-based non-overlapping circular topology structure, without specifying any niche pa-
rameter, the algorithm encourages the formation of multiple independent search niches
within the population, enabling it to discover a greater number of optimal solutions.

(2) This study introduces a novel application of bio-inspired optimization algorithms to
tackle multi-objective optimization problems and presents an automatic switching mech-
anism between global search and local search modes to strike a balance. The mechanism
dynamically adjusts the algorithm’s search strategy during the optimization process, en-
suring convergence while maintaining diversity.

(3) In order to enhance the algorithm’s capability to search for more optimal solutions,
a stagnation detection strategy is introduced in this paper to perturb the neighborhood
best particles, increasing the diversity of the particle swarm and preventing premature
convergence to a particular Pareto optimal solution set. This strategy helps the algorithm
escape local optima and further improves its global search ability.

2. Relevant theoretical analysis.

2.1. Particle Swarm Optimization algorithm. The PSO algorithm draws inspira-
tion from birds’ collective behaviors, such as foraging and migration, and demonstrates
remarkable effectiveness in tackling intricate optimization problems. In the PSO algo-
rithm, a predetermined number of particles are initially positioned randomly within the
feasible region of the problem space. Each particle adjusts its state by continuously updat-
ing its velocity, guided by the best position it has encountered personally and the globally
best position identified across the entire population. This adaptive process allows the
particles to explore and converge towards better regions in search of optimal solutions. In
the PSO algorithm, the search space is represented as D-dimensional, with a total of Ns

particles. For a given particle at the t-th iteration, its velocity and position are denoted
as vti = (vti,1, v

t
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global best solution encountered. In each (t+ 1)-th iteration, each particle in the swarm
recalibrates its velocity and adjusts its position within the search space. These updates
are influenced by the particle’s individual experiences as well as the collective behavior
of the entire swarm. These updates, including the inertia weight scheme, are defined by
Equations (1) and (2) as follows:
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Here, ω represents the inertia weight that controls the particle’s current momentum, c1
and c2 are acceleration coefficients determining the influences of the individual and global
best positions on the particles’ adjustments, r1 and r2 are randomly generated values
between 0 and 1 used to introduce stochasticity in the algorithm. Its position update
equation remains unchanged, while the velocity update equation is as follows:

vt+1
i = ωvti + cr1(pbest

t
i −X t

i ) + c2r2(nbest
t
i −X t

i ) (3)

Equation (1) defines the velocity update mechanism in the PSO algorithm, comprising
of three key components. The initial step entails the product of the inertia weight and the
particle’s existing velocity, governing the impact of the particle’s current velocity on its
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movement direction. This component helps balance local exploitation and global explo-
ration. The second component is the particle’s self-awareness, representing the particle’s
memory of its own experience. Its purpose is to preserve diversity among the swarm mem-
bers and avoid the algorithm becoming trapped in local optima. The third component
is the social awareness, representing the sharing of information and cooperative behavior
among particles. It allows particles to benefit from the collective experience of the swarm,
leading to improved convergence speed of the algorithm.

The PSO algorithm finds extensive use in fields like engineering due to its inherent
advantage of having a concise parameter configuration. However, determining the opti-
mal parameters becomes challenging as they are random variables and lack clear theo-
retical guidance. Researchers often resort to trial and error to adjust parameter values
when solving different optimization problems, leading to increased experimental work-
load. Therefore, parameter research in PSO holds significant theoretical importance. As
an example, let’s consider the introduction of a linearly decreasing inertia weight strategy.
In the early stages of evolution, a larger inertia weight enables particles to possess strong
global exploration capabilities, extensively searching the solution space to discover new
regions. During the iteration process, the inertia weight gradually decreases, enabling par-
ticles in the later stages to perform intricate exploration around the optimal solution and
attain enhanced precision. This decreasing inertia weight strategy can be mathematically
represented by Equation (4).

ω = ωmax −
ωmax − ωmin

Tmax

× t (4)

Here, ωmax and ωmin correspond to the upper and lower bounds for the inertia weight.
On the other hand, Tmax denotes the maximum number of iterations, and t denotes the
current iteration count.

Here the flowchart of the PSO algorithm is shown as Figure 1.

2.2. Mathematical model. In practical structural optimization design, applying math-
ematical optimization methods involves the following steps: First, a mathematical model
is constructed, followed by structural analysis and model validation to address real-world
engineering optimization problems. Expressing the structural optimization design prob-
lem in mathematical language is a crucial step, as it forms the basis for establishing the
mathematical model of structural optimization. The constructed mathematical model
must accurately reflect the actual loading conditions experienced by the engineering struc-
ture under optimization. Thus, constructing an appropriate mathematical model stands
as one of the most pivotal steps in solving optimization problems. When dealing with
practical engineering structural optimization problems, the number of design variables is
constrained by the dimensionality of the optimization model. Assuming there are n design
variables, these variables can be effectively represented as a vector, with each coordinate
in the vector serving as an individual element and a distinguishing factor for different op-
timization strategies. Consequently, the optimization problem for the n design variables
can be expressed using Equation (5):

x = [x1, x2, . . . , xn]
T (5)

In practical engineering optimization, design variables must conform to specific rules
called constraints. These constraints cover a range of requirements including local stabil-
ity, frequency, stiffness, strength, and other factors that ensure the optimized structure
functions effectively. Additionally, constraints include design specifications and opera-
tional requirements for the structure’s usage. In the mathematical model of structural
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Figure 1. Flowchart of Particle Swarm Optimization Algorithm

optimization design, constraints are divided into two forms: equality constraints and
inequality constraints. The mathematical expressions are as follows:

gi(x) ≤ 0, i = 1, 2, . . . , p (6)

hj(x) = 0, j = 1, 2, . . . , q (7)

Moreover, we can employ an objective function that integrates the design variables to
articulate the desired goals. The numerical output of the objective function serves as a
direct measure for evaluating the effectiveness of design solutions. Thus, the careful selec-
tion of a suitable objective function holds paramount importance in achieving successful
structural optimization design. In the case of optimizing a practical structure with n
design variables, the objective function can be mathematically represented as follows:

f(x) = f(x1, x2, . . . , xn) (8)
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In summary, taking the objective function minimization as an illustration, the op-
timization problem for an engineering structure can be formulated using the following
mathematical expression: 

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . , p

hj(x) = 0, j = 1, 2, . . . , q

(9)

For a practical engineering structural optimization problem, the optimal solution is
obtained when the objective function f(x) is minimized while satisfying the structural
constraints. In this case, the design variables x = [x1, x2, . . . , xn]

T obtained through the
search represent the optimal solution to the problem.

3. Multimodal multi-objective optimization algorithm based on ring topology
and neighborhood perturbation.

3.1. Ring Topology. The ring topology in PSO has proven to be effective in controlling
information propagation speed and algorithm convergence rate, as shown in Figure 2. In
this topology, each particle communicates with its two neighboring particles and updates
its position based on the best position within its local neighborhood. The local PSO
within the ring topology encourages stable niching behaviors, leading to the discovery of
more optimal solutions. In order to promote population diversity, this study employs a
non-overlapping ring topology based on indices to enhance the algorithm’s exploration
ability in seeking optimal solutions. For instance, in Figure 2, let’s consider a particle
swarm with 10 particles. These particles form a ring structure based on their indices,
with every three adjacent particles forming a neighborhood. For example, particles with
indices 1, 2, and 3 are neighbors, particles with indices 4, 5, and 6 are neighbors, and so
on. In this way, multiple parallel niches are formed. Compared to PSO with overlapping
neighborhood structures, the niches in the non-overlapping ring topology are independent
of each other. This allows them to conduct detailed local searches within their respective
regions, avoiding interference between different optimal solutions in different neighbor-
hoods. Consequently, the non-overlapping ring topology further enhances population
diversity and search accuracy.

3.2. Introduction of Conversion Probability. Balancing global exploration and lo-
cal exploitation becomes more intricate due to the mapping between the decision space
and the objective space. To address this, this paper draws inspiration from the con-
cept of global and local pollination transformation probabilities in the Flower Pollination
Algorithm. A higher transformation probability improves the algorithm’s global search
capability and population diversity but may reduce search accuracy. In contrast, a re-
duced transformation probability allows for finer adjustments at the local level but runs
the risk of getting stuck in local optima.

To address the trade-off between global and local search, this research introduces a
linearly decreasing transformation probability approach. During the algorithm iteration,
the particle’s position update strategy adjusts the search mechanism between global and
local search. In the initial search stages, a larger transformation probability, denoted as
ρ, is used to explore the search space extensively. In later iterations, a smaller trans-
formation probability, ρ, is employed to thoroughly search a specific region and achieve
higher precision solutions. This approach effectively addresses the challenge of balancing
the algorithm’s exploration and exploitation capabilities. The adjustment formula for the
transformation probability, ρ, can be expressed as:
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ρ = ρmax −
ρmax − ρmin

tmax

t (10)

Here, ρmax and ρmin represent the maximum and minimum transformation probabilities,
typically set to 0.95 and 0.4, respectively. tmax and t denote the maximum number of
iterations and the current iteration count, respectively.

3.3. Stagnation detection strategy. The local pattern PSO weakens the influence of
the global best particle during the evolution process, where a particle’s state is led by its
best neighbor particle. Once a particle gets trapped in a local optimum, it may cause other
individuals in the same neighborhood to stop moving and remain stagnant in the search
space. To guide particles to escape local optima and prevent a decline in optimization
performance, a stagnation detection strategy is introduced. The strategy utilizes local
search methods to improve the quality of obtained solutions. Before each particle update,
the current best neighbor nbestti is compared with the previous generation’s best neighbor
nbestt−1

i . If the current best neighbor nbestti is better than the previous best neighbor
nbestt−1

i , the stagnation factor ζi of the i-th particle is set to zero. If it does not show
improvement, ζi is increased by 1. The formula is shown as follows:

ζi =

{
ζi + 1, nbestti = nbestt−1

i

0, otherwise
(11)

When the local optimum does not improve for N consecutive iterations (ζi ≥ N), it
indicates that the algorithm may be in a stagnant state. To avoid this phenomenon, a
Gaussian disturbance strategy is applied to the best neighbor particle nbestti, resulting in
a new local optimum position nbestti. The update equation is given as follows:

nbestti = nbestti(1 +G(σ)) (12)
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where G(σ) represents a random number that follows a Gaussian distribution.

4. Experiments and analysis of results. To validate the efficacy of the proposed
modified particle swarm optimization (MPSO) algorithm, two sets of experiments were
performed. In the first set, we compared PSO algorithms using overlapping and non-
overlapping ring topologies to assess the performance improvement of the non-overlapping
ring topology. In the second set, MPSO was benchmarked against four established multi-
modal multi-objective optimization algorithms to evaluate its performance. All simula-
tions in this section were implemented on a computer using MATLAB 2017b software.

4.1. Performance indicators. This paper uses two metrics, PSP (Pareto Set Proxim-
ity) and HV (Hypervolume), to evaluate the algorithm performance. PSP is employed to
measure the resemblance between the obtained Pareto set and the true Pareto Set (PS).
A higher PSP value signifies a closer proximity of the algorithm’s PS to the true PS and
signifies a superior distribution. The calculation formula for PSP is shown below:

PSP =
CR

IGDX
(13)

To measure the overall performance of each PSP algorithm, a performance score is
introduced for ranking. Let there be l algorithms: Alg1, Alg2, . . . , Algl. If Algj exhibits
significantly better performance in terms of the PSP measure compared to Algi, the
score δi,j is assigned as 1; otherwise, it is assigned as 0. The calculation formula for the
performance score of Algi is depicted in Equation (14).

P (Algi) =
I∑

j=1,j ̸=i

δi (14)

Among them, CR represents the coverage rate of the obtained PS compared to the
true PS. The indicator IGDX (Inverted Generational Distance) assesses the diversity
and convergence of solutions in the decision space. The calculation formula for IGDX is
shown below:

IGDX(O,P ∗) =

∑
v∈P ∗ d(v,O)

|P ∗|
(15)

Here, O denotes the Pareto set acquired through the multi-modal algorithm, P ∗ signifies
a set of reference points that are uniformly distributed across the true Pareto set. The
term d(v,O) denotes the minimum Euclidean distance between a point v in the reference
set and a point in the solution set O.
The HV indicator represents the size of the hypervolume enclosed by the Pareto Front

(PF) obtained by the algorithm and a set of reference points. HV can effectively as-
sess both convergence and diversity of the algorithm, with a larger HV value indicating
superior overall performance.

4.2. Comparison between overlapping and non-overlapping ring topologies. To
assess the algorithm’s efficacy with a non-overlapping ring topology, a comparative anal-
ysis was conducted using five multi-modal multi-objective test functions (MMF1, MMF3,
SYM-PART simple, SYM-PART rotated, Omni-test). The comparison was made be-
tween multi-objective PSO algorithms employing overlapping and non-overlapping ring
topologies. Except for the difference in particle swarm topology, the rest of the algorithm
remained the same.

Figure 3 shows the average best individual fitness values (PSP ) of the two algorithms
on each test function and displays the Pareto optimal solutions they obtained on MMF3.
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To facilitate the description, we will refer to the algorithm with overlapping ring topology
and the one with non-overlapping ring topology as MPSO-o and MPSO-n, respectively.
The results indicate that MPSO-n achieved better PSP values than MPSO-o on all
test functions except MMF1. Additionally, on the Omni-test, MPSO-n obtained a more
uniform and widely distributed set of optimal solutions, indicating that the solution set of
MPSO-n is closer to the true Pareto optimal set and exhibits better diversity. Therefore,
it can be inferred that the non-overlapping ring topology is effective in improving the
algorithm’s performance. This improvement can be attributed to the independent and
parallel local search in each small habitat of the non-overlapping ring topology. This
structure prevents certain non-dominated solutions from quickly dominating the entire
population and enables a finer search in the region where the optimal solutions are located.
Therefore, employing a non-overlapping ring topology demonstrates a beneficial effect on
enhancing the performance of the algorithm in multi-objective optimization scenarios.

Figure 3. PSP mean obtained by two algorithms
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4.3. Baseline comparison. The performance of the proposed MPSO algorithm was
evaluated by comparing it to other algorithms, namely Omni-optimizer, MO-Ring-PSO-
SCD, DN-NSGA-II, and TriMOEA-TA&R. These four algorithms are existing algorithms
known for effectively handling multi-modal optimization problems. All algorithms were set
with a maximum evaluation count of 80000 and a population size of 800. Each algorithm
was independently run 30 times.

Table 1. The average and standard deviation of PSP measures for 5 algorithms

Test function
Algorithm

Omni-optimizer
MO-Ring-
PSO-SCD

DN-NSGA-II
TriMOEA-
TA&R

MPSO

MMF1 46.18±6.05 59.37±2.80 38.41±5.05 8.74±2.63 68.61±2.03
MMF3 68.95±40.25 124.16±10.75 63.23±21.55 57.57±16.18 129.00±13.75
SYM-PART simple 0.85±4.03 9.39±1.56 0.69±0.93 18.36±2.78 9.46±1.04
SYM-PART rotated 2.88±3.41 10.06±1.28 5.53±6.88 8.33±5.65 14.15±0.86
Omni-test 0.72±0.37 8.95±0.56 1.76±0.30 13.72±0.43 8.54±0.13

Tables 1 and 2 provide the average and standard deviation values of the PSP measure
and HV measure for the five algorithms on each test function. It is observed from Table
1 that MPSO consistently achieved the highest PSP values across all five functions. This
indicates that the proposed algorithm generated solutions that were closer to the true
Pareto set and had better distribution in most test functions. Notably, TriMOEA-TA&R
exhibited the highest average PSP value for SYM-PART simple and Omni-test, followed
by MPSO and MO-Ring-PSO-SCD. This could be attributed to TriMOEA-TA&R in-
corporating distance-related and position-related variables while maintaining diversity in
both the objective and decision spaces. Examining the data in Table 2, it can be ob-
served that the five algorithms obtained comparable HV values for each test problem.
MPSO achieved the highest HV value for the MMF1 test function, closely followed by
Omni-optimizer. Omni-optimizer exhibited the highest average HV across multiple test
functions. DN-NSGA-II performed well for SYM-PART simple, SYM-PART rotated, and
Omni-test. Although MPSO had slightly lower HV values compared to Omni-optimizer
and DN-NSGA-II, the difference was minimal. Given that emphasizing a satisfactory
spread of solutions in the decision space can impact their distribution in the objective
space, a marginal decrease in HV values is considered acceptable.

In conclusion, the proposed MPSO algorithm in this paper achieves high PSP values
and acceptable HV values when dealing with mathematical model structural optimization.
MPSO achieves a desirable equilibrium between the dispersion of solutions in the decision
space and the objective space. When comparing its performance to other algorithms, it
becomes clear that MPSO can simultaneously maintain diversity and convergence in the
objective space, ensuring the search for a comprehensive and evenly distributed set of
Pareto optimal solutions.

Table 2. The average and standard deviation of HV measures for 5 algorithms

Test function
Algorithm

Omni-optimizer
MO-Ring-
PSO-SCD

DN-NSGA-II
TriMOEA-
TA&R

MPSO

MMF1 3.67±3.23e-05 3.66±4.98e-04 3.66±1.54e-03 3.66±1.32e-03 3.67±3.01e-05
MMF3 3.66±6.56e-05 3.65±6.12e-03 3.65±4.87e-04 3.64±1.04e-03 3.64±4.73e-03
SYM-PART simple 1.64±3.58e-04 1.62±1.06e-03 1.66±2.36e-03 1.62±5.11e-03 1.61±1.29e-04
SYM-PART rotated 1.57±3.61e-04 1.40±2.93e-03 1.58±4.37e-04 1.44±1.89e-03 1.56±3.73e-04
Omni-test 62.27±2.16e-04 61.13±2.85e-04 62.35±3.40e-04 62.05±1.57e-04 62.17±8.16e-04



Bio-Inspired Optimization in Structural Mathematical Models 141

5. Conclusions. Building appropriate mathematical models and applying the MPSO
algorithm for structural optimization are important areas of research. This paper ex-
plores the significance of using the MPSO algorithm in engineering practice and the need
for parameter studies. The article starts by presenting the fundamental principles and
application context of the PSO algorithm. It emphasizes the difficulty of achieving a
balance between global search and local search, primarily arising from the mapping of
the decision space to the objective space. To overcome this, the article draws inspiration
from the flower pollination algorithm’s global and local pollination transformation prob-
abilities. It proposes a linearly decreasing transformation probability method to enhance
the particle’s position update strategy, thereby improving the MPSO algorithm’s global
exploration capability and accuracy. The article also introduces the strategy of linearly
decreasing transformation probability and the non-overlapping ring topology structure to
develop the MPSO algorithm. It discusses how these techniques impact the population’s
exploration capability and search accuracy. Experimental findings show that the uti-
lization of a non-overlapping ring topology structure significantly boosts the algorithm’s
performance. This structure prevents the overwhelming influence of non-dominated solu-
tions within the population, allowing for a more refined and precise search process. These
research findings have significant implications for guiding structural optimization in prac-
tical engineering. Furthermore, they lay the foundation for exploring the application of
optimization algorithms in other domains.
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