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Abstract. Using traditional manual inspection methods to identify epileptic seizure
segments in continuous electroencephalograms (EEG) is a complex and time-consuming
task. Automatic epilepsy detection techniques play a pivotal role in expediting the diag-
nosis of epilepsy. However, current research on the extraction of information from EEG
signals is insufficient, with most studies focusing solely on the temporal information
from individual channels, neglecting or inadequately leveraging the spatial relationships
among channels to extract more expressive spatial features. Some models adopt an end-
to-end architecture that simplifies the signal processing procedure, yet they overlook the
importance of the frequency domain features of EEG signals, which are pivotal for en-
hancing the precision in identifying epilepsy. This study introduces a novel approach for
epilepsy detection utilizing the multi-scale Feature Fusion Dual Graph Attention Network
(FF-DGAT), This approach innovatively addresses the challenge of underutilized spatial
relationships and frequency domain features among EEG signal channels in an end-to-
end network architecture by leveraging the feature fusion capabilities of Graph Attention
Networks (DGAT). Our model employs two parallel GATs as front-end processing units
to extract both spatial and frequency information, one for processing the raw EEG signals
and the other for incorporating the extracted frequency domain information. Moreover,
the model incorporates an Attentional Bi-directional Gated Recurrent Unit (Att-Bi-GRU)
as a back-end network, which further investigates into the temporal relationships of EEG
data, effectively enhancing the accuracy of epilepsy detection. Experiments conducted
on the CHB-MIT dataset demonstrate that FF-DGAT outperforms currently known deep
methods in epilepsy detection, with comprehensive improvements in accuracy, sensitivity,
and specificity metrics. This research introduces a novel method for utilizing the inherent
characteristics of EEG signals, thus offering a fresh perspective on the automatic detec-
tion and diagnosis of epilepsy.
Keywords: Biomedical Signal Processing; Epilepsy Detection, Electroencephalogram,
Graph Attention Network, EEG Channel Correlation, Artificial Intelligence.

1. Introduction. Epilepsy, also known as seizure disorder, ranks among the most com-
mon neurological disorders [1,2] noted for its episodic nature and lack of predictability.
While seizures associated with epilepsy often last for just a brief period, their impact on
the brain’s normal operations can be significant, and in some cases, they may lead to fatal
outcomes. Thus, it is crucial to promptly detect epileptic seizures and rapidly implement
treatment measures.

Electroencephalography (EEG) is a technique capturing the brain’s electrical activity
through scalp-placed sensors, without being invasive [3]. To date, EEG has been crucial
for identifying and managing epileptic conditions. Nevertheless, brain specialists often
need to employ visual analysis methods to distinguish between normal brain electrical
signals and epileptic seizure signals. This not only consumes substantial time and effort
but also introduces potential subjectivity and inconsistencies in interpretation among
experts. Therefore, exploring automated EEG-based epilepsy recognition offers significant
real-world benefits. Beginning in the early 1970s, automatic detection of epileptic seizures
has garnered the attention of numerous researchers. In the early stage, statistics-based
and nonlinear machine learning techniques within the realm of time domain, frequency
domain, and time-frequency domain were extensively applied for seizure detection [4]. In
recent years, the development of deep learning models has gained the upper hand with
their advantage of automatically extracting features from large datasets, and has been
favored by those researching on automatic epilepsy detection [5,6].

Common approaches include analyzing EEG data using Convolutional Neural Networks
(CNNs) [7,8] and Recurrent Neural Networks (RNNs) [9,10]. However, these methods still
fall short of adequately utilizing the spatial relationships between EEG channels. Some
studies have employed methods like Graph Convolutional Networks (GCN) to explore
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spatial information [11-15], However, there has been little innovation in the selection
of channel correlation algorithms. Therefore, there is a need for the improvement in the
extraction of spatial relationships, particularly in refining algorithms for channel adjacency
relations.

Furthermore, existing methods often neglect crucial frequency domain features, as many
GCN implementations opt for an end-to-end approach that processes raw EEG data
without distinct frequency feature extraction. This simplifies preprocessing but severely
restricts the model’s ability to utilize comprehensive frequency domain insights, which are
essential for accurate seizure detection.

Our study introduces an innovative multi-scale Feature Fusion Dual Graph Attention
Network (FF-DGAT), designed to overcome these limitations by enhancing both spatial
and frequency domain analysis. FF-DGAT integrates a novel approach for channel cor-
relation using a multi-scale feature fusion strategy. This method not only refines the
extraction of spatial relationships by employing advanced algorithms for defining channel
adjacency but also emphasizes the incorporation of frequency domain features into the
model’s architecture. The FF-DGAT method has demonstrated superior performance
over existing deep learning models by effectively capturing and integrating these multidi-
mensional features, thereby improving the accuracy and reliability of automatic epilepsy
detection systems.

1.1. Related Work. Research into epilepsy detection using deep learning models has
surged since 2016. CNNs [16,17] and RNNs, including Long Short-Term Memory networks
(LSTMs) [18,19] and Gated Recurrent Units (GRUs) [20], have attracted considerable
interest. For instance, Chen et al. achieved an accuracy of up to 96.67% in detecting
epileptic seizures on a private dataset using a 3-layer GRU network. Some researchers
have found that combining CNN with RNN can process epilepsy data more efficiently,
leading to the proposition of a CNN-LSTM architecture [21,22].

However, merely analyzing EEG data from time series alone can be inadequate. Fre-
quently, investigators neglect the inter-channel spatial relationships in EEG data, poten-
tially leading to the omission of vital spatial correlations among electroencephalographic
signals [23,24]. Some endeavors have attempted to integrate spatial relationships between
EEG channels [25-30]. Acharya et al. [25] and Vidyaratne et al. [26] incorporated spatial
information into EEG using Deep Convolutional Neural Networks (DCNN) and Deep Re-
cursive Neural Networks (DRNN), respectively. Chen et al. pioneered the use of Graph
Convolutional Networks (GCN) for epilepsy signal analysis to mine spatial information
between channels [29]. Moreover, Covert et al. introduced the Time Graph Convolutional
Network (T-GCN), an innovative approach that transforms input time series into a graph
structure, efficiently combining EEG’s time-based and spatial details [27]. In addition,
Wei et al. and Zeng et al. employed 3D-CNN models and hierarchical GCN models,
respectively, to further enhance epilepsy detection performance [28,30]. Notably, Zhao et
al. were the first to employ the Graph Attention Network (GAT) [31] to allocate attention
coefficients between channels.

However, these approaches primarily focus on spatial information and frequently use
an end-to-end network architecture that processes raw EEG signals without extracting
frequency domain features, limiting the model’s capacity to capture information from
the frequency spectrum. In addition, the calculations of spatial information by these
approaches rely mainly on spatial distance measures, such as Euclidean Distance, and
amplitude-based methods, such as Pearson correlation, both of which overlook the com-
plexity of EEG signals. Channels not only have distance but also frequency, phase, and
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other attributes. Moreover, temporal context around a specific point in the EEG signal
is often not considered.

Our proposed method directly addresses these shortcomings by incorporating both
spatial and temporal information through the use of a Dual Graph Attention Network
(DGAT). By leveraging attention mechanisms and multi-scale features, we capture spa-
tial relationships while incorporating frequency domain characteristics, thus ensuring a
comprehensive extraction of EEG signal information.

1.2. Motivation and contribution. 1) The extraction of EEG spatial information by
validating and adopting a Wavelet Correlation algorithm for EEG channel correlation
extraction and constructing GAT to improve the utilization of EEG spatial information.

2) The methodology enhances the extraction of frequency domain details by integrating
PSD, band power, and peak frequency measurements, supplemented by the incorporation
of DGAT modules.

3) The proposal of FF-DGAT, a novel deep neural network framework for epileptic
seizure detection, by concatenating Dual GAT and Att-Bi-GRU.

This paper initiates with an introduction of the study and a literature review, proceeds
to elucidate the FF-DGAT approach in depth, presents the outcomes of experiments along
with their interpretation, and wraps up by achievements, limitations and future works.

2. Materials and Methods.

2.1. FF-DGAT Framework. Figure 1 shows the process of the FF-DGAT framework.
Raw EEG signals first undergo a preprocessing pipeline involving filtering, electrode

re-referencing, Independent Component Analysis (ICA), and normalization, resulting in
denoised input data. This preprocessed data forms the basis of a distinct graph struc-
ture, in which each EEG channel data, raw or processed, represents a graph node, while
correlations between channels form the graph’s edges. This graph structure enables the
exploration of temporal, spatial and frequency representations of EEG signals and facili-
tate the effective extraction of features via the DGAT module.

The DGAT module, an enhanced version of the GAT, handles two graphs concurrently.
One GAT branch processes a raw EEG-based graph, while the other focuses on a graph
that incorporates frequency-based features like Power Spectral Density (PSD), Discrete
Fourier Transform (DFT), and frequency band power. The dual branches of DGAT
comprehensively capture spatial temporal and frequency information through an attention
mechanism that effectively weighs the edges between nodes. The features extracted from
the two branches are then fused through an averaging operation to form a comprehensive
multi-scale feature vector.

Finally, this fused feature vector is fed into an Attentional Bi-directional Gated Re-
current Unit (Att-Bi-GRU) module, which focuses on the temporal dependencies of EEG
signals. By assigning appropriate weights to different time points, the Att-Bi-GRUmodule
enhances the precision of temporal information extraction. The new features generated
are then classified via a densely connected layer to detect epilepsy seizures effectively.

The function of the graph structure module is firstly to capture the spatial-temporal and
frequency features of EEG data, and secondly, to lay the groundwork for the subsequent
application of GAT modules, which enables the training of GAT to be possible.

Figure 2 illustrates the construction of the graph structure. As mentioned at the start
of this section, each node of the graph corresponds to an EEG signal channel, and the
correlation (or similarity) between channels is depicted by the graph’s edges. Note that
the edge formulations in both graphs are identical, that is, the inter-channel similarity
is initially determined by employing a Wavelet Correlation algorithm, and subsequently,



FF-DGAT for Epileptic Seizure Detection Based on EEG Channel Correlation 175

(a) FF-DGAT framework

(b) FF-DGAT algorithm flow chart

Figure 1. FF-DGAT epilepsy detection framework

connections are formed between nodes when inter-channel similarity measures exceed
a certain threshold. However, the node construction methods in the two graphs are
essentially different. In the upper branch of Figure 2, raw EEG channel data is directly
stored as nodes in the graph structure without any modifications, while in the lower branch
of the graph structure, nodes are formed through frequency-related feature extraction on
raw EEG channel data, including features extracted through Discrete Fourier Transform
(DFT), Power Spectral Density (PSD) features on five key brainwave bands(delta, theta,
alpha, beta, gamma), frequency band power features, and peak frequency features.

2.2. Data Preprocessing and Feature Extraction. In this research, EEG data col-
lection was performed through channels following the international 10-20 electrode place-
ment system. These multi-channel recordings are noise-contaminated due to external
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Figure 2. Two types of graphs

interferences like eye movements, heartbeats, and blinks. To improve signal clarity and
interpretation, we undertook specific pre-processing steps.

1. The EEG signals are passed through a band-pass filter, constraining the frequency
range from 1Hz to 40Hz. This process effectively filters out or minimizes interference and
irrelevant elements.

2. A re-referencing technique is employed to adjust the reference electrode of the EEG
signals. The primary objective of this technique is to diminish certain offsets or common
reference effects present in the signals, thereby augmenting their interpretative power.

3. Independent Component Analysis (ICA) is leveraged to remove noise resulting from
eye movements and limb activities.

4. Z-score normalization is utilized to standardize the signal magnitude. The formula
is as follows:

Xnormalization =
x− µ

δ
(1)

Once the EEG data is preprocessed, we start to identify critical frequency domain
characteristics contained in EEG data, such as Power Spectral Density (PSD), band
power, and peak frequency. We carefully choose these attributes because they disclose
vital details of the frequency domain pertinent to epilepsy, highlighting shifts in energy
distribution across distinct frequencies and modifications in the main frequency elements.

1) Power Spectral Density (PSD) PSD illustrates how a signal’s power is distributed
among different frequency bands, showcasing how energy is allocated within the frequency
spectrum. Through PSD analysis, we can detect unusual patterns of energy distribution in
EEG data during seizures, which supports the diagnosis and tracking of epilepsy. Calcu-
lating PSD for each channel requires first applying the Discrete Fourier Transform (DFT)
to raw EEG data. The DFT’s equation is presented as follows:

F (f) =
N−1∑
n=0

f(n) · e−j 2π
N

kn (2)

where F (f) is the frequency domain signal after DFT, f(n) represents the time-domain
discrete signal. N signifies the overall count of signal samples, and k is the frequency
index.

Subsequently, the PSD at each frequency is calculated, with the following formula for
PSD:

P (f) =
1

N
|F (f)|2 (3)
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where F (f) is the Fourier transform of the EEG signal, N is the length of the signal, and
|F (f)|2 is the squared magnitude of the Fourier transform result.

2) Band Power Dividing the EEG signal into specific frequency bands, such as delta,
theta, alpha, and beta waves, enables the analysis of various brain activity patterns. Since
epileptic seizures often accompany significant changes in power within certain frequency
bands, analyzing the power of specific bands can help identify EEG patterns related to
epilepsy, thereby enhancing the accuracy and specificity of epilepsy detection.

B =

f2∑
f1

P (f) (4)

where f1 and f2 represent the lower and upper frequency limits of the band considered,
respectively.

3) Peak Frequency Peak frequency refers to the frequency where the power spectrum
attains its maximum power, signifying the most dominant frequency component of the
EEG signal. During epileptic seizures, the peak frequency may change. By tracking
these fluctuations, the initiation and end of epileptic seizures can be more accurately
pinpointed, particularly for seizures that manifest subtly or at their inception, which may
elude detection by conventional time-domain analytical approaches.

Fpeak = argmaxfP (f) (5)

where argmaxf represents finding the frequency that maximizes P (f) across all fre-
quencies.

In summary, focusing on the frequency domain features of EEG signals, particularly
power spectral density, band power, and peak frequency, is crucial for enhancing the
accuracy and sensitivity of epilepsy detection. Therefore, these three features are carefully
chosen and then extracted and fused into the graph’s nodes.

2.3. EEG Channel Correlation Analysis Methods. During the EEG signal acqui-
sition process, different channels will produce distinct voltage fluctuations at the same
time point. The correlation between channels corresponding to these different channels is
pivotal to interpreting these voltage fluctuations.

Through examining works in related fields, we have discovered that researchers typ-
ically utilize Euclidean Distance or Pearson Correlation Coefficient to compute channel
correlation. Yet, there are many beneficial techniques still to be utilized, including Phase
Locking Value (PLV) and wavelet coherence. PLV is employed to assess the phase sta-
bility and synchrony in the interactions between two signals, while wavelet coherence
provides a unique approach by evaluating the inter-relation of two signals across various
frequencies, pinpointing areas with high shared power and consistent phase over time.
Thanks to wavelet analysis’s ability to capture signals at different frequency scales, it can
intricately unveil interactions between channels across multiple frequencies, rendering it
advantageous for EEG signal analysis.

This study selected the aforementioned four algorithms, namely Euclidean Distance,
Pearson Correlation Coefficient, PLV, and Wavelet Correlation, for channel correlation
computation. Through comparative experiments, we aim to identify an algorithm that
offers unique advantages in channel correlation analysis and apply it as an improved
algorithm in the experiments presented in this paper. Next, we look at four correlation
algorithms in detail:
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1) Euclidean Distance Euclidean Distance measures the geometric difference or absolute
distance between two channels. It doesn’t involve signal correlation, frequency charac-
teristics, or phase information and purely judges based on spatial distance. For two
n-dimensional vectors x and y, one can calculate the Euclidean Distance by the formula:

D =

√√√√ n∑
i=1

(xi − yi)2 (6)

2) Pearson Correlation Coefficient Contrasting with Euclidean Distance, the Pearson
Correlation Coefficient stands as a foundational approach for determining the linear corre-
lation between two signals. This approach determines if the temporal evolution patterns of
two signals are alike, offering a direct insight into their linear correlation. The calculation
formula is as follows:

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY

(7)

3) PLV - Phase Locking Value
PLV emphasizes evaluating the phase consistency between two signals. Specifically,

it investigates whether the phase changes of the two signals are synchronized, providing
vital information for studying functional connections in EEG. The mathematical formula
is as follows:

PLV =

∣∣∣∣∣ 1N
N∑

n=1

ej(ϕ1,n−ϕ2,n)

∣∣∣∣∣ (8)

WhereN is the number of sample points within the time segment, ej(ϕ1,n−ϕ2,n) represents
the complex representation of the phase difference between the two EEG signals at the
nth time point. ϕ1,n and ϕ2,n respectively denote the phases of the first and second EEG
signal at the nth time point. j is the imaginary unit.

4) Wavelet Correlation
Wavelet Coherence is utilized as a technique to assess the consistency among signals

by combining information from both frequency and temporal domains to analyze signal
interactions. Compared to other methods, it not only considers the linear association of
the signals but also delves into specific frequency components, offering a multi-dimensional
perspective.

Wx(t, f) =

∫ +∞

−∞
x(u) · θ∗t,f (u)du (9)

CWxy(t, f) =

∫ t+ θ
2

t− θ
2

Wx(τ, f) ·W ∗
y (τ, f) (10)

Where Wx(t, f) represents the wavelet transform value of signal x(u) at time t and
frequency f . x(u) denotes the original signal, where u is the time variable, and θt,f (u) is
the wavelet function, dependent on time t and frequency f .
CWxy(t, f) represents the wavelet coherence between two signals x and y at time t and

frequency f . Wx(τ, f) and Wy(τ, f) respectively represent the wavelet transform values
of signals x and y at time τ and frequency f . θ is the width of the window.
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2.4. Feature Extraction Network.
1) Dual Graph Attention Network [19, 20]
We have opted for two parallel GAT models to explore the spatial relationships among

EEG signal channels. Both models share the same structural configuration, with the sole
difference residing in the graph data they receive. One module inputs a graph with raw
EEG signals as node features, while the other module inputs a graph with node features
derived from extracted data. Through the incorporation of information from both the
time and frequency domains, the dual GAT network can examine EEG data through
two distinct perspectives. This multi-faceted approach enhances the model’s ability to
understand brain electrical activity, thereby improving the efficiency and accuracy of
epilepsy detection.

The graph attention coefficient, αij, serves as the edge weight in the GAT network,
quantifying the correlation between channels. Given the often lengthy nature of EEG
time series, we employ a sliding window approach to segment the original data, ensuring
each window captures local features of the time series effectively. These segmented data
chunks are then fed into the GAT module, allowing for a more precise analysis of the
dynamic relationships between channels. The GAT module’s detailed explanation is as
follows:

Assuming there are n EEG images, denoted as S = [S1, S2, ..., Sn], each subject can be
represented by Si ∈ RN×F . Where N is the number of EEG channels for each subject,
and F denotes the vector dimension in each channel.

The input to the GAT model is a set of node features, h⃗ = {h⃗1, h⃗2, ..., h⃗N}, h⃗i ∈ RF ,
where N represents the number of nodes (EEG channels) and F represents the feature
dimension of each node. To accurately depict each node’s attributes, an initial linear
transformation is conducted by applying a weight matrix W to every node in the graph.
Following this, we compute the shared attention coefficients between each node pair:

eij = a(Wh⃗i,W h⃗j) (11)

where W ∈ RF×F ′
, α : RF ′ × RF ′ → R, i and j denote any two nodes, F represents

the input feature dimension, F ′ signifies the hidden unit weight, and eij quantifies the
importance of association between node i and node j. In our experiments, to make the
weight coefficients between different nodes more comparable, we normalize all the chosen
weights using the softmax function:

αij = softmaxj =
exp(eij)∑

k∈Ni
exp(eik)

(12)

where i, j, and k stand for any given nodes, αij indicates the weight of the edge con-
necting nodes i and j, Ni denotes all neighboring nodes around node i. The LeakyReLU
activation function is employed, and when a detailed expansion of the formula is per-
formed, it can be represented as:

αij =
exp

(
LeakyReLU (⃗aT [Wh⃗i||Wh⃗j])

)
∑

k∈Ni
exp

(
LeakyReLU (⃗aT [Wh⃗i||Wh⃗k])

) (13)

where k represents any neighboring node of i. Lastly, utilizing a multi-head attention
mechanism, we either concatenate or average the aggregated features from each head to

obtain h⃗′
i.
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h′
i = σ

(
1

K

K∑
k=1

∑
j∈Ni

αijW
khj

)
(14)

Where k stands for any head, i represents any node, and h⃗′
i represents the new node

feature, producing a new set of node features at this layer, h⃗′ = {h⃗′
1, h⃗

′
2, ...⃗h

′
N}, h⃗′

i ∈ RF ′
.

After the original EEG time series undergoes two GAT layers, a new set of node features
with spatial information is outputted. These features are then put into the subsequent
Att-Bi-GRU module for processing to yield the final classification.

Figure 3 elucidates how a channel’s feature h⃗1 is transformed into a new feature h⃗′
1

through the multi-head attention mechanism. Herein, arrows of three different colors
represent three distinct attention heads. α⃗i depict normalized attention coefficients cal-
culated by various attention heads. Features are finally aggregated from each head and

then concatenated or averaged to obtain h⃗′
1.

Figure 3. Multi-head attention mechanism in the GAT model

Figure 4. GAT network model diagram
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The above description details the process of modeling the EEG signal using Graph
Attention Network. Some advantages of using GAT can be summarized as follows:

1. Node Relationship Modeling: Effectively maps complex spatial dependencies in EEG
signals as graph structure, optimizing spatial feature expressiveness.

2. Adaptive Attention Mechanism: Learns contextual node significance, enhancing
focus on epileptic-related features.

3. Multi-head Attention Mechanism: Parallel computation of multiple attention weights,
capturing diverse node relationships, beneficial for multi-band, multi-scale EEG analysis.

2) Attention-based Bidirectional Gated Recurrent Unit
The choice of a Bidirectional Gated Recurrent Unit (Bi-GRU) for EEG signal processing

is pivotal due to its capacity to capture the full context of EEG signals, encompassing
both forward and backward sequential relationships. The dual-directional design and
gate mechanisms of the Bi-GRU facilitate pinpointing sequences linked with the onset
and cessation of the pathological condition, or indicating its progression. Consequently,
the bi-directionality of Bi-GRU ensures that the model comprehends the context from
both directions, aiding in a comprehensive understanding of epilepsy features within EEG
signals. Following the processing of each sliding window by GAT, the extracted features
are relayed to the Bi-GRU module. The Bi-GRU module allows the model to additionally
derive time-related information from the EEG data and produce novel features. These
features are then processed through a fully connected layer, employing an activation
function, for epilepsy detection.

Given that the Bi-GRU yields the ”degree of influence” among the output information
at each time step uniformly, we considered connecting an attention layer after the Bi-
GRU layer. This attention layer allocates a weight for each time step, with the weight
symbolizing the importance of that step in the epilepsy signal detection task. Let H
be the matrix composed of output vectors, and T be the number of time steps. For

the output H = [h⃗1, h⃗2, h⃗3, ...h⃗T ] of the Bi-GRU layer, the attention weights α can be
calculated using the following formula:

M = tanh(H) (15)

α = softmax(wTM) (16)

r = HαT (17)

Where w is the training parameter vector, w is dotted with M , and combined with
softmax to ensure all attention weights sum to 1. r, as the context vector, captures the
weighted information of the entire input sequence.

h∗ = tanh(r) (18)

Then one can obtain h∗ through the hyperbolic tangent function of r. The output of the
hyperbolic tangent function is limited to the interval between -1 and 1. This is beneficial
for stabilizing model training as it can prevent gradient explosion.

Subsequently, the context vector h∗ is passed through a fully connected layer to convert
its output dimension to 1, using the sigmoid activation function to determine the prob-
ability of the positive class. This probability is compared with a predefined threshold to
determine the final classification.

3. Experiments.
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(a) GRU unit internal structure (b) Bidirectional GRU model with Attention

Figure 5. Intrinsic architecture of GRU and comprehensive configuration of Att-
Bi-GRU

3.1. Experimental Preparation.
1) Dataset
For our research, we chose the CHB-MIT dataset, an EEG dataset that is openly ac-

cessible and was jointly created by the Massachusetts Institute of Technology (MIT) and
Boston Children’s Hospital (CHB). This dataset comprises long-term electroencephalo-
gram recordings of 24 patients diagnosed with epilepsy. Out of the 24 patients, datasets
for 22 individuals comprises EEG recordings from both seizure and non-seizure periods,
with the length of each recording varying from 20 minutes to several hours. Data col-
lection was carried out through 23 channels in accordance with the international 10-20
system for electrode arrangement, augmented by an extra reference electrode. Each EEG
recording was sampled at a rate of 256Hz. The CHB-MIT dataset displays a wide range
of diversity, encompassing differences in patient age (from 1.5 to 22 years), gender, and
epilepsy classification. Hence, any findings derived from this dataset possess significant
generalizability.

2) Experiment Design
EEG recordings of 22 patients are labeled from CHB01 to CHB22. Each EEG recording

captures information from 23 channels, named as follows: “FP1-F7”, “F7-T7”, “T7-P7”,
“P7-O1”, “FP1-F3”, “F3-C3”, “C3-P3”, “P3-O1”, “FP2-F4”, “F4-C4”, “C4-P4”, “P4-
O2”, “FP2-F8”, “F8-T8”, “T8-P8-0”, “P8-O2”, “FZ-CZ”, “CZ-PZ”, “P7-T7”, “T7-FT9”,
“FT9-FT10”, “FT10-T8”, and “T8-P8-1”.

3) Experimental Details
We constructed graphs for each patient’s EEG data, considering the 23 channels as the

graph’s nodes. We chose the Wavelet Correlation method, instead of other approaches
like Pearson’s correlation coefficient, Euclidean Distance, and PLV, in gauging the de-
gree of inter-channel correlation. Consequently, we created graphs encapsulating spatial
relationships, which then served as the input for the front-end network DGAT.

As raw EEG data are typically lengthy, to capture spatial features more effectively, we
utilized a sliding window of one-second duration to segment the 23 channels. Given the
paucity of seizure windows in the raw data, we set the sliding window’s overlap rate at
0.5. Our design involved a two-layer GAT structure, with the first layer encompassing
four attention heads, processing each sliding window input. Multi-head attention mech-
anisms compute features between each channel and its neighbors, deriving normalized
attention coefficients. These coefficients assign diverse weights to each channel, facilitat-
ing information aggregation across channels. By weighted integration of this information,
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Figure 6. International 10-20 standard electrode

each channel’s features are updated and subsequently fed into the second GAT layer,
encompassing eight attention heads, to generate outputs.

As of post GAT module processing, features enriched with spatial information are in-
put into the Att-Bi-GRU module to extract temporal features. Through Att-Bi-GRU’s
bidirectional feature capturing and attention-weighting mechanism, new features are ex-
tracted and finally undergo binary classification.

For data preprocessing, we applied ICA to remove artifacts and Z-score normalization
to standardize data features, making them suitable for neural network training. ICA was
chosen for its effectiveness in removing eye blink artifacts and other noise signals, while
Z-score normalization ensured consistent data scaling.

The EEG data dimensions for each window are 23× 256. The model was trained using
a batch size of 64 for 100 epochs with a learning rate of 0.001. We chose the Adam
optimizer for its stability and speed in converging, and focal loss was used as the loss
function due to its suitability for sample imbalance problem.

The experimental code was developed using Python 3.8.0, built upon the PyTorch
Geometric library, which is an extension of the deep learning framework PyTorch. The
experiments were conducted on a platform running the Windows 10 operating system,
equipped with a GeForce RTX 3090 GPU and an i5-12400 CPU, supported by 32GB of
RAM.

4) Optimizer and Training Strategy
We chose the Adam optimizer for model parameter updates with an initial learning rate

of 0.0001. To further enhance the model’s generalization capabilities, we incorporated
a learning rate decay strategy. In particular, should there be no enhancement in the
model’s accuracy on the validation set after 10 successive epochs, the learning rate will
be adjusted to a tenth of its initial value. Hyperparameters β1, β2, and ϵ are set to
0.9, 0.999, and 1e−8, respectively, signifying the exponential decay rates for the first
and second-moment estimates, and a nominal constant for ensuring numerical stability.
We employed the dropout technique in both GAT and Att-Bi-GRU with a rate of 0.5.
Considering training stability and computational efficiency, we select a batch size of 32
for training. The early stopping strategy is activated when validation does not improve
over 20 consecutive epochs. Furthermore, we applied a ten-fold cross-validation method
to ensure the accuracy and trustworthiness of our results.
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5) Evaluation Metrics
1. Accuracy : This represents the ratio of samples predicted correctly by the model to

the total number of samples. It is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

where TP, TN, FP, FN denote True Positive, True Negative, False Positive, and False
Negative, respectively.

2. Sensitivity (True Positive Rate, TPR): This represents the proportion of actual
positive samples that are predicted correctly. It is calculated as:

Sensitivity =
TP

(TP + FN)
(20)

3. Specificity (True Negative Rate, TNR): Represents the proportion of actual negative
samples that are predicted correctly. It is calculated as:

Specificity =
TN

(TN + FP )
(21)

4. F1-score: Provides a comprehensive evaluation that simultaneously considers both
precision and recall.

Precision, also termed as the positive predictive value, indicates the percentage of
correctly predicted positive instances among all instances predicted as positive. The
calculation formula is:

Precision =
TP

TP + FP
(22)

Recall (Recall): Represents the proportion of actual positive samples that are predicted
as positive. It is calculated as:

Recall =
TP

TP + FN
(23)

The F1-score is then calculated as:

F1 = 2× Precision×Recall

Precision+Recall
(24)

3.2. Channel Correlation Algorithm experiments. The calculation of the graph’s
adjacency matrix is a pivotal step, as it determines the degree to which spatial correlations
between different EEG signal channels are assessed.

We employed four methods to calculate different adjacency matrices for patients: Pear-
son correlation coefficient, Euclidean Distance, Wavelet Correlation, and phase-locking
value. Through these adjacency matrices and node features, we constructed the graph
structure of EEG data. The experiment was conducted with identical training setups
and assessment criteria to guarantee the impartiality of the comparative analysis. The
adjacency matrix calculated for patient CHB01 is illustrated in Figure 7.

The results of the experiments are shown in Table 1. Each method demonstrated no-
table efficacy. Particularly, the Wavelet Correlation algorithm yielded superior outcomes
across all measured metrics when contrasted with conventional algorithms like Euclidean
Distance and Pearson’s correlation coefficient. Moreover, while the accuracy gain was
somewhat minimal compared to PLV, there was a discernible enhancement in Specificity
and F1-score, with the specificity increasing by 2.95% and the F1-score by 3.13% relative
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Figure 7. Average adjacency matrix calculated using different correlation algo-
rithms for patient CHB01

Table 1. Results of comparative experiments on channel correlation methods

Method Accuracy Sensitivity Specificity F1-score
ED 96.69% 92.45% 94.46% 92.68%
PC 97.56% 92.77% 95.54% 93.84%
WC 99.21% 98.72% 99.50% 98.55%
PLV 98.28% 95.77% 96.55% 95.42%

to the PLV algorithm. A plausible explanation for this performance improvement is that
wavelet analysis can capture signal variations across different frequency scales. This en-
dows Wavelet Correlation with a significant advantage in capturing the intricate dynamics
of EEG signals. Therefore, in the following series of experiments, we will choose WC as
the correlation algorithm.

3.3. Experiments of Specific Patients on the CHB-MIT. We executed tailored
experiments for each individual patient using the CHB-MIT dataset. In this approach,
the EEG data from each patient were uniquely utilized to train and evaluate our model.
We assessed the EEG data from all 22 patients using five key performance indicators,
with detailed results presented in Table 2.
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Table 2. Patient-specific experiments in seizure detection tasks using the FF-
DGAT model

Patient Accuracy (%) Sensitivity (%) Specificity (%) F1-score
CHB01 99.81 100 99.66 99.20
CHB02 99.72 99.11 100 99.60
CHB03 98.89 98.55 100 98.66
CHB04 99.83 100 99 99.50
CHB05 98.81 96.55 100 98.25
CHB06 99.52 98.50 100 99.24
CHB07 100 99.93 100 100
CHB08 100 100 100 98.00
CHB09 94.87 95.17 100 96.12
CHB10 99.83 100 99 99.50
CHB11 99.2 100 95.2 97.47
CHB12 97.5 100 97.75 98.84
CHB13 96.38 93.91 91.49 94.93
CHB14 98.20 99.27 99.56 99.00
CHB15 99.38 99.44 100 99.80
CHB16 99.83 100 99 99.50
CHB17 100 98.24 100 98.78
CHB18 99.92 98.45 99.27 98.94
CHB19 98.80 96.55 100 98.24
CHB20 96.38 97.78 97.49 97.54
CHB21 100 100 100 99.66
CHB22 98.64 97.56 98.76 97.45
Mean±std 99.21±1.02 98.72±0.98 99.50±1.10 98.55±1.12

Most patients (from CHB01 to CHB22) achieved an Accuracy exceeding 98%, with
a significant number reaching beyond 99%. This indicates the model’s extraordinary
precision in detecting epileptic seizures. Additionally, the model exhibited nearly or ex-
actly 100% Sensitivity and Specificity across most patients, a testament to its efficacy in
correctly identifying genuine epileptic episodes while ruling out non-seizure events. The
F1 scores, serving as a balanced measure of precision and recall, were notably high for
most patients, demonstrating the model’s adeptness at maintaining a harmonious balance
between these two critical metrics.

While the model’s performance was predominantly exemplary, a few patients (like
CHB09, CHB13, and CHB20) showed slightly lower performance metrics, probably be-
cause of variations among individuals or the intricate nature of certain scenarios. The
mean values (Meanstd) reflected a remarkably stable performance across all patients, in-
dicated by a low standard deviation. This uniformity highlights the model’s robustness
and its consistent performance across diverse patients.

3.4. Comparative Experiments.
1) Comparison with Machine Learning Methods
Table 3 demonstrates the superiority of our model in comparison to other models.

Specifically, when juxtaposed with the traditional Wavelet + SVM method, our accuracy
improved by 2.34%, while sensitivity and specificity improved by 5.73% and 1.37%, re-
spectively. Relative to the Discrete Wavelet Transform (DWT) technique, our approach
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demonstrated an increase of 10.02% in accuracy, 10.33% in sensitivity, and 9.88% in speci-
ficity. One salient advantage of our FF-DGAT model over these conventional methodolo-
gies is its ability to learn the spatiotemporal features from EEG data, capturing intricate
associations between distinct brain regions and bypassing the complexities intrinsic to
manual feature design.

Table 3. Comparative experiments

Author Method Accuracy (%) Sensitivity (%) Specificity (%)
Chen DWT 89.01 88.39 89.62
Janjarasjitt Wavelet+SVM 96.87 92.99 98.13
Bizopoulos [17] 1D-CNN 85.30 91.55 90.31
Ahmedt LSTM 95.54 91.83 90.50
Roy [22] CNN-RNN 95.22 92.77 93.51
Chen [20] a 3-layer GRU 96.67 94.68 95.88
Chen [20] LSTM 96.82 92.31 93.67
Zhang [33] Bi-GRU 98.49 93.89 98.49
LawHern [35] EEGnet 90.54 90.16 92.85
Chen [29] GCN 98.56 98.56 97.96
Zhao [34] GAT 98.89 97.10 99.63
Covert [27] T-GCN 98.69 98.21 98.14
Wei [28] 3D-CNN 93.83 94.15 90.20
OURS FF-DGAT 99.21 98.72 99.50

2) Comparison with Deep Learning Approaches
In comparison to the CNN model introduced by Bizopoulos [17], FF-DGAT approach

yielded a commendable 13.91% higher accuracy. With respect to Zhang L’s Bi-GRU
technique [33], while our method’s accuracy marginally improved by 0.72%, there was
a significant 4.83% surge in sensitivity. When set against Chen’s three-layer GRU and
LSTM methods [20], we marked 2.54% and 2.39% enhancement in accuracy. It is apparent
that our proposed approach reliably surpasses established deep learning frameworks, in-
cluding CNN and LSTM, across key performance indicators such as accuracy, sensitivity,
and specificity.

3) Comparison with Deep Learning Methods Extracting Spatial Information
Our approach’s superiority in spatial feature extraction was highlighted when compared

against other deep learning methods emphasizing spatial information. Xiaoyan Wei’s 3D-
CNN strategy [28], although innovative in its consideration of inter-channel relationships
by treating spatial coordinates as an additional dimension, did not match up in terms of
accuracy. While Chen Xin’s Graph Convolution Network effectively acknowledges spatial
inter-channel relationships [29], it is observed that in various performance metrics, Chen
Xin’s model is slightly outpaced by FF-DGAT model. This edge in our model’s per-
formance is primarily attributed to its innovative adjacency matrix formulation, which
transcends the traditional correlation algorithms employed in Chen’s approach. Zhao’s
GAT model [34], specifically tailored for epilepsy detection, paralleled our model in ac-
curacy and specificity. However, our approach demonstrated a slight edge in sensitivity.
Notably, while Zhao’s model ingeniously incorporated attention mechanisms, it did not
adequately consider the temporal intricacies inherent in time series data and the extrac-
tion of frequency domain features.

In summary, the improvements and performance exhibited by the FF-DGAT method
are commendable. The experimental results stand testament to the efficacy of our ap-
proach in the realm of epilepsy detection.
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3.5. Ablation Experiments. To further substantiate the effectiveness of the FF-DGAT
model, an ablation study was conducted. This study compared four different methodolo-
gies: the Bi-GRU, the Att-Bi-GRU, a combination of GNN and Att-Bi-GRU, a combina-
tion of GAT and Att-Bi-GRU, and our FF-DGAT model. Each method was tested on the
CHB-MIT dataset, employing a uniform Wavelet Correlation algorithm for inter-channel
correlation assessment and identical model parameter settings. The results are detailed
in Table 4.

The standalone Bidirectional Gated Recurrent Unit (Bi-GRU), though effective to some
extent, failed to fully consider the spatial attributes of EEG signals, thus limiting its accu-
racy in epilepsy detection. The Att-Bi-GRU showed improvement in processing temporal
sequences but overlooked the importance of spatial relationships. The GNN+Att-Bi-GRU
method, attempting to merge spatial and temporal information, fell short due to its lack
of attention mechanisms within the graph neural network, resulting in inaccurate weight
distribution among channels and inadequate integration of these two types of informa-
tion. The GAT+Att-Bi-GRU [36] method effectively integrates spatial information and
utilizes attention mechanisms to allocate weights to nodes. However, due to its end-to-
end model architecture simplifying the feature extraction process, it does not operate on
the frequency domain of the original EEG signals, a crucial step in epilepsy detection.
Therefore, its performance is not as optimal as our dual GAT structure that simultane-
ously considers both the temporal and frequency aspects. In contrast, FF-DGAT model
not only integrates temporal and frequency domain information of EEG signals but also
enhances the utilization of inter-channel relationships using the graph attention network,
thereby markedly excelling beyond alternative approaches in terms of accuracy, sensitivity,
specificity, and F1-score.

Table 4. Ablation study

Method Accuracy (%) Sensitivity (%) Specificity (%) F1-score
Bi-GRU 92.57 93.21 94.58 98.03
Att-Bi-GRU 95.69 93.45 94.77 98.33
GNN+Att-Bi-GRU 97.49 93.89 97.45 98.32
GAT+Att-Bi-GRU 98.14 95.69 97.66 98.21
OURS 99.21 98.72 99.50 98.55

3.6. Hyper-Parameters Experiments. Tests were carried out to assess how the chosen
thresholds for the wavelet coherence method affect the model’s efficacy in generating the
adjacency matrix. As depicted in Figure 8, optimal outcomes were obtained with the
threshold at 0.5.

3.7. Hyper-Parameters Experiments. To evaluate the robustness of FF-DGAT, we
assessed the influence of pivotal parameters on the model’s accuracy. This included an
examination of the number of GAT layers, the quantity of attention heads, and the
dimensions of hidden units. Table 5 outlines the results.

Initially, we observed that the FF-DGAT model demonstrated a relatively low sensi-
tivity to variations in the number of GAT layers and attention heads. Fine-tuning these
parameters could marginally enhance the optimal outcomes. Specifically, the incorpora-
tion of additional GAT layers and attention heads appeared to exert a negligible effect on
the model’s accuracy. Notably, in our experimental setup, the employment of two GAT
layers resulted in an accuracy improvement of 1.60%.
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Figure 8. Effect of different thresholds on model accuracy when the threshold
value is 0.1-1.0

Table 5. Impact of parameters on accuracy

Layers of Dual GAT Heads of muti-attention Hidden size Accuracy%
1 4 64 97.32
2 4,4 64 98.93
3 4,4,4 64 98.96
2 4,4 64 98.93
2 4,8 64 98.97
2 8,8 64 99.01

2 4,4

2 53.52
4 68.83
8 78.81
16 84.93
32 98.32
64 99.21
128 99.53

In the context of multi-head attention layers, an increase in the number of heads was
found to correlate with higher accuracy. However, this escalation was accompanied by
diminishing returns regarding performance gains and a surge in computational demands.
Balancing considerations of model efficacy and computational efficiency, we ultimately
decided on the deployment of four attention heads in each GAT layer.

Furthermore, an initial augmentation in the number of hidden units was found to
substantially enhance the model’s performance, propelling it towards a more stable oper-
ational state. This can be interpreted as the insufficient number of hidden units failing
to adequately extract information, resulting in information loss. Conversely, when the
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hidden layer size reached an adequate threshold, the incremental benefits of further ex-
pansion were minimal, while the computational costs escalated exponentially. Considering
the stochastic characteristics of the training phase, our experiments utilized a setup with
64 hidden units.

4. Conclusion. This study introduces an efficient automatic epilepsy detection frame-
work, FF-DGAT, based on DGAT leveraging wavelet channel correlation and Att-Bi-GRU
networks. Within this framework, DGAT serves as a front-end network, handling raw
EEG signals and frequency domain information, to achieve a successful integration of
multi-scale features for effective epilepsy detection. Building on this, the incorporation of
the Att-Bi-GRU network further integrates temporal sequence information, culminating
in a deep amalgamation of EEG features. It is this tri-dimensional integration of EEG
features that endow the model with exceptional accuracy, specificity, and sensitivity in
epilepsy detection. Testing on the CHB-MIT dataset has demonstrated that, to the best
of our knowledge, FF-DGAT surpasses the performance of current deep learning models
documented in the literature, showcasing its cutting-edge capability in the field of epilepsy
detection.

Despite these advances, the present study is not without limitations. The computational
complexity of our model is higher than simpler deep learning models due to the incorpo-
ration of dual graph attention networks and multi-scale feature extraction. Additionally,
while our model achieves high performance on the CHB-MIT dataset, its performance on
other datasets or in real-world scenarios where EEG data may be noisier or come from
different demographics has not been thoroughly evaluated.

For future work, we plan to conduct a thorough analysis of subtle variations in EEG sig-
nals, and to improve feature extraction algorithms, such as extracting mutual information,
Shannon entropy, Sample entropy, and others, to more accurately detect subtle epilep-
tic characteristics. We also aim to enhance our model’s ability to accurately classifying
different seizure types.
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