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Abstract. Subjective judgement of EEG (Electroencephalogram) using a priori knowl-
edge and related theories is currently the dominant technical tool for diagnosing mental
health status in youth. However, this subjective judgement method is highly error-prone
and inefficient. Advanced signal processing technology, machine learning technology, etc.
provide new methods for fast and accurate intelligent mental consultation. Therefore,
an early intelligent diagnosis method based on wavelet Bispectrum and CatBoost is pro-
posed to address the problem of automatic identification of abnormal EEG information in
youth. Firstly, wavelet Bispectrum estimation algorithm is proposed by combining wavelet
and Bispectrum analysis methods for the characteristics of EEG signals. Wavelet Bispec-
trum and sparse learning are combined to achieve signal feature extraction. The sparse
learning method is used to extract sparse features at each scale to obtain a more discrim-
inative feature set. Then, a CatBoost model optimised by a genetic algorithm is proposed
and used for the EEG signal classification task. Finally, the schizophrenic clinical EEG
signals were tested as an example. The results show that the proposed diagnostic method
avoids diagnostic bias due to subjective factors or differences in judgement criteria, with
an average Sensitivity of 94.37%, an average Specificity of 88.72%, and an average Ac-
curacy of 96.33%.
Keywords: Mental health; Electroencephalogram; wavelet Bispectrum; sparse learning;
CatBoost; genetic algorithm

1. Introduction. For the diagnosis of mental health status of youth, EEG (Electroen-
cephalogram) is an important technical tool [1, 2]. EEG can reflect an individual’s func-
tional state of the brain, including information on cognition, emotion, and attention by
recording the electrical activity of the cerebral cortex. Subjective judgement of EEG
by combining a priori knowledge and relevant theories is a common diagnostic method
nowadays [3, 4].
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In subjective judgements of EEG, a priori knowledge may include psychological theory
and clinical experience of mental health conditions in young people. For example, knowl-
edge of the characteristics of mental health problems such as anxiety, depression, and
schizophrenia in EEG signals, as well as patterns of brain region activity associated with
specific mental health problems. This knowledge can help psychological counseling teach-
ers to be more astute in identifying abnormal patterns and features for higher vocational
college students and making subjective judgements [5, 6].

However, subjective judgement also has a certain degree of subjectivity and uncertainty,
so there are also a number of studies devoted to the objective processing and automated
analysis of EEG data. For example, an automated diagnostic system can be developed to
reduce the uncertainty and error of subjective judgement by combining a large amount
of EEG data and relevant mental health labels [7] through machine learning and deep
learning techniques. In the future, with the development of artificial intelligence and
data science, objectivised analysis of EEG will become an important technical tool for
diagnosing mental health conditions in youth [8, 9].

An automated diagnostic system based on machine learning can objectively analyse
EEG data, extract features related to mental health status, and correlate these features
with existing mental health labels, ultimately enabling automated diagnosis of an individ-
ual’s mental health status [10]. Machine learning algorithms can be used to process large
amounts of EEG data. Through supervised learning, the system can learn the patterns
and features in the EEG signals that are related to the mental health status, and thus
be able to automatically classify and diagnose new EEG data. Meanwhile, deep learning
techniques can be used to extract complex feature representations in EEG data, such as
time-domain and frequency-domain features in time series [11], and correlation features
between different regions of the brain. The extraction of these features is crucial for ac-
curate diagnosis of mental health states. The aim of this work is to design an automated
diagnostic technique for ECG signals with high accuracy to greatly reduce the uncertainty
and error of subjective judgement, which will help to detect mental health problems in
young people at an early stage and treat them in a timely manner.

1.1. Related Work. Automated diagnosis of mental disorders based on machine learning
is a research area of great interest and many advances have been made in recent years
[12, 13, 14]. Among them, EEG plays an important role in the diagnosis of psychological
disorders. The research in the related field is mainly divided into two aspects: (1) feature
extraction and selection (2) classification and diagnostic models.

In terms of feature extraction and selection, researchers use machine learning techniques
to explore how to extract features related to mental illness from EEG data. These features
can include features in the time, frequency, and spatial domains, as well as correlation
features between different regions of the brain. In addition, there are studies focusing
on how to select the features with the most diagnostic value to improve the accuracy
and interpretability of diagnostic models. Acharya et al. [15] explored a comparative
study of different feature extraction methods in EEG classification. The study used sev-
eral common feature extraction methods, including time domain, frequency domain and
time-frequency domain feature extraction methods, and compared the classification per-
formance. Through the experimental results, it is found that the time-frequency domain
feature extraction methods have significant advantages in classification performance and
can better exploit the time-frequency characteristics of EEG signals. Soufineyestani et
al. [16] study compares various EEG feature extraction methods such as power spectral
density, wavelet transform, etc., and uses a feature selection algorithm to select the most



Machine Learning-Based Early Intelligent Diagnosis 195

relevant features. The experimental results showed that the accuracy of EEG classifica-
tion can be significantly improved by choosing appropriate feature extraction and selection
methods. Liu et al. [17] proposed a Bispectrum based EEG feature extraction method.
The authors used Bispectrum analysis to extract phase coupling features of EEG signals
as input feature vectors. The experimental results show that the Bispectrum features can
better characterise the nonlinear dynamics of the EEG signals than the traditional power
spectrum features, and the classification performance is significantly improved.

In terms of classification and diagnostic models, researchers use machine learning algo-
rithms to build automated models for the diagnosis of mental illnesses, including Support
Vector Machines (SVM), Random Forest, XGBoost, and so on. These models can be
trained with labelled EEG data, and then classify and diagnose unknown samples, thus
enabling automated diagnosis of mental disorders. Edla et al. [18] combined the time-
frequency distribution characteristics of EEG signals to achieve automatic classification
of schizophrenic patients by Random Forest. The results showed that the model could
distinguish between normal people and schizophrenic patients, demonstrating the poten-
tial in assisting schizophrenia screening. Wang et al. [19] extracted the time-frequency
features of the EEG signals by using wavelet transform, which, combined with the clinical
assessment results, was used as the input feature vector. Then the XGBoost model was
used to classify patients with schizophrenia. The results show that compared with other
machine learning models, the classification performance of XGBoost is superior and can
effectively assist the screening and diagnosis of schizophrenia.

1.2. Motivation and contribution. Although the traditional Bispectrum features can
better characterise the nonlinear dynamics of EEG signals, they cannot well reveal the
non-smoothness of EEG signals [20]. The wavelet transform can autonomously adjust the
time window and frequency window, which can effectively extract the hidden transient
information in the signal, and is suitable for non-smooth feature extraction of EEG signals
containing noise.

In addition, the XGBoost algorithm is more favourable to deal with data with balanced
category distribution. However, in the EEG classification task, the amount of data in dif-
ferent categories is often unbalanced, which will reduce the classification performance of
the XGBoost model. In contrast, CatBoost can effectively solve the problem of cate-
gory imbalance by using category smoothing technique, which improves the classification
effect of samples from a few categories. Therefore, this work proposes an intelligent di-
agnosis method based on wavelet Bispectrum and CatBoost. The main innovations and
contributions of this work include:

(1) Aiming at the limitations of the traditional Bispectrum estimation method in the
analysis of EEG signals of brain diseases, a wavelet Bispectrum estimation algorithm is
proposed, thus effectively exploiting the advantages of the wavelet transform in analysing
non-smooth signals. The combination of wavelet Bispectrum and sparse learning is used
to achieve signal feature extraction, which lays the foundation for improving the total
recognition rate of subsequent classification and diagnosis.

(3) Although CatBoost can effectively solve the problem of category imbalance com-
pared to the XGBoost algorithm, the CatBoost model has more parameters. Therefore,
it is proposed to perform parameter optimisation by Genetic Algorithm (GA) to build
GA-Catboost model, so as to improve the stability and generalisation performance of
EEG classification and diagnosis model.

2. EEG feature extraction based on wavelet Bispectrum and sparse learning.
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2.1. Bispectrum Fundamentals. A Bispectrum is a complex-valued spectrum with
amplitude and phase [21, 22]. For a discrete-time deterministic signal, its Bispectrum is
defined as:

B(ω1, ω2) = X(ω1)X(ω2)X
∗(ω1 + ω2) (1)

where X(ω) is the Fourier transform of the signal X(t) at ω1, and X∗(ω1 + ω2) is the
conjugate function of X(ω1 + ω2).

According to the definition of Bispectrum, its main properties are as follows: 1) Bispec-
trum is a complex function, which can be expressed by amplitude Bispectrum and phase
Bispectrum.

Bx(ω1, ω2) = |Bx(ω1, ω2)|ejϕB(ω1,ω2) (2)

2) The Bispectrum appears in the dual frequency domain as a biperiodic function with
period π.

Bx(ω1, ω2) = Bx(ω1 + 2π, ω2 + 2π) (3)

3) Bispectrum has symmetry.

Bx(ω1, ω2) = Bx(ω2, ω1) = B∗
x(−ω1,−ω2) = B∗

x(−ω2,−ω1)

= Bx(ω1,−ω1 − ω2) = Bx(−ω1 − ω2, ω2)
(4)

4) If x(t) is a deterministic signal, its Bispectrum can be expressed as:

Bx(ω1, ω2) = X(ω1)X(ω2)X
∗(ω1 + ω2) (5)

If x(t) is a smooth random signal, its Bispectrum can be expressed as:

Bx(ω1, ω2) = E [X(ω1)X(ω2)X
∗(ω1 + ω2)] (6)

2.2. Bispectrum estimation algorithm. Higher-order spectral estimation is an effec-
tive method for analysing non-Gaussian signals. The Bispectrum estimation algorithm
is one of the most commonly used signal analysis methods for higher-order spectral esti-
mation [23]. In practical analysis, since the data are all of finite length, the calculation
of Bispectrum cannot precisely apply the defining equation to solve the third-order cu-
mulative quantity of the signal, and only a specific method can be used to estimate the
Bispectrum for the data of finite length. Traditional Bispectrum estimation algorithms
utilise FourierTransform (FT) for signal analysis.

Let x(n) be a third-order real smooth random sequence whose third-order correlation
function is:

Rx(ω1, ω2) = E [x(n)x(n+m1)x(n+m2)] (7)

Then the Bispectrum expression is:

Bx(ω1, ω2) =
∑
m1

∑
m2

Rx(m1,m2)e
−j(ω1m1+ω2m2) (8)

Firstly, the FFT of the sequence is calculated before finding its frequency domain
correlation signal. Let {x(0), x(1), . . . , x(N − 1)} be the test sequence and fs be the
sampling frequency. The raw data is divided into K segments, each segment contains M
samples. Repetition is allowed between segments. For each segment of data, subtract the
mean value of the segment to make each segment a zero-mean sequence [24].

Then, the discrete Fourier transform (DFT) coefficients are calculated for each sequence.

X(k)(λ) =
1

M

M−1∑
n=0

x(k)(n)e−i2πnλ/M (9)



Machine Learning-Based Early Intelligent Diagnosis 197

Based on the DFT coefficients, the Bispectrum estimation is derived separately for each
segment of data.

bk(λ1, λ2) =
1

∆2
0

L1∑
i1=−L1

L1∑
i2=−L1

X(k)(λ1 + i1)X
(k)(λ2 + i2)X

(k)(−λ1 − λ2 − i1 − i2) (10)

where λ1 and λ2 correspond to the points of ω1 and ω2 axes after DFT transformation,
and L1 denotes the number of smooth points.

Finally, the Bispectrum estimates for each segment of data are statistically averaged to
obtain a Bispectrum estimate of the signal.

BD(ω1, ω2) =
1

K

K∑
k=1

b̂(ω1, ω2) (11)

2.3. Wavelet Bispectrum estimation. The traditional Bispectrum estimation algo-
rithm uses FT for signal analysis. Since FT has limited ability to deal with non-smooth sig-
nals, the traditional Bispectrum estimation algorithm cannot reveal the non-smoothness
of the signal well. Wavelet transform can effectively extract the hidden transient infor-
mation in the signal and is suitable for non-smooth feature extraction of EEG signals
containing noise.

The wavelet Bispectrum estimation algorithm is defined as shown below:

Bw(a1, a2) =

∫
T

W ∗
f (a, τ)Wf (a1, τ)Wf (a2, τ)dτ (12)

where a is the scale factor in the wavelet, a > 0; τ is the time shift factor, Wf denotes
the wavelet transform of the function f(t) (over the time interval T : τ0 ≤ τ ≤ τ1), and
W ∗

f is the covariance function of Wf .
First, define the original data f(t), divide it into N segments and subtract the mean

of the data. Then, the continuous wavelet function, bandwidth coefficient fb and centre
frequency fc are set. The wavelet transform is performed in the set time and frequency
range to obtain the time series. In this paper, Morlet wavelet is used for wavelet transform.

Wf (a, τ) =
1√
a

∫ +∞

−∞
f(t)ψ∗

(
t− τ

a

)
dt =

〈
f(t), ψ

(
t− τ

a

)〉
(13)

ψ(t) =
1√
πfb

exp

[
i2πfct−

t2

fb

]
(14)

Finally, the wavelet Bispectrum is calculated according to Equation (12).
The wavelet Bispectrum energy entropy feature extraction algorithm adopts the theory

of ”information entropy” to describe the distribution of the matrix energy obtained after
the original data is analysed by the wavelet Bispectrum algorithm. Assuming that the
Bispectrum of the received signal is B(ω1, ω2), its energy matrix E is described as follows.

Eij =

∫ i∆ω1

(i−1)∆ω1

∫ j∆ω2

(j−1)∆ω2

B(ω1, ω2)dω1dω2 (15)

where Eij denotes the value of point (i, j) in E.
Energy entropy is defined as follows.

En = −
I∑

i=1

J∑
j=1

pij log pij, pij =
Eij

E
, E =

I∑
i=1

J∑
j=1

Eij (16)
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where pij represents the ratio of the energy of each point in the energy moment to the
total energy.

The energy entropy of wavelet Bispectrum can reflect the distribution of EEG energy
matrix to some extent. Under different brain functional states, EEG signals show different
wavelet Bispectrum structures. When the brain is in different functional states, the
wavelet Bispectrum spectral peak positions and wave amplitudes of EEG signals are
significantly different.

2.4. Sparse learning. Sparse learning and wavelet Bispectrum estimation are both tools
used for feature extraction and they can be used in combination to improve the effective-
ness of feature extraction. Sparse learning is a method based on sparse representation
[25], which can be used to extract sparse features from data. Through robustness and ro-
bustness, sparse learning is able to extract discriminative features from high dimensional
data. This can make full use of the local and frequency features extracted by wavelet
Bispectrum estimation, and then sparse learning can be used to further extract sparse
features to better characterise the EEG data.

Firstly, for each EEG signal, scale decomposition is performed using Equation (12) and
Equation (16) to obtain the subband signals at different scales.
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Figure 1. Feature selection based on sparse learning

Then, a sparse representation of the subband signals at each scale is performed, as
shown in Figure 1. Here in this paper, Lasso regression with L1-paradigm regularisation
is used. The sparse representation can be obtained by the following optimisation problem:

x̂ = min ∥y −Dx∥2 + λ∥x∥1 (17)

where y is the subband signal, D is the dictionary, x is the sparsity coefficient, and λ
is the regularisation parameter.

By solving the above optimisation problem, the sparse coefficient x̂ of each subband
signal is obtained. Based on the obtained sparse coefficients x̂, feature selection can be
performed using sparsity, and the part with larger sparse coefficients is selected as the
sparse feature.

3. GA-CatBoost based EEG signal diagnostic model.

3.1. CatBoost. Similar to the XGBoost algorithm, the CatBoost algorithm is also ob-
tained by improving on the GBDT [26, 27]. The algorithm chooses a base classifier with
a fully symmetric tree, and this constraint on the tree structure also has some regularity
effect. More importantly, it makes the model inference process faster. For the classifica-
tion process of the CatBoost model, each feature split is independent and non-sequential,
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and multiple samples can be predicted together. The CatBoost algorithm has two im-
portant benefits, one is that it can handle category type features well without the need
to convert them in advance at the data processing stage. The second is the use of a
rank-boosting type approach, which reduces the prediction bias problem in the XGBoost
algorithm. CatBoost is able to significantly increase the computational rate while solving
the overfitting problem.

When the traditional gradient boosting algorithm analyses the categorical features, it
generally uses the labeled mean value of the corresponding target variable to replace the
categorical feature value in the sample set, and uses this value as the split criterion of the
nodes in the decision tree. Suppose xik denotes the i-th category feature value of the k-th
training sample, and x̂ik denotes the value used for replacement.

x̂ik =

∑n
j=1 I{xi

j=xi
k}yj∑n

j=1 I{xi
j=xi

k}
(18)

where I denotes the indicator function, i.e., indicator function is 1 if the condition in
the parentheses holds, 0 otherwise.

I{xi
j=xi

k} =

{
1, xij = xik
0, otherwise

(19)

If a nominal value is xik, and there are few records or only one record, then converting
this nominal value to a number corresponds to the label value of the record. Using such
a method will often cause overfitting problems. Therefore, it is noisy for low-frequency
categories, so the general choice is to add the priority term p and its corresponding weight
coefficient value α(α > 0) to smooth it out.

x̂ik =

∑n
j=1 I{xi

j=xi
k} · yj + α · p∑n

j=1 I{xi
j=xi

k} + α
(20)

p is usually taken as the mean of the target variable over all the data. However, such
a greedy approach is also accompanied by the risk of target information leakage, where
the target value yk of xk is used to compute x̂ik, which may also result in conditional bias,
i.e., differences in the data distributions of the training set and the test set.

The CatBoost algorithm, on the other hand, chooses a more efficient strategy, the
sorting principle, which is also the core idea of the CatBoost algorithm [28]. Firstly, all
sample data are randomly ranked. And multiple sets of random sequences are generated.
Then, for each sample in any set of sequences, the mean of similar samples is estimated.
The type characteristics of each sample data were processed by taking the mean and
converting it to a numeric variable using the category label value that ranked before that
sample, and adding the priority term p and its corresponding weight coefficient value
α(α > 0). This method can effectively reduce the noise effect of low base class features,
where the priority term p is the a priori probability of the positive class samples in the
EEG dataset in this paper. In short, it means that the calculation of x̂ik values relies on
the sample set that has been observed so far.

Let the sample dataset be D = {(Xk, Yk)}nk=1, and the number of features be m. Where
Xk = (x1k, x

2
k, · · · , xmk ), Yi is the labelled value of the target variable. Randomly sort the

samples in D and generate multiple sets of sequences, where any set of random sequences
σ, σ = (σ1, σ2, · · · , σn), is replaced by xiσp

, as follows.
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x̂iσp
=

∑p−1
j=1 I{xi

σj
=xi

σp
}yj + α · p∑p−1

j=1 I{xi
σj

=xi
σp

} + α
(21)

The CatBoost algorithm combines classification features, especially high-level corre-
lations. In EEG datasets, the number of classification features increases exponentially,
making it impossible to process all combinations simultaneously. The CatBoost algorithm
solves this difficulty with a greedy combination. Without performing any combinations,
the CatBoost algorithm combines all the classification features (and their combinations)
in the current tree with all the features in the dataset, while the combinations are dy-
namically transformed into alternative values.

3.2. GA-CatBoost based EEG feature classification. Although CatBoost can ef-
fectively solve the problem of category imbalance compared to the XGBoost algorithm,
the CatBoost model has more parameters, resulting in the final classification performance
of the classifier being completely determined by the parameters.

Genetic algorithms are a class of optimisation techniques with both stochastic, parallel
and full-domain characteristics, whose individual adaptation (i.e., the objective function
of the solution problem) automatically determines and reduces the search range and scope
of the optimal parameter population. At the same time, the use of cross replication and
information mutation techniques can make the network jump out of the local search and
avoid falling into the local optimal state. The optimal solution can be efficiently derived by
performing multiple search information points simultaneously, thus obtaining the optimal
parameter set of CatBoost model and the best EEG feature classification model. The
pseudo-code of GA-CatBoost classification model is shown in Algorithm 1.

Algorithm 1 GA-CatBoost classification model

Input: EEG signals X, labels y
Output: Optimised CatBoost model

1: Preprocess EEG signals X.
2: Extract features from preprocessed signals.
3: Initialize population P of n CatBoost models with random hyperparameters.
4: Repeat for G generations.
5: for each model Mi in P do
6: Train Mi on training set.
7: Evaluate fitness Fi of Mi on validation set.
8: end for
9: Select top k models based on validation fitness Fi.

10: Create offspring models via crossover and mutation.
11: Crossover: combine hyperparameters from 2 models.
12: Mutation: randomly alter hyperparameters.
13: Add offspring models to P .
14: Remove lowest scoring models from P to maintain size n.
15: Return best model catboost model from final population P that maximises validation

fitness.
16: Train catboost model on full dataset using best hyperparameters.
17: Evaluate performance of catboost model on held-out test set.
18: Return final optimised CatBoost model.

4. Experimental results and analyses.
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4.1. Experimental data. This work validates the proposed diagnostic model using early
schizophrenic EEG signals as an example. The data used in the experiment was obtained
from UPenn and Mayo Clinic’s Seizure Detection Challenge (data download address:
https://www.kaggle.com/c/seizure-detection/data), and the age range of the se-
lected young subjects was from 12 to 18 years old. The age range of the selected young
subjects was 12 to 18 years. The distribution of electrode locations for this dataset using
EEG signals is shown in Figure 2. Letters indicate the location of the electrodes, F for
frontal, C for central, T for temporal, P for parietal, and O for occipital.

AF7

F3

C3

CP5

P3

PO7

OZ

PZ

CZ

FZ
F4

AF8

C4

CP6

P4

PO8

Figure 2. Schematic diagram of electrode position distribution

The data include training and test data. The training data are labelled “ES” for
epileptic seizure data segments or “NES” for non-epileptic seizure data segments. A
comparison of the distribution of early schizophrenic EEG signals is shown in Figure 3.

(a) ”ES” (b) ”NES”

Figure 3. Comparison of the distribution of EEG signals in early schizophrenia

The training data were arranged sequentially, while the test data were arranged ran-
domly. The sampling rate of the data varies from 500Hz to 5000Hz. When constructing
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the classifier, ”ES” and ”NES” of Patient 1∼Patient 10 are used as the training data, and
”tcst” of a single patient is used as the test data. The performance of the classifier was
examined using the test samples. The parameters of the early schizophrenia EEG signal
dataset are shown in Table 1.

Table 1. Parameters of the Early Schizophrenia EEG Signal Dataset

ES NES test
Patient 1 68 102 2018
Patient 2 149 2988 3862
Patient 3 325 712 1249
Patient 4 18 188 511
Patient 5 133 2608 2954
Patient 6 223 2770 2965
Patient 7 280 3237 3569
Patient 8 178 11708 1890
Patient 9 209 893 1680
Patient 10 93 202 2319

The main parameters of the GA-CatBoost model during the experiment are shown in
Table 2.

Table 2. The parameters of the GA-CatBoost model

Parameters Numerical value
Iterations 420
Depth 13
Learning rate 0.09
L2 leaf reg 0.35
Random strength 0.45
Subsample 0.55
Colsample bylevel 0.65
Min child samples 20
Loss function Logloss

4.2. Assessment metrics. Currently, there are three commonly used and important
metrics in evaluating the performance of brain disease prediction methods, namely Sen-
sitivity, Specificity and Accuracy.

(1) Sensitivity is used to identify how sensitive the algorithm is to the onset of schizophre-
nia.

S1 =
NPS

NTN

(22)

where S1 is Sensitivity, NPS is the number of times seizures were correctly forecast, and
NTN is the total number of schizophrenic seizures.

(2) Specificity is used to identify the degree of difference between the characteristics of
the ”NES” EEG signal and those of the ”ES” EEG signal.

S2 =
NCS

NTS

(23)

where S2 is Specificity, NCS is the number of correctly identified ”ES” EEG signals, and
NTS is the total number of ”ES” EEG signals.
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(3) Accuracy is used to evaluate the strength of the recognition algorithm’s recognition
ability.

S3 =
NPS +NCS

NTN +NTS

(24)

where S3 is Accuracy.

4.3. Classification Diagnosis Results. Firstly, the feature extraction method based
on wavelet Bispectrum and sparse learning is used to get the EEG feature extraction of
each patient. Then, the above EEG features are inputted into GA-CatBoost model for
classification judgment, and the results are shown in Table 3.

Table 3. Classification results of the proposed diagnostic model

Sensitivity/% Specificity/% Accuracy/per cent
Patient 1 92.94 84.23 96.58
Patient 2 96.92 88.04 98.23
Patient 3 94.49 88.77 97.48
Patient 4 95.71 87.06 98.56
Patient 5 96.22 90.11 97.68
Patient 6 94.66 88.82 96.31
Patient 7 95.46 87.88 97.37
Patient 8 93.37 89.54 95.12
Patient 9 94.61 90.37 92.48
Patient 10 89.28 92.41 93.53
Average 94.37 88.72 96.33

It can be seen that the proposed diagnostic model shows good results on all data,
with an average Sensitivity of 94.37%, an average Specificity of 88.72%, and an average
Accuracy of 96.33%. In order to verify the sophistication of the proposed model, Random
Forest, XGBoost, and CatBoost were compared with GA-CatBoost using the same EEG
features as inputs, and the results are shown in Figure 4.

S e n s i t i v i t y S p e c i f i c i t y A c c u r a c y
0

8 0

9 0

1 0 0

R a n d o m F o r e s t X G B o o s t C a t B o o s t G A - C a t B o o s t

Figure 4. Comparison of different machine learning models for classification di-
agnosis
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It can be seen that compared to Random Forest, XGBoost, and CatBoost, GA-CatBoost
has a significant improvement in both Sensitivity and Accuracy, but a slight decrease in
Specificity. This can be attributed to the fact that using GA to adjust the parameters
of the model during the classification of the EEG feature signals makes the CatBoost
model more suitable for accurately predicting the positive samples, but the prediction
performance for the negative samples decreases.

5. Conclusion. In this work, an automatic recognition algorithm for mental abnormal-
ity is constructed with EEG signals, which can be effectively used for early schizophrenia
diagnosis in young people. An EEG feature extraction method based on wavelet Bispec-
trum and sparse learning is proposed. The proposed GA-CatBoost model embodies a
better generalisation ability and also an efficient classification ability.

The experimental results show that the average Sensitivity of the proposed diagnostic
model is 94.37%, the average Specificity is 88.72%, and the average Accuracy is 96.33%.
The highest recognition rate for a single patient, on the other hand, is 98.56%. Although
the specificity is slightly decreased, the sensitivity and recognition rate are higher than
that of Random Forest, XGBoost, and CatBoost, possessing good experimental results.

The proposed model is useful for quantitative analysis of mental health conditions and
can extract the features of EEG signals under different mental health conditions with
high quality, which provides a solid foundation for accurate judgment and prevention of
mental diseases.

REFERENCES
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