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ABSTRACT. Traditional image encryption methods usually focus on the encryption of
the entire picture. However, only a small part of the data in the image may carry key
information Using the same encryption method may pose a risk of being deciphered.
Therefore, we propose an image adaptive encryption method. Firstly, in the process of
image segmentation with small targets and multi-target scenarios, issues such as target
omission, miscalculation, and prediction gap presence can lead to the loss of a large num-
ber of details and a significant reduction in the amount of information. We have designed
the ADA-DeepLab image adaptive segmentation network, introduced the variable pyra-
mid module to better localize the regions that need prediction in the adaptive perception
domain, and added two attention mechanisms to complement each other, enhancing the
recovery of semantic information more efficiently. The research in this paper has been
experimentally demonstrated using the PASCAL VOC 2012 dataset. The results show
that the proposed ADA-DeepLab model achieves a significant improvement in accuracy
and is capable of segmenting the target more accurately. Secondly, we propose a new key
generation model, R-GAN, to address issues of network instability and short chaotic cy-
cles in GAN training. We introduce a residual network to generate sequences with larger
periods using the GAN model by training on input chaotic sequences. The generator
and discriminator are enhanced to stabilize the training process. Finally, the segmented
important data rows are encrypted. Ezxperiments have proven that the generated key is
more secure and randomized, offering a better hiding effect on both the key regions and
the entire image. This method is highly effective in safequarding important data and
holds significant potential for practical applications.

Keywords: Image segmentation, Attention Mechanism, GAN, Identity privacy, Re-
gional Encryption

1. Introduction. Image security is relevant to our lives, more and more attention has
been paid to how to prevent unauthorized access and tampering to the images. Image
sharing on social platforms involves the privacy of personal life [1-3], therefore image en-
cryption is crucial in image security. This encryption process utilizes complex mathemat-
ical algorithms and keys to convert the original image into an encrypted form, effectively
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protecting the image information from unauthorized access. The key is a confidential pa-
rameter that can only be decrypted by the person holding the correct key [4]. This step
is the key link to maintain image security and privacy. Therefore, the selection and man-
agement of the key is critical to the effectiveness of the overall image encryption, which
determines the reliability and protection capability of the encryption system. In sum-
mary, image encryption is a crucial technology in the digital era, providing an important
safeguard for maintaining personal privacy and information security.

To address the issue of key security and complexity, researchers have commonly adopted
chaotic sequences as a common key generation method. The core of this method is the
utilization of chaotic systems [5], whose generation process relies on nonlinear dynamical
systems such as chaotic equations or mappings. Chaotic systems can produce seemingly
random sequences of outputs, and these parameters exhibiting chaotic states can be used
as keys for encrypting and decrypting data. The outputs of chaotic systems are difficult to
predict and reconstruct, so they can be applied to various image encryption techniques to
improve the security of encryption algorithms. However, there are some shortcomings in
chaos-based cryptographic schemes [6], for example, short cycle length due to the limited
accuracy of computers is one of the important problems of chaotic keystream generators
[7], to solve this problem, researchers have proposed several key generation schemes [8],
one of the solutions is to increase the dimension of the chaotic system. A high dimensional
chaotic system has multiple Lyapunov exponents, two or more of which are positive, it is
a hyper chaotic system. The classical Lorenz and Chen chaotic system is a representative
example of this [9]. By introducing high-dimensional chaotic systems, researchers have
tried to overcome the short cycle length problem and increase the complexity of key
generation, thus improving the security of image encryption.

Current image encryption methods usually encrypt the whole image, and relatively few
studies have been conducted on encrypting the critical regions in the image, however, only
a part of the sub-images in an image may be important [10], focusing on the confidential
sub-image part can improve the processing efficiency and reduce the scale of encryption
operations, thus reducing the consumption of computational resources and time, so in this
paper, we also introduce an adaptive segmentation model for images to better delineate
the important regions. Natsheh et al. [11] proposed a pixel threshold segmentation tech-
nique to encrypt the private regions of medical images in the spatial domain and Alsafyani
et al. [12] proposed a method that combines cryptographic knowledge and deep learning
architecture for encryption and decryption process of face region. Although the above re-
search achieved encryption of regions of interest, it did not encrypt according to contours,
but instead used region block encryption. One of the conditions for good encryption of
contours is accurate image segmentation, in the field of image segmentation, researchers
have extensively explored various methods and techniques to enhance the accuracy and
efficiency of image segmentation.Many scholars are dedicated to improving traditional
CNN methods [13], and Approaches based on Transformer [14] models have also emerged
to meet the challenges in image segmentation, for example, FCN [15], by introducing the
hopping connection and up sampling technique, which enables the network to retain more
spatial information. Then, researchers proposed network structures such as SegNet [16],
U-Net [17] and PSPNet [18], which further improve the segmentation accuracy by in-
troducing encoder-decoder structure, multi-scale information fusion and spatial pyramid,
etc. The DeepLab family came out of nowhere, and it made a The DeepLab family came
out of nowhere and achieved amazing results at that time, but based on the DeepLabV3+
model, when dealing with small targets or multiple targets, DeepLabv3+ loses a lot of
details about the object due to its network structure design and the up-sampling process,
which results in the loss of target information.
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2. Related work.

2.1. Deformable convolution. One of the key features of deformable convolution [19]
is its adaptive nature, deformable convolution adapts to the deformation of the target
by learning the pixel offsets, which enables the convolution kernel to adaptively adjust
its shape and size to fit irregular target shapes. Traditional convolutional operations
may not be able to adapt well to the deformation of the target, Deformable convolution
adjusts the convolution kernel’s pattern based on the target size and image contours. This
enables the model to better adapt to a variety of targets and improves the robustness
and generalization ability of segmentation, which is very important for irregular targets
in segmentation tasks. In Figure 1, (a) denotes normal convolution and (b) denotes
deformable convolution. The deformable convolution adaptively adjusts the sense field
according to the target and is therefore well suited for adaptive image segmentation.

F1GURE 1. Feature sampling method

2.2. Generative adversarial network. GAN [20] consists of two main components.
The generator’s objective is to learn the generation of pseudo-random sequences resem-
bling real random sequences, while the discriminator is dedicated to accurately distin-
guishing between real and generated data. The adversarial nature of this training process
enables the generator to continuously enhance its ability to generate authentic sequences,
while the discriminator continually improves its accuracy in distinguishing between real
and forged sequences. In each training round, GAN takes random noise as the input for the
generator and employs the Chen chaotic system as input for the discriminator. Through
the discriminator’s comparison of real and generated data, the parameters of both the
generator and discriminator are updated. In this paper, we leverage the non-linear and
powerful generative capabilities of the Generative Adversarial Network to handle chaotic
sequences, generating novel pseudo-random sequences as cryptographic keys.

3. ADA-DeepLab network. Firstly, after the original feature extraction of the input
image, the inter-pixel interactions are obtained through the feature refinement module
to eliminate the grid effect, and then the DCN module is utilized to make the network
flexibly adjusted according to the target scale, to obtain the semantic information of the
different receptive fields and merge them together, and the adaptive segmentation module
is utilized to better locate the region to be predicted through the adaptive receptive field.
The adaptive segmentation module can better locate the region to be predicted through



The Image Encryption Method Based on ADA-DeepLab Image Segmentation and GAN Key Generation 209

the adaptive receptive field, obtain the positional correlation between pixels to improve
the modeling ability of deformation. The ADA-DeepLab network model is shown in Figure
2:
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F1GURE 2. ADA-DeepLab network modeling

Specifically firstly, the 1 x 1 deformable convolution in the model, the 3x3 deformable
convolution with different null rates and the global average pooling operation are processed
separately and then the feature fusion operation is carried out on them, and the obtained
feature maps are then subjected to the 1 x 1 convolution, and the dimensionality reduction
operation is carried out to reduce the number of channels from 2048 to 256, and secondly,
the channel attention is utilized to fusion the feature maps obtained from the adaptive
segmentation module so as to enhance the response to specific semantics. Effective high-
level features are obtained through weights. In the decoding phase, the high-level semantic
information is up-sampled twice, once by a factor of 2 and again by a factor of 4. Low-level
features are weighted to recover semantic information more efficiently, merging features
to recover detailed target boundaries.

3.1. DCN models. The DCN module designed in this paper effectively breaks the orig-
inal specification of point sampling, whereas the previous standard convolution samples
through a fixed grid R , and each sample point undergoes a weighting operation by a
convolution kernel, the DCN module is based on the calculation of the standard convolu-
tion, and the offsets are added at the time of sampling, For example a 3 x 3 convolution
kernel with rate 1, for a center sample point position pg, Equation (1) is the output of a
standard convolution:

y(po) = Y w(pa) - x(po + pn) (1)

anR
The input feature map is denoted as x, the output feature map is denoted as y, z(p,)
denotes the weight of the p, position, and z(p,) denotes the pixel value of the input
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feature map at the point p, position. The offset vector is introduced by sampling the
input feature map x through Equation (2):

y(o) = Y w(pn) - 2(po + pn + Apn) (2)
pPn€ER

Ap, is the offset of the p, position. Since Ap, is basically a small number and the
value of x(py + pn + Ap,) may not be an existent point on the input feature map, a
bilinear interpolation algorithm is used so that the sampling position can fall within the
effective range of the input feature map. The new input feature map is formed by bilinear
interpolation transformation, and the new feature map formed can still maintain the same

spatial resolution as the original feature map.

3.2. Attention mechanism models. To ensure the effective recovery of target bound-
ary information, Channel Attention (CA) is introduced before feature map fusion. CA
aims to enhance the model’s performance by weighting the feature maps and filtering
out information crucial to the current task. This allows for precise control over different
channels, capturing target-related information in a more targeted manner, thus improving
generalization performance for unseen data. Figure 3 illustrates the CA module.
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FIGURE 3. Structure diagram of channel attention

The proposed CA is divided into two parts: compression and activation. The compres-
sion part compresses the feature map by global average pooling as shown in Equation

(3):

o= Fal1) = 5y S S e i) ®)

The symbol u is used to denote a feature map with dimensions H x W x C', and the
total number of channels is denoted by ¢. For each channel ¢ in the feature map, we
use u. to denote the corresponding 2D matrix. For feature map compression, we adopt
global average pooling as the compression process to compress the input feature map into
a vector, which helps to reduce the dimensionality of the data and makes the subsequent
processing more efficient. The correlation between the channels is established and the
excitation operation is performed on the feature map to generate a self-learning vector of
channel weights, which is shown in Equation (4) for the excitation operation:

s = Fu(ZW) = 0 (g(Z,W)) = o (W.6(W, 2)) (4)

The excitation operation assigns the obtained channel weights to each channel. Specif-
ically, the channel attention module introduces a fully connected layer to encode the
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channel dependencies of the obtained compression features 7, learns the nonlinear inter-
actions between channels, and introduces a sigmoid function to limit the weights to the
range of (0,1), and finally, multiplies the obtained weights with the input features, assigns
weights to its channels, and the obtained outputs can be expressed as (5):

Xc = Fscale <u07 Sc) = U * S¢ (5>
The spatial attention module efficiently filters out background information, allowing the
network to focus more on foreground regions of interest, This advanced feature filtering
ensures that the network has a sharper perception of target-related information. The
low-level features are denoted as U = {ub!, w2, ... w7 ... W} firstly, the low-level
features are compressed by the convolution operation to compress the channels of the
feature map U € RO*#*W 50 as to obtain the feature S € R”*W and then, the encoded
spatial feature map mapped to [0, 1] is normalized by the Sigmoid operation. The feature
map is normalized and finally the output of spatial attention is shown in Equation (6):

Usa = {f(sl,l)ul’1, flsi2)ul?, .., f(SH,W)uHXW} (6)

4. R-GAN models. GAN can learn the attacker’s strategy and generate pseudo-random
sequences that are more difficult to crack. In response to the problem of difficulty in train-
ing the GAN model, the generator and discriminator of the GAN model are redesigned
to be able to generate pseudo-random sequences in a better way. Figure 4 shows our
improved R-GAN model.
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FI1GURE 4. R-GAN key generation model

4.1. Generator network. During the training of the generator model, we observed the
phenomenon of vanishing gradients and loss of information, and designed a new residual
module that replaces the neural network with a conv layer, the generator consists of a
fully connected layer and four residual convolutional layers, the multilayer structure can
be more comprehensive extraction of features, and the addition of the residual network
to the generator part can improve the performance of the generation of high-dimensional
chaotic sequences effectively. The input is passed directly to the output layer, as depicted
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on the right side of Figure 4. If no jump connection is added, the input x will be mapped
by f(z), to obtain H(x), and the output equation is shown in Formula (7):

H(z) = f(z) (7)
After adding the hop connection, the output is shown in Equation (8):

H(z) = f(z) +a (8)

This design has no negative impact, helps accelerate the convergence process of the

model, and better captures long-term dependencies and complex nonlinear features in the
input sequence.

4.2. Discriminator network. The structure of the discriminator consists of three con-
volutional layers tasked with feature extraction, identifying, and capturing key features
through convolutional operations on the input data. The flat layer’s role is to compress
the data between the convolutional and fully connected layers, enhancing the efficiency
of information transfer. Additionally, to prevent overfitting, a discard layer is introduced
to improve generalization ability.

5. Image encryption method. By designing the ADA-DeepLab model, important re-
gions of the image are segmented to extract the portion intended for encryption. The
Chen chaotic system is employed as the training set for the GAN key generator, generat-
ing diverse pseudo-random sequences. Traversing the segmentation structure with pixel
points in the region of interest set as 1 and those in the region of disinterest as 0, the
segmented image is combined with the GAN key generation model to create a binary
mask using the segmentation structure. The coordinates of pixel points, with 1 in the
region of interest and 0 in the region of disinterest, are indexed and saved in an array.
A key is selected from the R-GAN model for the encryption algorithm, encrypting the
region with pixel points set as 1. The original image’s pixel values are replaced with the
encrypted values, concealing crucial information from the plaintext image. Subsequently,
other compatible pseudo-random sequences from the R-GAN model are chosen as another
key to encrypt the remaining regions. The encrypted images of important and background
regions are merged, implementing different encryption methods for the entire image to
enhance its security. The specific algorithm is outlined in Algorithm 1.

Algorithm 1 The steps of the image encryption method are as follows

Require: Input the plaintext image P} ., where h represents the height, and w repre-
sents the width
1: Obtain the binary mask, 0 and 1, for the pixel points z in the segmented image using
ADA-DeepLab;
R-GAN generates keys by selecting any two keys, k1 and k2.
if =1 then
Encryption is applied to all coordinates of pixel point x using key k1;
end if
if =0 then
Encryption is applied to all coordinates of pixel point x using key k2;
end if
Replace the pixel values in the original image with the encrypted pixel values to
generate the encrypted segmented image.
Ensure: Generate the encrypted image
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The important region information in the plaintext image is hidden, and the encryption
effect is shown in Figure 5.

(a) original image (b) split image (c) Regional encrypted  (d) Overall encrypted

FIGURE 5. Image Segmentation Encryption

6. Experimental results and analysis.

6.1. Experimental data and platforms. The configuration of the project covers a
number of aspects, specifically, Windows 10, the operating platforms are CUDA 11.2 and
CUDNN 8.1 and in terms of the programming environment Python version 3.7.0 and
Poarch version 1.9.1, the memory size is 16GB.

PASCAL VOC 2012 dataset: This dataset is a widely used computer vision dataset
that contains 20 different object categories covering common objects and scenes including
people, animals, and natural environments.

6.2. Evaluation indicators. The mloUrepresents the average intersection on the con-
catenated set, which is a commonly used evaluation metric in image segmentation tasks
and is calculated as shown in (9):

1 k Pj;

mloU = —— . 9
k1 ijo S0 Pii + Ximo Pii — Djj )
Table 1 shows that through experimental proof on the PASCAL VOC 2012 dataset,
our proposed ADA-DeeplLab algorithm performs better in terms of mIoU compared to
other mainstream algorithms, and exhibits a significant increase in accuracy, achieving
a satisfactory result of 82.1%, which demonstrates that our algorithm has a stronger

performance in dealing with image segmentation tasks.

TABLE 1. Validation results for the PASCAL VOC 2012 dataset

Method mloU%
EDPNet [21] 80.8%
Im-Deeplabv3+ [22] 80.6%
DPNet [23] 79.5%
SA-FFNet [24] 76.5%
Ours 82.1%

6.3. Key spatiality analysis. The key space is the set of all possible keys used by the
encryption algorithm, which can be expressed as the size of the range of values for all keys
in the encryption system. In this paper, we employ the hyperchaotic Chen system as the
training set for the GAN key generator. The precision of floating-point numbers under
a computer operating system is about 1076, Therefore, the key space in this chapter is
approximately 2490 exceeding 2!%°. Such a large key space demonstrates the method’s
ability to resist brute force attacks.
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6.4. Sequence performance testing. After discussing the image segmentation part
we are going to test the keys required for image encryption, in cryptography high quality
random numbers are essential for the security of cryptographic algorithms. The NIST
800-22 test is a commonly used method for evaluating and verifying that random number
generators satisfy cryptographic requirements. It is therefore used to evaluate the sta-
tistical properties of the generated sequence to gain insight into the randomness of the
sequence. If the value is less than 0.01, it is considered a failure. According to the test
results, the generated pseudo-random sequence passed all the tests, indicating that the
sequence is difficult to crack.

TABLE 2. NIST-800-22 test results

Statistical Tests Value Result
Cumulative Sums 0.21713 Successful
Linear Complexity 0.38572 Successful

Frequency 0.40162 Successful

Block Frequency Text 0.39617 Successful
Runs Text 0.62541 Successful
LongestRun Text 0.35726 Successful

O T Test-1 0.84517 Successful

O T Test-2 0.75168 Successful

Rank Text 0.62713 Successful

DFT Text 0.32852 Successful

Maurer Test 0.29635 Successful

Serial testing 0.11548 Successful
Random Excursions Test-1 0.57351 Successful
Random Excursions Test-2 0.35274 Successful
Approximate Entropy 0.80986 Successful

6.5. Correlation analysis. The correlation coefficient is a statistical measure of the
strength and direction of the linear relationship of the image and is calculated as shown
in (10)

E<$> = %12511]\73:1‘ )
D(x) = 73 Zi:}v(:vi — E(z)) "
cov(a,y) = % 3, (@i = E@)) (v = EW)) (10)
cov(x,y
Tpy = — e
! /D)D)

Neighboring pixels of digital images have strong correlation, the leakage of a pixel value
will threaten the security of the surrounding information at the same time, after the
experimental data verification, we can learn from Table 3 that the correlation coefficient
of the encrypted neighboring pixels changes from the state of close to 1 to the state of
close to 0, which indicates that there is no linear relationship between the two images,
and the use of this paper’s method compared with the other mainstream methods, the
encryption effect of the present paper is better.

Figure 6 represents the distribution of correlation coefficients of Lena image and en-
crypted image.
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TABLE 3. The correlation coefficient

Direction Horizontal Vertical Diagonal
Lena Image 0.9803 0.9759 0.9704
Ref. [25] -0.0018 0.0041 -0.0011
Ref. [26] -0.0447 0.0004 -0.0047
Ref. [27] 0.0035 -0.0006 -0.0074
Ref. [28] 0.0019 -0.0015 -0.0039
Ours -0.0013 0.0003 -0.0034

(a) (b)

(c) (d)

(e) (f)

FI1GURE 6. Correlation coefficient graph

6.6. Histogram analysis. Histogram analysis examines the frequency distribution of
individual values in both plaintext and ciphertext images [29], where certain pixel values
may appear more frequently in the plaintext image, forming distinct peaks. In ciphertext
images, this frequency distribution may be altered due to the randomness introduced by
encryption, and the histogram may exhibit smoother and more uniform characteristics.
In Figure 7, the histograms of the Lena image, local encryption, and whole encryption
are shown respectively.
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(©) | (1)

F1GURE 7. Correlation coefficient graph

6.7. Resistance to differential attacks. Resistance to differential attacks reflects its
resistance to differential attacks, which are a common type of attack Password analysis
methods. Attackers use differential information in cryptographic algorithms to obtain
keys or crack passwords, This article tests NPCR and UAC, and the formula of NPCR
is shown in (11) :

Mdenotes the width of the image and N denotes the height of the randomized image,
and Equation (12) shows the calculation of D(3, j):

0, otherwise

NPCR = * 100% (11)

UACT is a metric used to quantify image distortion, and the function of UACT is to
provide a single numerical value that can be used to assess the degree of difference between
the original image and the distorted image. The calculation formula can therefore be
expressed as Equation (13):

1 Z(cl(iaj)_c2(i7j)>
M x N 255

UACT = + 100% (13)
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We select a random pixel point for Lena image and change its pixel value to get a
new image. After obtaining the ciphertext image. Multiple operations are averaged as
in Table 4, and finally it is found that even if only small changes are produced, the two
encrypted images reflect a great difference.

TABLE 4. Key sensitivity analysis

Lena Ref. [27] Ref. [26] Ref. [28] Ref. [25] Ours
NPCR 0.9961 0.9962 0.9957 0.9962 0.9962
UACI 0.3338 0.3355 0.3343 0.3345 0.3344

6.8. Information entropy analysis. The mathematical definition of information en-
tropy is based on probability, where it is higher when an event has more possible outcomes.
Conversely, as we can predict the outcome of an event more accurately, the information
entropy decreases. The information entropy of image z is calculated as (14).

n—1
H(z) = - Zz‘:o p(zi)log,p(z;) (14)
The ideal value of information entropy for an image is 7, indicating that the information
is well-hidden. From the table, it can be observed that the information entropy of the
encrypted portion of the image is close to the ideal value. This suggests that the various
key encryption methods generated by R-GAN can effectively conceal information and
enhance the confusion of the information.

TABLE 5. Information Entropy Analysis

information entropy Lena
Ref. [25] 79975

Ref. [26] 79989

Ref. [27] 79993

Ref. [28] 79971
Ours 79993

7. Conclusion. This paper encrypts the image segmentation part using different key
encryption methods. Firstly, to address the issue of a short chaotic period, a key gen-
eration model, R-GAN, is introduced. The generator and discriminator are improved to
effectively handle the degradation problem of the model training network and the short
chaotic period. Secondly, to address the imprecise segmentation of target outlines, a new
deformable pyramid module is designed. The introduction of an attention mechanism
allows for more nuanced processing of image features, reducing the loss of crucial details.
Finally, this paper not only encrypts the entire image but also achieves more refined en-
cryption of sub-image portions. Future work aims to enhance the input chaotic sequences
and improve encryption algorithms for better results. Dealing with the segmentation of
complex irregular images presents a significant challenge.
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