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Abstract. A sampling robotic arm usually consists of multiple joints, allowing the arm
to perform various motions and actions in three-dimensional space. Aiming at the prob-
lems of low sampling accuracy and poor motion smoothness in the work of the sampling
robotic arm control system, this paper proposes an intelligent trajectory control method
for the sampling robotic arm based on bidirectional LSTM neural network. Firstly, the
kinematic model of the sampling robotic arm is established by analysing the interrela-
tionships of the joints of the sampling robotic arm, and the kinematic analysis is com-
pleted by using the D-H method. Then, a Bidirectional Time-aware LSTM (Bi-T-LSTM)
combined with Self-encoder is proposed. A bi-directional autoencoder is constructed us-
ing the time-aware LSTM unit, which combines the forward T-LSTM and the backward
T-LSTM, in order to better capture the bi-directional trajectory information. Finally,
a Self-encoder Bi-T-LSTM neural network controller is designed based on the sampled
robotic arm kinematic model. The neural network controller is used to virtually control
the inputs to compensate for the unknown mechanical system dynamics. The sampling
robotic arm is simulated using Matlab/Simulink Simscape-Multibody and Simscape-Fluids
simulation platforms. The simulation results show that the proposed intelligent trajectory
control algorithm can help the robotic arm to optimise the trajectory planning more effi-
ciently, achieve good position control, and ensure that the system output does not exceed
the preset range.
Keywords: Sampling robotic arm; trajectory planning; kinematic analysis; Bi-LSTM;
self-encoder
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1. Introduction. In the manufacturing industry, robotic arms are commonly used for
assembly, fitting, handling and packaging. They can perform highly repetitive tasks to
improve productivity and product quality [1, 2, 3]. Sampling robotic arms are usually
equipped with various attachments and tools such as grippers, suction cups, etc. to be
able to adapt to different sampling needs. By using sampling robotic arms, automated
sample collection, transfer and analysis can be achieved, increasing efficiency and reducing
human error [4]. Sampling robotic arms can also play an important role in sampling tasks
that are hazardous or require a high degree of accuracy, such as coal sampling [5, 6].

The kinematics of the sampling manipulator mainly studies the position and posture of
the sampling head of the sampling manipulator in its workspace, the relationship between
the joint variables and the motion relationship between the joints, which is the most basic
research content of kinematics analysis [7]. The kinematics of the sampling robotic arm
mainly involves trajectory planning, offline programming and the design of motion control
algorithms.

Multi-robot collaboration refers to the nature of multiple robots working in concert
with each other when completing the same task [8, 9]. For complex operational tasks,
such as handling irregularly shaped or handling larger and heavier objects, when a single
robot is unable to complete the handling task due to its own limitations, multiple robots
can replace a single robot to complete it through collaborative work, which also improves
the efficiency of the robotic system in the process of the operation and enables the multi-
robot system to solve more practical application problems [10]. The sampling robotic
arm must follow the principle that the movement process is as smooth and steady as
possible, which means that sudden changes in position, velocity and acceleration should
be avoided. If the movement is not smooth it will increase the wear of mechanical parts and
lead to the vibration and impact of the coal sampling robotic arm, which will reduce the
sampling accuracy [11]. Obviously, to make the sampling robotic arm have good working
performance and achieve real-time control, the analysis and study of its kinematics is very
important.

Intelligent trajectory control of a sampling robotic arm refers to the use of advanced
control algorithms and technologies to enable the robotic arm to autonomously learn, plan,
and execute complex motion trajectories in order to complete various sampling tasks [12].
Neural network is a computational model that imitates the neuronal network structure
of the human brain, and is capable of achieving complex nonlinear mapping by learning
a large amount of data for pattern recognition and decision making. In the intelligent
trajectory control of robotic arms, complex control strategies can be realised through the
nonlinear approximation ability of neural networks to adapt to different sampling tasks
and environmental changes. Neural networks can learn and predict suitable trajectories
of robotic arms in different workspaces to optimise path planning and avoid collisions [13,
14]. Therefore, the research objective of this work is to use neural network technology to
realise intelligent trajectory control of sampling robotic arm, so as to enhance its operation
ability in various complex environments.

1.1. Related Work. Current research in robotic arm trajectory control focuses on im-
proving the accuracy and efficiency of trajectory planning, enhancing kinematic modelling
for robotic arm control, and exploring real-time control methods in complex environments
[15, 16].

Seraji and Bon [17] proposed a method for real-time collision avoidance during robotic
arm motion. This method can monitor obstacles during the movement of the robotic arm
and adjust the trajectory in real time to ensure that the robotic arm completes the task
safely and effectively. Ren et al. [18] studied the control of multi-degree-of-freedom robotic
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arm trajectory using PID plus weight-weighted force-compensated control method, and
performed experimental analyses and validation in the aspects of robotic arm trajectory
tracking, anti-interference ability, etc. Ramabalan et al. [ 19] proposed a dynamic path
planning method for robotic arms based on dynamic programming. The method considers
both kinematic and dynamic constraints, and can effectively plan smooth, continuous and
dynamically feasible path trajectories. Elbanhawi et al. [20] proposed to use B-spline
curves to represent and model the dynamic path trajectories of the robotic arm, and
gave a detailed algorithmic process. Liu et al. [21] used genetic algorithms to find the
beginning and end points under the constraints of speed, acceleration and speed of the
robotic arm.

Artificial intelligence technology can provide more powerful learning and modelling ca-
pabilities, which can help to achieve better trajectory control of robotic arms. On the
basis of traditional optimization algorithms such as genetic algorithm or particle swarm
optimization, neural network modelling techniques are added to achieve deep exploration
of the solution space and better path solutions. Giuffrida et al. [22] proposed a Convolu-
tional Neural Network (CNN)-based image-driven control of the robotic arm, which can
learn the joint space from the image inputs directly to achieve better end-to-end control
results. Liu et al. [23] used deep reinforcement learning methods to train the robotic arm
to learn the specified operation. Liu et al. [23] used a deep reinforcement learning method
to train a robotic arm to learn a specified sequence of operational actions, and achieved
powerful trial-and-error based robotic arm action learning. Shi et al. [24] proposed to
use a Recurrent Neural Network (RNN) structure to represent and learn the robotic arm
motion patterns, and achieved good continuous path control results. However, the RNN’s
long-range dependence on previous information makes its learning ability degrade over
time, leading to serious discrepancies between the training results and the desired goals.

1.2. Motivation and contribution. Bidirectional LSTM (Bi-LSTM) [25] is a recurrent
neural network model that can effectively capture long-term dependencies in sequential
data, and has both forward and backward memory units, which can simultaneously learn
contextual information in a sequence. However, ordinary RNNs can only learn forward
context. This can improve the control accuracy by making full use of the context in-
formation for robotic arm motion trajectory learning. Bi-LSTM has a larger number of
parameters than RNN and has a better learning ability. It can better model the non-
linear characteristics in robotic arm motion. Therefore, in order to effectively improve
the control accuracy of the sampling robotic arm, a Bi-LSTM-based robotic arm trajec-
tory control method is proposed. The main innovations and contributions of this paper
include:

(1) The implicated motion relationship between each linkage of the sampling robotic
arm is studied, and then the linkage coordinate system of the neighbouring rods is estab-
lished for the sampling robotic arm, and the kinematic equations of the sampling robotic
arm are further established by using the D-H transformation, and the positive kinematic
analysis is completed.

(2) In order to further explore the intrinsic connection between the current record
and the records of the past and future moments, a Self-encoder Bi-T-LSTM is proposed,
which can deepen the level of feature extraction for the original sequences to improve the
precision of the trajectory control of the robotic arm.

(3) A robotic arm controller based on Self-encoder Bi-T-LSTM neural network was
designed. The neural network controller was used to virtually control the input to com-
pensate for the unknown mechanical system dynamics, and the corresponding neural
network weight control law was designed.
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2. Kinematic analysis of the sampling robotic arm.

2.1. Position and attitude. In order to describe the position of the end-effector of the
sampling robotic arm under the workspace coordinate system, a coordinate system is
selected as the reference coordinate system, as shown in Figure 1, and the position vector
p is used to represent this attitude.

p =
[
px py pz

]T
=

[
x y z

]T
(1)

where px, py, pz denote the coordinate components of the end-effector in the coordinate
system; T matrices with this superscript are transposed matrices.

y

x

z

o

p(x, y, z)

Figure 1. Spatial coordinates of point p

Let the coordinate system {i} and the coordinate system {j} have the same orientation,
i.e., the direction vectors of the corresponding coordinate axes are parallel and in the
same direction, but the coordinate origins of the two do not coincide. If the origin of
the coordinate system {i} and the coordinate system {j} are in the same coordinate

space, and the two are represented by the vector P⃗ij, then the coordinate system {j}
can be transformed by translating the coordinate system {j} along the vector P⃗ij. The
coordinate system {i} can be obtained from the transformation result. The translation
transform matrix is a 3× 1 column matrix.

P⃗ij =

pxpy
pz

 (2)

If there is a point in the space which can be represented by vectors r⃗i and r⃗j in the
coordinate system {i} and coordinate system {j} respectively, then according to the
principle of superposition transformation of vectors, the relationship between them is
r⃗i = P⃗ij + r⃗j and we call this equation as the coordinate translation equation.

In order to describe the attitude of the end-effector of the sampling robot arm in the
spatial coordinate system, as shown in Figure 2, a reference coordinate system Oxyz
is chosen. Another coordinate system OhXhYhZh is set at the centre of the reference
coordinate system, and the 3 × 3 order matrix consisting of the cosines of the angles of
the three directions with respect to the attitude in the reference coordinate system can
be expressed by R.
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R =

cos(x, xh) cos(x, yh) cos(x, zh)
cos(y, xh) cos(y, yh) cos(y, zh)
cos(z, xh) cos(z, yh) cos(z, zh)

 (3)

where R is the rotation transformation matrix.

y

x

z

o

p(x, y, z)

oh
xh

yh

zh

Figure 2. Posture description

Let the coordinate system {i} and the coordinate system {j} share the same coordi-
nate system origin, but they have different orientations. The coordinate system {j} can
be obtained by rotating the coordinate system {i} around the rotational transformation
matrix. Compared with the translational transformation matrix, the rotational transfor-
mation matrix is designed with more parameters, among which the rotation around a
single coordinate axis is the most basic form.

The transformation matrix is derived by rotating the θ angle around the z axis. Suppose
there is any point p in space, then it can be represented by a coordinate component in
the coordinate system {i}. It can also be represented by a coordinate component in the
coordinate system {j}, but the two coordinate components are different. The relationship
between the two is shown below.

xi = xj · cos θ − yj · sin θ
yi = xj · sin θ + yj · cos θ
zi = zj

(4)

By completing the corresponding terms, the relational equation is then deformed by
homogenizing the structural form.xi

yi
zi

 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

xj

yj
zj

 (5)

Expressing Equation (5) in vector form, the coordinate rotation transformation equa-
tion is obtained as follows:

r⃗i = Rz,θ
ij · r⃗j (6)
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where r⃗i is the coordinate vector of the p point in the coordinate system {i}; and Rz,θ
ij is

the rotation transformation matrix.
The rotation transformation matrix for rotating the α angle around the x axis is:

Rx,α
ij =

1 0 0
0 cosα − sinα
0 sinα cosα

 (7)

The rotation transformation matrix for rotating the β angle around the y axis is:

Ry,β
ij =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 (8)

2.2. Chi-Square coordinate transformation. In order to study the influence of the
motion of each joint on the position and attitude of the end-effector of the sampling
robotic arm, this paper adopts the chi-square coordinate system transformation, because
the method of chi-square coordinate system transformation can be a good solution to the
problem of describing the transformations of the position and attitude of the sampling
robotic arm.

In a given coordinate space, three coordinate components are randomly given in (x, y, z).
Determine a point using these fixed points (the three coordinate components). Relate the
three right-angle coordinate components of this point to four numbers (x′, y′, z′, k) that
are not simultaneously zero as follows.

x = x′

k

y = y′

k

z = z′

k

(9)

where (x′, y′, z′, k) is the chi-square coordinate of the point in space [26].
The transformation matrix for the sum of vectors at any point in space in coordinate

system {i} and coordinate system {j} is shown below:xi

yi
zi

 =

pxpy
pz

+

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

xj

yj
zj

 (10)

Equation (10) is then expressed in terms of the coordinate component equations:
xi = px + cos θ · xj − sin θ · yj
yi = py + sin θ · xj + cos θ · yj
zi = pz + zj

(11)

Based on the above-mentioned chi-square coordinates, the transformations are pro-
cessed by filling in the missing terms (the missing terms are replaced by zeros), and then
the deformation of piecing together the corresponding terms is performed.

xi = cos θ · xj − sin θ · yj + 0 · zj + px · 1
yi = sin θ · xj + cos θ · yj + 0 · zj + py · 1
zi = 0 · xj + 0 · yj + 1 · zj + pz · 1
1 = 0 · xj + 0 · yj + 0 · zj + 1 · 1

(12)
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Mij =


cos θ − sin θ 0 px
sin θ cos θ 0 py
0 0 1 pz
0 0 0 1

 =

[
Rz,θ

ij p⃗ij
0 1

]
(13)

In the above chi-square transformation matrix, the 3 × 3 sub-matrix in the upper left
corner is the rotation transformation matrix between the dynamic coordinate system and
the static coordinate system, which clearly describes the positional relationship between
the different coordinate systems. The 3 × 1 sub-matrix in the upper right corner of this
chi-square coordinate transformation matrix is the matrix representing the translational
transformation relationship between the two coordinate systems mentioned above, which
describes the positional relationship between the two. So the chi-square coordinate trans-
formation matrix is also called the position transformation matrix.

2.3. Kinematic modelling of the sampling robotic arm. D-H (Denavit-Hartenberg
matrix) [27] was used to establish the rod coordinate system for the sampling robotic arm
and derive the kinematic equations.

As shown in Figure 3, there are two joints at each end of the link, joint i and joint i−1.
The dimensions of the rod can be described by two parameters, one is the rod length
and the rod torsion angle, where the rod length can be expressed by the axes of each of
the two neighbouring joints li, and the rod torsion angle can be expressed by the angle
between the axes of each of the two joints of the rod at each end αi. Finally, consider the
relationship between a connecting rod i and a neighbouring rod i− 1.

Oi-1

Oi

xi-1

yi-1
zi-1 xi

yizi

di
ai

αi

θi

Joint i-1 Joint i+1

link i-1
link i

Joint i

Figure 3. Rod joint kinematic parameters

After knowing the individual linkage parameters of the industrial robot, the structural
dimensions of the sampled robotic arm can be analysed to obtain its linkage parameters
as shown in Table 1.
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Table 1. Sampling arm linkage parameters

Connecting rod Cornering variable θn Connecting rod spacing dn Connecting rod length ln Connecting rod torsion angle αn

Connecting rod 1 θ1 d1 = 0 l1 α1 = 0
Connecting rod 2 θ2 d2 = 0 l2 α2 = 0
Connecting rod 3 θ3 d3 = 0 l3 α3 = 0
Connecting rod 4 θ4 d4 = 0 l4 α4 = 0

The angle variable θ1 for the large arm (connecting rod 1) has a range of [16◦, 97◦]. The
angle variable θ2 for the small arm (rod 2) varies from [−34◦, 60◦]. The link length l3 of
the telescopic arm (link 3) varies in the range [436, 1986]. The range of variation of the
sampling head (linkage 4) is [−50◦, 26◦]. The above data are obtained from the design
parameters in the engineering design manual of the coal sampling robotic arm.

The big arm, the small arm, the telescopic arm, and the sampling head of the sampling
robotic arm each have one degree of freedom of motion. According to Equation (14)
and the kinematic parameters of the sampling robotic arm, the transformed relationship
between the coordinate system of the base and the linkage coordinate system of the end-
effector, i.e., the kinematic equation of the sampling robotic arm, can be obtained. The
kinematic equations of the sampling robotic arm are calculated as shown below:

T4 = A1A2A3A4 (14)
A1 = Rot(X0, q1)Trans(0, l1, 0)

A2 = Rot(X1, q2)Trans(0, l2, 0)

A3 = Trans(0, l3, 0)

A4 = Rot(X4, q4)Trans(0, l4, 0)

(15)

Rot(X0, θ1) =


1 0 0 0
0 cos θ1 − sin θ1 0
0 sin θ1 cos θ1 0
0 0 0 1

 (16)

Trans(0, l1, 0) =


1 0 0 0
0 1 0 l1
0 0 1 0
0 0 0 1

 (17)

On the basis of the geometric parameters and joint variables of each linkage of the
sampling robotic arm, the kinematic equations can be obtained through Equation (14),
and this process is considered to be a positive solution of the kinematics, i.e., it is the
position of the coordinate system of the end-effector.

3. Bi-LSTM-based trajectory control of a sampling robotic arm.

3.1. Principle of Bi-LSTM networks. The hidden layer state of a classical LSTM
network is only determined by the input information before a certain moment, and thus
can only learn the input data before that moment. The Bi-LSTM network, which intro-
duces a two-way propagation mechanism on the basis of the traditional LSTM network,
can well combine the sequence data before and after a certain moment to make relevant
predictions.

The Bi-LSTM network adds a new backpropagation layer, and the state of the neurons
in the backpropagation layer is determined by the input data after a certain moment.
The output of the network at that moment is determined by the inputs at that moment,
the state value of the forward hidden layer and the state value of the backward hidden
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layer. In Bi-LSTM, xt denotes the time-series data of the inputs at moment t, and ht and
h′
t denote the forward and backpropagation hidden states, respectively, with the following

expressions. {
ht = f(Wtht−1 + Utxt + bt)

h′
t = f(W ′

th
′
t+1 + U ′

txt + b′t)
(18)

where Wt, Ut, and bt correspond to the weight value and bias term of the forward
propagation hidden state ht, respectively, and W ′

t , U
′
t , and b′t correspond to the weight

value and bias term of the backward propagation hidden state h′
t. The function f is the

corresponding activation function.
The expression for the output yt of the network is as follows:

yt = g(V ht + V ′h′
t + by) (19)

where V and V ′ are the weight values of the forward-propagating hidden state ht and
the backward-propagating hidden state h′

t, by is the bias term, and g is the activation
function, respectively.

For the trajectory control problem, the Bi-LSTM network incorporates the two struc-
tures of forward propagation layer and backpropagation layer. Compared with the tra-
ditional LSTM network, the Bi-LSTM network is able to comprehensively consider the
robotic arm trajectory data before and after the moment to be controlled, and has a
better grasp of the data as a whole.

3.2. Time-aware Bi-LSTM combined with self-encoder. Time intervals in robotic
arm trajectory sequence data are not always uniformly distributed. Different time in-
tervals can be considered as part of the information contained in the sequence data. If
the time intervals are too far apart, the current output has very little dependence on the
previous record. In this case, the contribution of the memory of the previous unit to the
current unit should be ignored. However, Bi-LSTM cannot meet the above requirements.

Time-aware LSTM (T-LSTM) [28] does not discard the long-term memory completely,
but performs subspace decomposition for the memory of the previous time step. Therefore,
this paper adopts T-LSTM to construct Bi-T-LSTM, and the internal structure of the
T-LSTM unit is shown in Figure 4. Bi-T-LSTM can take into full consideration of the
positive and negative information law of the temporal data, further excavate the intrinsic
connection between the current record and the records of the past and the future moments,
and deepen the level of the original sequence of feature extraction, so as to improve the
precision of the trajectory control of the robotic arm.

Firstly, the long-term memory Ct−1 of the previous unit is obtained through the net-
work, and the short-term memory CS

t−1 is obtained using tanh as the activation function.

CS
t−1 = tanh(WdCt−1 + bd) (20)

where Wd, bd is the network parameter for the subspace decomposition.
Use a non-increasing function g(·) to convert the interval time ∆t into appropriate

weights and multiply it with short-term memory to obtain the discounted short-term
memory ĈS

t−1.

ĈS
t−1 = CS

t−1 × g(∆t) (21)

Subtract the short-term memory Ct−1 from the long-term memory CS
t−1 to obtain the

complementary subspace CT
t−1 of the long-term memory, which is added to the discounted

short-term memory ĈS
t−1 to form the adjusted memory of the previous unit C∗

t−1.
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tanh

tanh σσσσg

-

× ×

tanh

Δt Xt

LSTM cell
ht

Ct-1

ht-1 ht-

Ct

× × ++

Figure 4. Internal structure of the T-LSTM cell

CT
t−1 = Ct−1 − CS

t−1 (22)

C∗
t−1 = CT

t−1 + ĈS
t−1 (23)

Finally, the LSTM standard gating architecture is built. According to different appli-
cation scenarios for the selection of different types of monotonically increasing functions.
If the time interval between two consecutive records in the dataset is small, Equation (24)
is used. If the value of the time interval is large, use Equation (25).

g(∆t) =
1

∆t
(24)

g(∆t) =
1

log(e+∆t)
(25)

Bi-T-LSTM is able to splice the outputs of forward and backward T-LSTM. Compared
with the unidirectional T-LSTM, it can obtain the information from both front-to-back
and back-to-front directions at the same time. The output H of Bi-T-LSTM can be
obtained by splicing the two outputs.

H = [hL ⊕ hR] (26)

Where, hL denotes the output of forward-order T-LSTM hidden layer, and hR denotes
the output of reverse-order T-LSTM hidden layer. When processing time series data,
more information can be obtained, which is beneficial to the subsequent tasks, so Bi-T-
LSTM can obtain better results than unidirectional T-LSTM in solving time series data
problems.

Although Bi-T-LSTM can fully consider the forward and backward information laws of
temporal data, it requires a large amount of storage space to preserve the hidden state
when dealing with long sequences. In contrast, the self-encoder can solve this problem by
learning low-dimensional data representations and encoding high-dimensional input data
into lower-dimensional hidden representations, thus greatly reducing the required storage
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space. In addition, another problem with Bi-T-LSTM is that it may be overly concerned
with local features of the sequence data while ignoring the overall data structure. Self-
encoders, on the other hand, can compensate for this by first learning the global data
distribution and then reconstructing the inputs in the decoding phase, allowing the model
to better capture and understand the global data features.

Therefore, in this paper, Bi-T-LSTM and self-encoder are combined, as shown in Figure
5, in order to utilise the advantages of both to further improve the accuracy and speed of
trajectory control. The proposed auto-encoder model in Self-encoder Bi-T-LSTM mainly
consists of an encoder and a decoder, complemented by the nonlinear feature extraction
capability of deep neural network, which aims to convert inputs into intermediate variables
and these variables into outputs.
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Figure 5. Self-encoder Bi-T-LSTM

3.3. Controller design. Based on the kinematic model of the sampled robotic arm, a
Self-encoder Bi-T-LSTM neural network controller is designed. Take the joint space as
an example, define x1 = q, x2 = q̇, x3 = A1P1 − A2P2. To facilitate the analysis, the
sampling robotic arm dynamics model is written in state space form. The state error is
defined as follows:

e1 = x1 − qr, e2 = x2 − α1, e3 = x3 − αc
2 (27)

where α1 is the virtual control input, α
c
2 is the filtered signal of the virtual control input

α2.
Based on the generalised approximation performance of neural networks, we use Self-

encoder Bi-T-LSTM neural network to virtually control the input α2 to compensate for
the unknown mechanical system dynamics. The designed neural network weight control
law is shown below:

Ŵi = −Γi

(
ϕi(Z)e2,i + σiŴi

)
(28)

where Z =
[
qTr , q̇

T
r , q̈

T
r , x

T
1 , x

T
2

]T
Γi is a positive definite symmetric matrix, and σi is a

small positive constant.

4. Simulation tests.
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4.1. Experimental setup. In this paper, a hydraulic robotic arm is set up by Mat-
lab/Simulink Simscape-Multibody and Simscape-Fluids simulation platforms in order to
verify the effectiveness of the adaptive neural network supple control strategy with output
constraints. In order to facilitate the design of the controller, the displacement relation-
ship between the joint space of the sampled robotic arm and the actuator space is set as
ha1(q1), ha2(q2), ha3(q3).

ha1 = q1 (29)

ha2 =
√

L2
AB + L2

BC − 2LABLBC cos(q2 + θ0 − θ1)− h20 (30)

ha3 =
√

L2
DF + L2

EF − 2LDFLEF cos(π − γ − q3)− h30, γ = θ2 + θ3 (31)

4.2. Positional tracking performance test. The kinematic analysis and the Self-
encoder Bi-T-LSTM based controller lead to an optimal solution for each joint variable,
which uniquely determines one motion trajectory. The desired motion trajectory of each
joint of the sampled robotic arm is shown below:

θ1 = 14.194 + 0.886t2 − 0.749t3, t ∈ [0, 5] (32)

θ2 = −3.483− 0.613t2 + 2.665t3, t ∈ [0, 5] (33)

θ3 = −11.632 + 6.856t2 − 2.021t3, t ∈ [5, 10] (34)

l3 = −965.329 + 301.068t2 + 9.401t3, t ∈ [0, 5] (35)

θ4 = 76.223− 5.061t2 + 3.509t3, t ∈ [0, 5] (36)

With the proposed controller, the contradiction between the smoothness of motion and
the rate of motion during real-time trajectory planning of the sampling robotic arm can
be well solved. Taking joint 3 as an example, Figure 6 depicts the comparison of sampling
robotic arm joint tracking under neural network control and PID control.

It can be seen that the proposed control algorithm ensures that the joint angles satisfy
the system constraints and that the tracking error converges to a small zero domain. The
proposed Self-encoder Bi-T-LSTM neural network controller has better tracking control
than the PID controller. By sampling the positional tracking comparison of the robotic
arm in the task space, as with the PID controller, it can be found that the Self-encoder Bi-
T-LSTM neural network controller can also achieve accurate positional tracking control.

5. Conclusion. In order to solve the problem of difficult control when the sampling
robotic arm is working, the implicated kinematic relationship between each linkage of
the sampling robotic arm is studied. The linkage coordinate system of the neighbour-
ing rods is established for the sampling robot arm, and the kinematic equations of the
sampling robot arm are further established by using D-H transformation. In order to
further explore the intrinsic connection between the current record and the records of
the past and future moments, a Self-encoder Bi-T-LSTM is proposed, which can deepen
the level of feature extraction for the original sequence, and thus improve the precision
of the trajectory control of the robotic arm. A robotic arm controller based on Self-
encoder Bi-T-LSTM is designed. A neural network controller is used to virtually control
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Figure 6. Joint tracking of Self-encoder Bi-T-LSTM and PID control

the input α2 to compensate for the unknown mechanical system dynamics, and the cor-
responding neural network weight control law is designed. The simulation results show
that Self-encoder Bi-T-LSTM has outstanding performance in handling time-series data
with irregular time interval characteristics, and is good at capturing time-dependent and
dynamically changing robotic arm modelling tasks. The designed controller can achieve
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good position tracking control. The main caveat is that the learning speed of Self-encoder
Bi-T-LSTM is relatively slow because it takes into account both forward and backward
contextual information. However, the task of real-time control of a robotic arm has cer-
tain speed requirements. Subsequent attempts will be made to carry out improvements
of the simplified version of Bi-LSTM, such as using fewer hidden units or convolutional
structures to speed up.
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