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Abstract. With the deployment of smart grids, the Internet of Things (IoT) has gained
substantial popularity. The integration and utilization of data from IoT monitoring
systems in smart grids offer immense potential value. However, various entities store
and manage this data, rendering the analysis of these distributed systems both privacy-
sensitive and voluminous. Federated learning (FL) offers a promising solution by enabling
the development of a shared deep-learning model while maintaining local data privacy
within each monitoring system. However, real-world FL scenarios face significant chal-
lenges due to the imbalance in training data distribution, both in category and quantity.
To align with our research focus, this study uses cyberattack data as a representative
example. Different IoT monitoring systems may record varying types and quantities of
cyberattacks, leading to divergent optimization directions for local models. Consequently,
creating an effective FL framework to learn from these imbalanced distributed data to
detect cyberattacks becomes a complex task. In this paper, we propose an enhanced FL
framework that incorporates local dataset clustering to improve performance. The dis-
tributed local datasets are clustered before conducting a classical FL, with homomorphic
encryption employed to protect the privacy of the local datasets during clustering. To
evaluate the proposed framework, we utilized the NSL-KDD dataset from the Network
Security Laboratory, including all major IoT computing attacks. Experimental results
demonstrated that the proposed framework achieves fewer communication rounds than
traditional FL models by 5.88% overall.
Keywords: Federated Learning; Secure Aggregation; Smart Grid; Cyberattack Predic-
tion

1. Introduction. Aggregating and utilizing data from smart grids has become an in-
creasingly prevalent trend in recent years [1, 2]. Real-time power usage data represent a
vital public resource that should be extensively leveraged for business and governmental
decision-making. One of the most critical applications of data aggregation in smart grids
is the integration of operational data from various monitoring systems to detect potential
cyberattacks [3, 4]. However, these data are closely tied to sensitive information, raising
significant privacy concerns. Meanwhile, as the Internet of Things (IoT) technology is
widely utilized in smart grids [5], the security of IoT systems has garnered significant
critical attention [6, 7]. Numerous cyberattacks, such as Distributed Denial of Service
(DDoS) and man-in-the-middle attacks, pose significant threats to both service providers
and end users within IoT networks [8]. Consequently, anomaly detection-based techniques
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and systems have been developed and integrated into IoT infrastructures [9]. In this work,
we focus on the topic of cyberattack detection in smart grids through secure data aggrega-
tion. This approach enables the examination of schemes for securely aggregating data in
distributed smart grid systems and provides an efficient method to address the challenge
of cyberattack detection in IoT networks. Several key features are crucial for cyberattack
detection in IoT networks: firstly, IoT devices generate an enormous amount of data;
secondly, IoT monitoring systems are inherently decentralized; and thirdly, the size of
IoT networks is continually expanding [10, 11]. The feature of a substantial volume of
data presents valuable opportunities for utilizing deep learning models [12, 13]. There-
fore, centralized deep learning schemes can be employed to detect cyberattacks. However,
these techniques face significant challenges related to data privacy, as they require the
transfer of local data from each monitoring system to a centralized third-party server
for training. Additionally, centralized deep learning becomes impractical when dealing
with large datasets distributed across multiple locations [14]. To address the challenge
of large, distributed datasets, federated learning (FL) methods have been employed to
distribute the deep learning workload across multiple clients. The FL framework inher-
ently enhances security and privacy compared to centralized learning frameworks, as data
generated by end clients remains local. This approach allows the useful data to train the
learning model locally on each client in a distributed manner. Only the updated param-
eters, rather than the raw data, are exchanged between the end clients and the cloud
server [15]. While FL enables parallel computation of models for distributed cyberattack
detection, it does not adequately address the practical challenges posed by data hetero-
geneity [16]. This heterogeneity refers to the non-independent and identically distributed
(non-IID) nature of the data [17]. Different IoT monitoring systems may capture diverse
types and quantities of cyberattacks, resulting in divergent optimization directions for
local models. In this paper, we propose a secure data aggregation model for cyberattack
prediction in smart grids, utilizing clustering federated learning. Our approach employs a
heterogeneity-aware clustering algorithm integrated with homomorphic encryption to se-
curely categorize the distributed datasets. Subsequently, we apply the widely recognized
average federated learning model to enhance prediction accuracy and maintain data pri-
vacy [16]. Specifically, our contributions are summarized as follows:

• The proposed enhanced federated learning model offers a secure method for aggre-
gating and utilizing distributed data from smart grids. This approach enables more
robust predictions for cyberattacks within the IoT network of smart grids, thereby
improving overall security and efficiency.
• By employing the proposed approach, we can utilize cyberattack data from smart
grids to make accurate predictions while also integrating other data from distributed
systems for deep learning. This model effectively addresses the challenges of secure
data aggregation and data heterogeneity in federated learning, providing a compre-
hensive solution for enhancing IoT network security in smart grids.
• Compared to the well-known average federated learning model, which is trained di-
rectly on distributed datasets for cyberattack prediction, the proposed model demon-
strates faster convergence.

The remaining sections are organized as follows. In Section 2, we review related research
on secure data aggregation and cyberattack prediction. Section 3 provides an overview of
the proposed federate learning framework and describes the clustering algorithm in detail.
Section 4 gives the evaluation of the proposed model compared with the baseline model.
Finally, Section 5 offers a summary of the proposed system.
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2. Related work. In smart grids, secure data aggregation methods have been devel-
oped to efficiently gather data while ensuring the preservation of data privacy [18, 19, 20].
These methods usually employ a cryptography scheme to encrypt and aggregate the data.
In the end, the aggregated data can be used by the authorized entities. However, tradi-
tional secure data aggregation methods encounter significant challenges when applied to
cyberattack detection in IoT networks of smart grids due to the increased size and distri-
bution of the data. Aggregating these distributed datasets incurs substantial costs. As
distributed datasets continue to grow in size, a new paradigm known as federated learning
has emerged [16, 21, 14]. Federated learning enables the training of a global deep-learning
model to predict cyberattacks in smart grids while preserving the local storage of datasets.
Although federated learning has become promising in this topic, key challenges caused
by the heterogeneity still have to be addressed for practical application [22]. Although
federated learning shows great promise in this domain, key challenges posed by data het-
erogeneity still need to be addressed for practical application. Consequently, research
aimed at enhancing federated learning methods to manage heterogeneity, which includes
significant variability in data categorization and non-identically distributed data, has gar-
nered considerable interest.

For cyberattack detection using traditional deep learning methods, Song et al. [23]
treated network attacks as malicious traffic and utilized an integrated algorithm com-
bining LSTM and XGBoost for malicious traffic classification. Despite its innovative
approach, the detection accuracy was relatively low. By employing the SRS activation
function at the top layer of the model, it achieved better generalization capability and
learning speed, with a recognition rate of 97%, though its detection precision was rela-
tively low. Yue et al. [24] proposed an integrated detection algorithm based on CNN
and RNN for DoS attacks, achieving an accuracy rate of 99.1%. However, this method
incurs significant computational overhead. Yu et al. [25] developed a high-precision in-
trusion detection system based on a multi-scale convolutional neural network (MSCNN).
Using convolutional kernels of different scales effectively improved the detection precision,
increasing the average accuracy rate for various attacks. Wu et al. [26] introduced the
LuNet model, which achieved a high detection rate for Probe and DoS attacks but showed
lower recognition rates.

For cyberattack detection using federated learning methods, Nguyen et al. [27] proposed
the Dı̈ot system, which can be deployed in IoT environments for automated intrusion de-
tection after being trained via federated learning. Liu et al. [28] designed a federated
learning-based intrusion detection system framework that can be used for anomaly detec-
tion in temporal attack data. Li et al. [29] presented a federated learning-based intrusion
detection system for industrial environments, demonstrating improved communication ef-
ficiency. Wang et al. [30] proposed a network anomaly detection method based on deep
neural networks and federated learning. This method utilizes federated learning to train
models using dispersed local device data within the Internet of Things (IoT), sharing
only the trained weight parameters with a central server. By deploying detection models
across different regions, this approach enhances model accuracy and reduces false posi-
tive rates compared to other deep detection models. However, the method only employs
the federated averaging algorithm (Fed Avg) for model aggregation, without considering
model performance and communication efficiency. Rahman et al. [31] presented an in-
trusion detection model that trains local models using federated learning with local data,
thereby protecting data privacy. Experiments on the NSLKDD dataset showed that,
after the final round of federated learning, the accuracy of the aggregated model fluctu-
ated around 83.09%. Nevertheless, this method has several issues: prolonged response
times for model uploading and updating during training, poor performance of selected
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client detection models, and low detection accuracy. Sawsan et al. [32] addressed the
heterogeneity of devices and limited computational and communication resources in IoT
by proposing FedMCCS. This approach considers factors such as CPU, storage, and time
for each client device to predict their participation in the next training round. Exper-
iments demonstrated that FedMCCS could train the maximum number of local models
per communication round, but it did not optimize client detection model performance
and selection methods to reduce communication overhead.

3. Proposed Scheme.

3.1. Overview. As is shown in Figure 1, the entire framework consists of four key parts:

• Secure Data Transmission: Each client employs a homomorphic encryption scheme
to securely transmit the summary information of its local dataset to the server..
• Similarity Calculation: The server calculates a Jaccard similarity matrix [33] based
on the received summary information.
• Client Clustering: Utilizing the Jaccard similarity matrix, the server divides the
clients into several groups, ensuring that clients with more similar records are placed
in the same group.
• Federated Model Training: Each group then trains a federated learning model, lever-
aging the grouped data to enhance prediction accuracy and maintain data privacy.

We will describe these parts in detail next.

Client 1 Client 2 Client 3 Client n

K(M1) K(M2) K(M3) K(Mn)

Server

Group 1 Group 2 Group n

Clustering Clustering Clustering
Federated

Learning
Federated

Learning

Federated

Learning

①①①①

②

③③③④ ④ ④

Figure 1. The Proposed Framework
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3.2. Dataset. The proposed framework is based on the premise that training federated
models with datasets containing more similar records can achieve higher performance
compared to those with less similarity. To validate this hypothesis, we divide the overall
dataset into several local subsets, ensuring that similar types of records are grouped
together as much as possible. For instance, in an extreme scenario, the dataset with
40 types of records is divided into 10 local subsets, each containing 4 distinct types of
records, with no overlap of record types between different clients. Thus, a DDoS attack
record, for example, will be found in only one client dataset. We will train the federated
model on this extreme scenario and compare the performance with the same model which
is trained on the randomly split local datasets. The result can be found in the Section 4.

3.3. Secure Data Transmission. After validating the aforementioned hypothesis, we
proceed by clustering local datasets with higher similarity before initiating the training
process within the proposed framework. Here, similarity is defined by the proportion of
records of the same type; local datasets containing a greater number of identical record
types are considered to be more similar. Therefore, to calculate the similarity among
different local datasets, we should get the information of how many records for each type
in a local dataset. To protect the privacy of each client, we employ a homomorphic
encryption scheme [34] in the proposed framework. Homomorphic encryption is a form
of encryption that allows computations to be carried out on ciphertexts, so that when
decrypted, the result matches the outcome of operations performed on the plaintext.
This means that data can be encrypted and processed without ever exposing the plaintext,
ensuring privacy and security. With this scheme, the local information can be transmissed
to a server securely. We sets up a context for CKKS (Cheon-Kim-Kim-Song) scheme [34]
, which is a type of leveled fully homomorphic encryption. The principles of homomorphic
encryption are as follows:

1. Encryption: The summary information in each client is encrypted using a public
key, resulting in ciphertexts. In the CKKS scheme, this involves encoding real or complex
numbers into polynomials and then encrypting these polynomials. The formula is as
follows:

Enc(m) = ([m] + ∆ · r) mod q

where [m] is the encoding of the information m, ∆ is a scaling factor, r is a random
polynomial, and q is the coefficient modulus.

2. Computation: Operations such as addition and multiplication are performed
directly on the ciphertexts. The CKKS scheme allows for these operations to be performed
approximately due to its encoding and encryption methods.

3. Decryption : The modified ciphertexts are decrypted using a private key, returning
the result of the computation on the original plaintext data. The formula is as follows:

Dec(c) =

(
c mod q

∆

)
where c is the ciphertext.

As is shown in Algrithm 1, each client uses the encryption to calculate the numbers
of each type of record in its local dataset and send the encrypted vector to the server.
For each local dataset, Line 1 of the algorithm calculates the total count of each record
type, where “TargetColumn” indicates the specific type of record. Then the frequency of
each record type is encrypted by the homomorphic encryption, resulting in an encrypted
frequency vector of each record type.
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Algorithm 1 Calculate Local Information with Homomorphic Encryption

Require: datasets
1: frequency ← dataset.TargetColumn.ValueCounts
2: frequency vector ← Array([frequency.get(cla, 0) for cla in range(num classes)])
3: encrypted vector ← ckks tensor(context, [str(value) for value in frequency vector])

4: return encrypted vector

3.4. Similarity Calculation. After getting the encrypted frequency vectors from the
local clients, the server tries to calculate a similarity matrix called Jaccard Similarity
Matrix [33]. The Jaccard similarity matrix, also known as the Jaccard coefficient, is a
statistic used for gauging the similarity and diversity of sample sets. It measures similarity
between finite sample sets, and is defined as the size of the intersection divided by the size
of the union of the sample sets. Given two sets A and B, the Jaccard similarity matrix is
given by:

J(A,B) =
|A ∩B|
|A ∪B|

As is shown in Algrithm 2, the Jaccard similarity matrix is being calculated for a number
of datasets, where each dataset is represented by a frequency vector of encrypted attack
types. The intersection of two sets is represented by the element-wise multiplication of
their frequency vectors. This is the equivalent of counting the number of elements that
are common between the two sets. The union of two sets is represented by the sum of
the element-wise multiplication of each set with itself, minus the intersection. This is
equivalent to counting all the unique elements in both sets. We perform these operations
using the homomorphic computation, which allows the operations to be performed on
encrypted data without decrypting it first. This is particularly useful for preserving
privacy when dealing with sensitive data.

Algorithm 2 Calculate Intersection and Union

Require: encrypted vectors, num clients
1: intersection vectors = []
2: union vectors = []
3: for i← 0 to num clients− 1 do
4: for j ← i+ 1 to num clients do
5: intersection← encrypted vectors[i] ∗ encrypted vectors[j]
6: union ← encrypted vectors[i] ∗ encrypted vectors[i] + encrypted vectors[j] ∗

encrypted vectors[j]− intersection
7: intersection vectors← intersection
8: union vectors← union
9: end for

10: end for
11: return (intersection vectors, union vectors)

Upon completing the computation of the intersection and union vectors, the server
transmits these values to each client. As illustrated in Algorithm 3, each client decrypts
these values and calculates the Jaccard similarity by dividing the sum of the decrypted
intersection by the sum of the decrypted union. Consequently, all clients obtain the same
Jaccard similarity matrix, which they then return to the server.
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Algorithm 3 Calculate Jaccard Similarity Matrix

Require: intersection vectors, union vectors
1: jaccard matrix ← Zeros(num clients, num clients)
2: k = 0
3: for i← 0 to num clients− 1 do
4: for j ← i+ 1 to num clients do
5: jaccard← sum(decrypt(intersection[k])) / sum(decrypt(union[k]))
6: jaccard matrix[i, j]← jaccard
7: jaccard matrix[j, i]← jaccard
8: end for
9: end for
10: return (jaccard matrix)

3.5. Client Clustering. Upon getting the Jaccard similarity matrix, the server uses hi-
erarchical clustering to group datasets into clusters based on their similarity. Hierarchical
clustering [35] is a method of cluster analysis which seeks to build a hierarchy of clusters.
Initially, each dataset is considered as a separate cluster. The Algorithm 4 then repeatedly
executes the following steps:

• Identify the two clusters that are closest together based on the complete linkage
criterion.
• Merge these two clusters into a single cluster.
• This process continues until the specified number of clusters (num cluster) is reached.

The result, stored in the variable “clusters”, is an array of cluster labels. Each dataset
is assigned a label corresponding to the cluster it belongs to. By using the Jaccard
similarity matrix as input, the clustering is based on the similarity between datasets,
with more similar datasets being grouped together. This approach is particularly useful
when dealing with complex data structures where the relationships between data points
are not easily quantifiable in a traditional Euclidean space.

Algorithm 4 Hierarchical Clustering

Require: jaccard matrix, num cluster
1: clustering ← AgglomerativeClustering(n clusters = num cluster)
2: clusters← clustering.fit predict(jaccard matrix)
3: groups← list of empty lists with size num cluster
4: for cluster id← 0 to num cluster − 1 do
5: for dataset idx← 0 to len(clusters)− 1 do
6: if clusters[dataset idx] = cluster id then
7: groups[cluster id].append(dataset idx)
8: end if
9: end for
10: end for
11: return groups

3.6. Federated Model Training. In this part, the framework executes federated model
training [16], where each client in the same group trains a local model on its own data and
then sends the model updates to a central server. The server aggregates these updates
to improve the global model. The “ClientUpdate” function represents the local training
process on the client’s data. The global model parameters are updated by taking a
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weighted average of the local model parameters, where the weights are proportional to
the number of data points each client has.

As is shown in Algorithm 5 executed by the server and Algorithm 6 executed by the
clients, the server initializes the global model parameters, denoted as θ0, which will be
shared with all clients in the same group. For a predefined number of rounds T , each
client k receives the current global model parameters θt from the server. The client per-
forms local updates to the model parameters based on its own data, resulting in updated
parameters θkt+1. This is done through the “ClientUpdate” function, which typically in-
volves training for several local epochs E using stochastic gradient descent (SGD) [36] or
a similar optimization method.

The “ClientUpdate” function takes the current global parameters θ and performs up-
dates based on the client’s local dataset. For each batch b, the parameters are updated
by subtracting the product of the learning rate η and the gradient of the loss function
∇L(θ; b). After all selected clients in a group have completed their local updates, the
server aggregates these updates to form the new global model parameters θt+1. This is
done by taking a weighted average of the updated parameters from each client, where the
weights are proportional to the number of data points nk that each client contributes to
the total data points n. The aggregated parameters θt+1 become the new global model
parameters for the next round of training or for final evaluation. This iterative process
allows for the creation of a robust global model that benefits from the diverse data across
all clients without requiring the actual data to be centralized, thus preserving privacy and
reducing communication costs.

Algorithm 5 Federated Averaging (FedAvg)

Require: A set of m clients in a group
1: Initialize global model parameters θ0
2: for each round t = 1, 2, . . . , T do
3: for each client k do
4: θkt+1 ← ClientUpdate(k, θt)
5: end for
6: θt+1 ←

∑m
k=1

nk

n
θkt+1

7: end for

Algorithm 6 ClientUpdate(k, θ)

Require: Client index k, current global model parameters θ
1: Updated local model parameters θ′

2: Initialize local model with global parameters θ
3: for each local epoch i = 1, 2, . . . , E do
4: for each batch b in local dataset of client k do
5: θ′ ← θ − η∇L(θ; b)
6: end for
7: end for
8: return θ′

4. Experiments and Analysis.
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4.1. Experimental Environment. The experimental environment for this study was
meticulously designed to ensure availability and optimal performance for the proposed
framework. The hardware setup included a high-performance computing server equipped
with the following specifications:

• Processor: Intel Xeon Silver 4310, 48 cores, 2.10 GHz
• Memory: 256 GB DDR4 RAM
• Graphics Processing Unit (GPU): Two NVIDIA A30 GPUs, each with 24 GB mem-
ory

To evaluate the proposed framework, we utilized the NSL-KDD dataset [37], a bench-
mark in the field of cyberattack detection system assessment. This dataset comprises
148, 517 records, with more than 48% representing cyberattack instances. Each record
contains 42 features and 1 identification indicating the classification of the record. There
are 40 types of the records, including 1 normal type of record and 39 types of attack
records. Then we randomly split this dataset into several shares and take each share as
a local dataset for a client. Ultimately, this process yields multiple local datasets, each
varying in size and containing different quantities and types of attack records. All experi-
ments were conducted using a uniform random seed to ensure consistency across different
runs. We use LSTM [38] as the test model in the federated learning. The learning rate
was set to 0.001 and the hidden units are 64. The software environment was configured
as follows:

• Operating System: Linux login.cluster.cn 3.10.0-1160.el7.x86 64
• Deep Learning Framework: PyTorch 2.3.0+cu121
• Python Version: 3.10.14, with necessary libraries such as NumPy, Tenseal, and Pan-
das for data preprocessing and homomorphic encryption.

4.2. Results Analysis. Firstly, we need to verify our hypothesis that training federated
models with datasets containing more similar records can achieve higher performance
compared to those with less similarity. To test this, we conducted two experiments. In
the first experiment, we divided the entire dataset into 10 local subsets, each containing
4 distinct types of records with no overlap of record types between different clients. This
scenario represents the optimal case for our proposed framework. In the second exper-
iment, we randomly divided the dataset into 10 subsets, each representing a different
client, to simulate a typical real-world scenario. The performance outcomes of these two
cases are illustrated in Figure 2. The results demonstrate that the baseline case, with
more homogeneous record types within each client, achieves faster convergence compared
to the random division, thereby supporting our hypothesis.

After validating our hypothesis, we proceeded to compare the performance of our pro-
posed framework, referred to as “fedCluster” with the average learning model “fedAvg” as
described by McMahan et al. [16]. This comparison was carried out across four different
scenarios, each involving a distinct set of local clients. As is shown in Figures 3 to 6, the
proposed framework shows progress. In scenarios involving 10 or 25 clients, the proposed
framework exhibited only marginally better performance than the ”fedAvg” model. How-
ever, for configurations with 15 or 20 clients, the proposed framework showed a significant
improvement in performance. This enhances our hypothesis that local datasets contain-
ing more similar records can achieve higher performance in federated learning. And the
number of clients is not a key factor for the convergence performance.

Overall, the proposed framework exhibits superior performance compared to ”fedAvg.”
It’s crucial to note that a randomly divided local dataset might inherently contain enough
similar records, potentially limiting the advantage of ”fedCluster.” The degree to which
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Figure 2. Hypothesis Verification

Figure 3. Comparison in the Case of 10 Clients. Slight Improvement.
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Figure 4. Comparison in the Case of 15 Clients. Faster Convergence and Higher Overall Accuracy.

Figure 5. Comparison in the Case of 20 Clients. Faster Convergence and Higher Overall Accuracy.
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Figure 6. Comparison in the Case of 25 Clients. Slight Improvement.

”fedCluster” outperforms ”fedAvg” is significantly influenced by the level of dispersion
among the divided datasets.

4.3. Comparison. To facilitate comparison, we selected the same deep learning model
(LSTM) with identical batch sizes and epochs across all federated learning frameworks.
The scenario where the number of clients equals 0 represents the baseline case, which
serves as the optimal scenario within the proposed framework. We conducted a com-
parative analysis based on the number of communication rounds required between the
server and clients to achieve specific target accuracies. Table 1 presents the total number
of communication rounds needed for the model accuracy to exceed 85%, while Table 2
illustrates the number of communication rounds required for the accuracy to surpass 95%.
The last columns of the tables summarize the percentage improvement of ”fedCluster”
over ”fedAvg” for communication rounds. The results clearly indicate that the proposed
framework achieves the target accuracies with fewer communication rounds, demonstrat-
ing its efficiency in the experimental setup.

5. Conclusion. The integration of operational data from various monitoring systems is
critical for detecting potential cyberattacks in smart grids, yet this process must navigate
significant privacy concerns due to the sensitivity of the data involved. In this work, we ad-
dress the complex challenge of cyberattack detection in smart grids through a secure data
aggregation approach, leveraging federated learning (FL) to distribute the deep learning
workload across multiple clients while maintaining data privacy. The proposed enhanced
FL model incorporates a heterogeneity-aware clustering algorithm and homomorphic en-
cryption to securely categorize distributed datasets, followed by the application of the
average federated learning model. The proposed model provides a secure and efficient



Secure Data Aggregation Model Based on Clustering Federated Learning 247

Table 1. COMPARISON WITH %85 ACCURACY

Framework Clients Batch Size Epoch Comm. Rounds Improvement (%)
Baseline 0 16 5 50 N/A
fedCluster 10 16 5 90 0
fedAvg 10 16 5 90 N/A

fedCluster 15 16 5 180 20
fedAvg 15 16 5 225 N/A

fedCluster 20 16 5 340 5
fedAvg 20 16 5 360 N/A

fedCluster 25 16 5 500 4.76
fedAvg 25 16 5 525 N/A

Table 2. COMPARISON WITH %95 ACCURACY

Framework Clients Batch Size Epoch Comm. Rounds Improvement (%)
Baseline 0 16 5 170 N/A
fedCluster 10 16 5 580 1.69
fedAvg 10 16 5 590 N/A

fedCluster 15 16 5 1335 13.87
fedAvg 15 16 5 1500 N/A

fedCluster 20 16 5 2280 1.72
fedAvg 20 16 5 2320 N/A

fedCluster 25 16 5 3550 0
fedAvg 25 16 5 3550 N/A

method for aggregating and utilizing distributed data from smart grids, resulting in im-
proved security and predictive accuracy. Additionally, the model shows faster convergence
compared to traditional federated learning models, highlighting its practical advantages
in real-world applications. This research offers a comprehensive solution to enhance IoT
network security within smart grids, addressing both the technical and privacy-related
challenges inherent in distributed data environments.

In the future, several areas can be built on the findings of this study. For example,
investigating the scalability of the proposed framework in larger and more complex smart
grid environments would be beneficial. This includes testing with a greater number of
clients and more varied datasets to evaluate performance and security. Another promising
avenue is the development of adaptive clustering techniques. An adaptive online clustering
method can analyze data distribution and dynamically update cluster centroids to reflect
real-time changes in the data stream. This enables the formation of flexible clusters and
the assignment of data based not only on inherent features but also on its distribution at
specific moments. By leveraging such adaptive techniques, which adjust to the evolving
nature of cyber threats and the increasing diversity of data, the robustness and flexibility
of federated learning models can be significantly enhanced.
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